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Motivations

@ Important problem : databases, expert opinions pooling,
preference agregations, etc.
@ Why merging?
@ exploit complementarities between the sources,
@ get a global and coherent point of view,
@ reduce imprecision,
@ deals with redunduncies, etc.



Motivations

@ Different formats for representing uncertain information:
o Possibilistic logic knowledge bases
@ Possibilistic networks

@ General classes of merging operators:

@ Conjunctive merging
o Disjunctive merging
@ Adaptative merging

@ Syntactic fusion defined on possibilistic knowledge bases



@ Input:
@ nconsistent possibilistic networks (provided by n experts)
@ Conjunctive operator (minimum)

@ Goal Compute a new possibilistic network representing the
result of merging



Q Definitions of Min-based possibilistic networks

9 Fusion of same-structure networks

Q Fusion of networks with different structures
@ Case 1 : Union of graphs is acyclic
@ Case 2 : Union of graphs contains cycles



Definitions of Min-based possibilistic networks
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Definitions of Min-based possibilistic networks
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Possibility Distributions

@ 7:Q —[0,1], max,ecq m(w) = 1.

@ Two dual measures :
@ Possibility measure of ¢:
N(¢) = max{m(w) : w = ¢}
= The compatibility degree of w with available knowledge.
@ Necessity measure of ¢:
N(¢) =1—TI(-9)
= The certainty degree associated with ¢ from available
pieces of information encoded by .



Definitions of Min-based possibilistic networks
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Possibilistic Networks N = (7, Gy)

mn(A) mn(B)
A ®
@ m™(C|AB)

@ Gy : Directed Acyclic Graph (DAG)

@ Node « variable
@ Arc + causal relationship



Definitions of Min-based possibilistic networks
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Possibilistic Networks N = (7, Gy)

mn(A) mn(B)
A ®
@ m™(C|AB)

@ Gy : Directed Acyclic Graph (DAG)
@ Node « variable
@ Arc + causal relationship

@ 7y : Conditional possibility distributions in the context of
each parent

m(ABC) = min(mn(A), mn(B), mn(C|AB))
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Fusion of same-structure networks
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Fusion of same-structure networks

Input : Two possibilistic networks having the same graph:
N1 = (71, Gyt ) and N2 = (e, Gne) S-1.
Gnt = Gne

@ Result of merging is immediate
N& = (7ng, Gng ) sSuch that:
® Gng = Gni = Gz
o VA:
g (A | Ua) = min(mni (A | Up), mv2(A | Ua)).



Fusion of same-structure networks
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Fusion of same-structure networks

Input : Two possibilistic networks having the same graph:
N1 = (mn1, Gn1) and N2 = (g, Gre) St
Gyt = G
@ Result of merging is immediate
N&® = (7ng, Gng ) such that:
@ Gng = Gn1 = G2
o VA
e (A | Ua) = min(mni (A | Ua), mn2(A | Un)).

@ We have :
VYw € Q, g (w) = min(my (w), mve (w))
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Q Fusion of networks with different structures
@ Case 1 : Union of graphs is acyclic
@ Case 2 : Union of graphs contains cycles



Fusion of networks with different struc
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Case 1 : Union of graphs is acyclic

Input N1 = (71, Gy ) and N2 = (mp, Ge) St -
Gt # G
Result of merging in three steps:
@ step 1 : Define Gng the union of Gy and Gnp
@ step 2 : Expand equivalently N1 and N2 into :
N1/ = (7TN1I, GN@) and N2/ = (TrNQI, GNEB)
@ step 3 : Apply Fusion of same structure networks to N1/
and N2/,
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Case 1 : Union of graphs is acyclic

Input N1 = (71, Gy ) and N2 = (mp, Ge) St -
Gni # G
Result of merging in three steps:
@ step 1 : Define Gng the union of Gy and Gnp
@ step 2 : Expand equivalently N1 and N2 into :
N1/ = (’/TN1I, GN@) and N2’ = (7I'N2/, GN@)
@ step 3 : Apply Fusion of same structure networks to N1’
and N2,

How to equivalently expand possibilistic networks?



Fusion of networks with different struc
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Expanding networks : Adding new variables

@ Input
@ A possibilistic network N = (7y, Gy) built on a set of
variables V
@ A anew variable A

@ Output: N1 = (71, Gyt ) such that :

@ Gy is equal to Gy plus a root node A, and
@ 7yt = 7y for variables in V, and is uniform on A (i.e.,
Va € Dy, mni(a)=1).



Fusion of networks with different struc
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Expanding networks : Adding new variables

@ Input
@ A possibilistic network N = (my, Gy) built on a set of
variables V
@ A anew variable A

@ Output : N1 = (71, Gy ) such that :

@ Gy is equal to Gy plus a root node A, and
@ mni = my for variables in V, and is uniform on A (i.e.,
Va € Dy, my1(a)=1).
Then, we have : Vw € xacvDy, ,
m(w) = My (w)



Fusion of networks with different struc
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Expanding networks : Adding new links

@ Input

@ A possibilistic network N = (7y, Gy)
@ B avariable which is not a parent of A

@ Output : N1 = (w1, Gy ) such that :

@ Gy is obtained from Gy by adding a link from B to A,
@ The new conditionnal possibility distribution of A is:
Vae Dy, be Dg,u € DPar(A)1
mni(a| ub) = nn(a| u).
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Expanding networks : Adding new links

@ Input

@ A possibilistic network N = (7y, Gn)

@ B avariable which is not a parent of A
@ Output: N1 = (7myq, Gy) such that :

@ Gy is obtained from Gy by adding a link from B to A,
@ The new conditionnal possibility distribution of A is:
Va € Da, b € Dg,u € Dpy(a),
7TN1(a | Ub) = 7TN(a | U).

Then, we have :
Vw, my(w) = mvi (w)



Fusion of networks with different struc
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Case 2 : Union of graphs contains cycles

°G2

TN2 (A) 7TN2(B)

®H——~O®



Fusion of networks with different struc
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Step 1 rename variables of G

0G1

®—=®



Fusion of networks with different struc
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Step : Relating old and new variables




Fusion of networks with different struc
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Step : Relating old and new variables

This defines Gng .



Fusion of networks with different struc
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Step 3 : Defining conditional possibility

distributions

e (A) = N1 (A) Ne(B | A) = mni(B | A)

7T'N2(b,') If I _j

a|by) ifi=j / .
mnz(ai | by) / e (b | bf)={ 0 other.

/ Iy
me(4; | gbl) = { 0 other.

1

z
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Step 3 : Defining conditional possibility

distributions

e (A) = mni(A) WNEB (B| A) = mni(B | A)

ng (b)) ifi=j
other.

mo(ai | by) ifi=]

mwa(al L) = { § other mo(b] | B)=

We have :
min(my (w), Ty (w)) = Mg (w)-



Conclusion

@ Fusion of possibilistic networks

@ Efficient fusion procedures for networks :
@ having same graphs
o the union of their graphs is free of cycles

@ Investigate other combination operators



