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Considered system

In this talk, we consider an initial boundary value problem for the
linear wave equation reading as

(P) ϕtt(x, t)− ϕxx(x, t) = 0 in ]0,L[×]0,+∞[,

where (x, t) ∈ (0,L)× (0,+∞). This system is subject to the boundary
conditions

ϕ(0, t) = 0, in (0,+∞)
mϕtt(L, t) + ϕx(L, t) = −γ∂α,ηt ϕ(L, t) in (0,+∞)

where m > 0 and γ > 0.
The problem (P) describes the motion of a pinched vibration cable
with tip mass m > 0.



Considered system

The notation ∂α,ηt stands for the generalized Caputo’s fractional
derivative of order α with respect to the time variable. It is defined as
follows

∂α,ηt w(t) =
1

Γ(1− α)

∫ t

0
(t − s)−αe−η(t−s) dw

ds
(s) ds, η ≥ 0.

The system is finally completed with initial conditions

ϕ(x, 0) = ϕ0(x), ϕt(x, 0) = ϕ1(x),

where the initial data (ϕ0, ϕ1) belong to a suitable Sobolev space.



Physical interpretations

The boundary feedback under the consideration are of fractional type
and are described by the fractional derivatives

∂α,ηt w(t) =
1

Γ(1− α)

∫ t

0
(t − s)−αe−η(t−s) dw

ds
(s) ds, η ≥ 0.

The order of our derivatives is between 0 and 1. Very little attention
has been paid to this type of feedback. In addition to being nonlocal,
fractional derivatives involve singular and nonintegrable kernels
(t−α, 0 < α < 1). This leads to substantial mathematical difficulties
since all the previous methods developed for convolution terms with
regular and/or integrable kernels are no longer valid.
It has been shown that, as ∂t, the fractional derivative ∂αt forces the
system to become dissipative and the solution to approach the
equilibrium state. Therefore, when applied on the boundary, we can
consider them as controllers which help to reduce the vibrations.



Physical interpretations

Boundary dissipations of fractional order or, in general, of convolution
type are not only important from the theoretical point of view but also
for applications. They naturally arise in physical, chemical, biological,
ecological phenomena . They are used to describe memory and
hereditary properties of various materials and processes. For
example, in viscoelasticity, see for example the early work of
• R. L. Bagley and P. J. Torvik, A theoretical basis for the
application of fractional calculus to viscoelasticity, J. Rheology.
27 (1983), 201ñ210.
• R. L. Bagley and P. J. Torvik, On the appearance of the
fractional derivative in the behavior of real material, J. Appl.
Mech. 51 (1983), 294-298.
In our case, the fractional dissipations may describe an active
boundary viscoelastic damper designed for the purpose of reducing
the vibrations.
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Augmented model
To reformulate the model (P) into an augmented system, we need the
following claims.

Theorem
Let µ be the function :

µ(ξ) = |ξ|(2α−1)/2, −∞ < ξ < +∞, 0 < α < 1.

Then the relationship between the ‘input’ U and the ‘output’ O of the
system

∂tφ(ξ, t) + (ξ2 +η)φ(ξ, t)−U(t)µ(ξ) = 0, −∞ < ξ < +∞, η ≥ 0, t > 0,

φ(ξ, 0) = 0,

O(t) = (π)−1 sin(απ)

∫ +∞

−∞
µ(ξ)φ(ξ, t) dξ

is given by

O(t) =
1

Γ(1− α)

∫ t

0
(t − τ)−αe−η(t−τ)U(τ) dτ.



System (P) may be recast into the augmented model :

ϕtt − ϕxx = 0,
∂tφ(ξ, t) + (ξ2 + η)φ(ξ, t)− ϕt(L, t)µ(ξ) = 0,
ϕ(0, t) = 0,

mϕtt(L, t) + ϕx(L, t) = −γ(π)−1 sin(απ)

∫ +∞

−∞
µ(ξ)φ(ξ, t) dξ,

ϕ(x, 0) = ϕ0(x), ϕt(x, 0) = ϕ1(x).

(P′)



Energy function

E(t) =
1
2
‖ϕt‖2

2 +
1
2
‖ϕx‖2

2 +
m
2
|ϕt(L, t)|2 +

γ

2
(π)−1 sin(απ)

∫ +∞

−∞
(φ(ξ, t))2 dξ.



Dissipation of (P)

E′(t) = −(π)−1 sin(απ)γ

∫ +∞

−∞
(ξ2 + η)(φ(ξ, t))2 dξ ≤ 0.

We have E′ ≤ 0, and then the system (P) is dissipative, where the
dissipation is guaranteed by the finite memory term.
If γ = 0 (no memory term in (P)), then E = E(0), and therefore (P) is
conservative.
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Well-posedness

Let U = (ϕ,ϕt, φ, v)T , v = ϕt(L). (P′) is equivalent to{
U′ = AU,
U(0) = (ϕ0, ϕ1, φ0, v0),

(1)

A


ϕ
u
φ
v

 =


u
ϕxx

−(ξ2 + η)φ+ u(L)µ(ξ)

− 1
mϕx(L)− ζ

m

∫ +∞

−∞
µ(ξ)φ(ξ) dξ





Well-posedness

D(A) =

(ϕ, u, φ, v)T in H : ϕ ∈ H2(0,L) ∩ H1
L(0,L), u ∈ H1

L(0,L), v ∈ IC,
−(ξ2 + η)φ+ u(L)µ(ξ) ∈ L2(−∞,+∞), u(L) = v,
|ξ|φ ∈ L2(−∞,+∞)


(2)

where, the energy space H is defined as

H = H1
L(0,L)× L2(0,L)× L2(−∞,+∞)× IC.

For U = (ϕ, u, φ, v)T ,U = (ϕ, u, φ, v)T , we define the following inner
product in H

〈U,U〉H =

∫ L

0
(uu + ϕxϕx) dx + ζ

∫ +∞

−∞
φφ dξ + mvv.



Well-posedness

The operator A generates a C0- semigroup in H. In this step, we
prove that the operator A is dissipative. Let U = (ϕ, u, φ, v)T . Using
the fact that

E(t) =
1
2
‖U‖2

H, (3)

we get

〈AU,U〉H = −ζ
∫ +∞

−∞
(ξ2 + η)(φ(ξ))2 dξ (4)

Consequently, the operator A is dissipative. Now, we will prove that
the operator λI −A is surjective for λ > 0. For this purpose, let
(f1, f2, f3, f4)T ∈ H, we seek U = (ϕ, u, φ, v)T ∈ D(A) solution of the
following system of equations



Well-posedness


λϕ− u = f1,
λu− ϕxx = f2,
λφ+ (ξ2 + η)φ− u(L)µ(ξ) = f3,

λv + 1
mϕx(L) + ζ

m

∫ +∞

−∞
µ(ξ)φ(ξ) dξ = f4.

(5)

Problem (5) is equivalent to the problem

a(ϕ,w) = L(w) (6)

where the bilinear form a : H1
L(0,L)× H1

L(0,L)→ IR and the linear
form L : H1

L(0,L)→ IR are defined by



Well-posedness

a(ϕ,w) =

∫ L

0
(λ2ϕw + ϕxwx) dx + λ(λm + ζ̃)ϕ(L)w(L)

L(w) =

∫ L

0
(f2 + λf1)w dx− ζ

∫ +∞

−∞

µ(ξ)

ξ2 + η + λ
f3(ξ) dξ w(L)

+(λm + ζ̃)f1(L)w(L) + mf4w(L)

where ζ = (π)−1 sin(απ)γ and ζ̃ = ζ

∫ +∞

−∞

µ2(ξ)

ξ2 + η + λ
dξ.



Well-posedness

It is easy to verify that a is continuous and coercive, and L is
continuous. So applying the Lax-Milgram theorem, we deduce that for
all w ∈ H1

L(0,L) problem (6) admits a unique solution ϕ) ∈ H1
L(0,L).

Applying the classical elliptic regularity, it follows that ϕ ∈ H2(0,L).
Therefore, the operator λI − A is surjective for any λ > 0.
Consequently, using HilleñYosida theorem, we have the following
results.

Theorem (Existence and uniqueness)

(1) If U0 ∈ D(A), then system (1) has a unique strong solution

U ∈ C0(IR+,D(A)) ∩ C1(IR+,H).

(2) If U0 ∈ H, then system (1) has a unique weak solution

U ∈ C0(IR+,H).
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Lack of exponential stability

Theorem
The semigroup generated by the operator A is not exponentially
stable.

Proof : We will examine two cases.
• Case 1 η = 0 : We shall show that iλ = 0 is not in the resolvent set
of the operator A. Indeed, noting that (sin x, 0, 0, 0)T ∈ H, and
denoting by (ϕ, u, φ, v)T the image of (sin x, 0, 0, 0)T by A−1, we see
that φ(ξ) = |ξ| 2α−5

2 sin L. But, then φ 6∈ L2(−∞,+∞), since α ∈]0, 1[.
And so (ϕ, u, φ, v)T 6∈ D(A).
• Case 2 η 6= 0 : We aim to show that an infinite number of
eigenvalues of A approach the imaginary axis which prevents the
wave system (P) from being exponentially stable. Indeed We first
compute the characteristic equation that gives the eigenvalues of A.
Let λ be an eigenvalue of A with associated eigenvector
U = (ϕ, u, φ, v)T . Then AU = λU is equivalent to




λϕ− u = 0,
λu− ϕxx = 0,
λφ+ (ξ2 + η)φ− u(L)µ(ξ) = 0,

λv +
1
m
ϕx(L) +

ζ

m

∫ +∞

−∞
µ(ξ)φ(ξ) dξ = 0

(7)

From (7)1 − (7)2 for such λ, we find

λ2ϕ− ϕxx = 0. (8)

Since v = u(L), using (7)3 and (7)4, we get
ϕ(0) = 0,(
λ+

ζ

m

∫ +∞

−∞

µ2(ξ)

ξ2 + λ+ η
dξ
)

u(L) +
1
m
ϕx(L)

=
(
λ+

γ

m
(λ+ η)α−1

)
λϕ(L) +

1
m
ϕx(L) = 0.

(9)



The solution ϕ is given by

ϕ(x) =

2∑
i=1

cietix, t1 = λ, t2 = −λ. (10)

Thus the boundary conditions may be written as the following
system :

M(λ)C(λ) =

(
1 1

h(t1)et1L h(t2)et2L

)(
c1
c2

)
=

(
0
0

)
(11)

where we have set

h(r) =
1
m

r + λ2 +
γ

m
λ(λ+ η)α−1.

Hence a non-trivial solution ϕ exists if and only if the determinant of
M(λ) vanishes. Set f (λ) = detM(λ), thus the characteristic equation is
f (λ) = 0.



Lemma
There exists N ∈ IN such that

{λk}k∈Z∗,|k|≥N ⊂ σ(A) (12)

where

λk = i
(

kπ
L

+
1

mkπ

)
+

α̃

k3−α +
β

|k|3−α
+ o

(
1

k3−α

)
, |k| ≥ N, α̃ ∈ iIR,

with
β = − γ

m2Lα−2π3−α cos(1− α)
π

2
.

Moreover for all |k| ≥ N, the eigenvalues λk are simple.

The operator A has a non exponential decaying branch of
eigenvalues.
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Asymptotic behavior

Theorem (Borichev-Tomilov)

Let S(t) = eAt be a C0-semigroup on a Hilbert space. If

iIR ⊂ ρ(A) and sup
|β|≥1

1
βl ‖(iβI −A)−1‖LH < M

for some l, then there exist c such that

‖eAtU0‖ ≤
c

t
1
l
‖U0‖D(A)

Theorem (Arendt-Batty)

Let A be the generator of a uniformly bounded C0. semigroup
{S(t)}t≥0 on a Hilbert space H. If :

(i) A does not have eigenvalues on iIR.
(ii) The intersection of the spectrum σ(A) with iIR is at most a

countable set,
then the semigroup {S(t)}t≥0 is asymptotically stable, i.e,
‖S(t)z‖H → 0 as t→∞ for any z ∈ H.



Lemma
We have

iIR ⊂ ρ(A) if η 6= 0,
iIR∗ ⊂ ρ(A) if η = 0

where IR∗ = IR − {0}.
Proof
Let λ ∈ IR. Let F = (f1, f2, f3, f3)T ∈ H be given, and let
X = (ϕ, u, φ, v)T ∈ D(A) be such that

(iλI −A)X = F. (13)

Equivalently, we have
iλϕ− u = f1,
iλu− ϕxx = f2,
iλφ+ (ξ2 + η)φ− u(L)µ(ξ) = f3,

iλv + 1
mϕx(L) + ζ

m

∫ +∞

−∞
µ(ξ)φ(ξ) dξ = f4,

(14)



From (14)1 and (14)2, we have

λ2ϕ+ ϕxx = −(f2 + iλf1)

with ϕ(0) = 0. Suppose that λ 6= 0. Then

ϕ(x) = c1 sinλx− 1
λ

∫ x

0
(f2(σ) + iλf1(σ)) sinλ(x− σ) dσ, (15)

ϕx(x) = c1λ cosλx−
∫ x

0
(f2(σ) + iλf1(σ)) cosλ(x− σ) dσ. (16)

From (14)3 and (14)4, we have

φ(ξ) =
u(L)µ(ξ) + f3(ξ)

iλ+ ξ2 + η(
iλ+

ζ

m

∫ +∞

−∞

µ2(ξ)

iλ+ ξ2 + η
dξ
)

u(L)+
1
m
ϕx(L)+

ζ

m

∫ +∞

−∞

µ(ξ)f3(ξ)

iλ+ ξ2 + η
dξ = f4.

(17)



Since
ζ

m

∫ +∞

−∞

µ2(ξ)

iλ+ ξ2 + η
dξ =

γ

m
(iλ+ η)α−1

and
u(L) = iλϕ(L)− f1(L),

using (15), (16) and (17), we get

λc1

[
iI sinλL +

1
m

cosλL
]

= J + If1(L) + iI
∫ L

0
(f2(σ) + iλf1(σ)) sinλ(L− σ) dσ

+
1
m

∫ L

0
(f2(σ) + iλf1(σ)) cosλ(L− σ) dσ

(18)
where

I = iλ+
γ

m
(iλ+ η)α−1,

J = f4 − ζ
m

∫ +∞

−∞

µ(ξ)f3(ξ)

iλ+ ξ2 + η
dξ.



We set

g(λ) = iI sinλL +
1
m

cosλL

= −λ sinλL +
1
m

cosλL + i
γ

m
(iλ+ η)α−1 sinλL

= −λ sinλL +
1
m

cosλL +
γ

m
(λ2 + η2)

α−1
2 sin(1− α)θ sinλL

+i
γ

m
(λ2 + η2)

α−1
2 cos(1− α)θ sinλL

where θ ∈]− π/2, π/2[ such that

cos θ = η√
λ2+η2

sin θ = λ√
λ2+η2

It is clear that
g(λ) 6= 0 ∀λ ∈ IR.

Hence iλ−A is surjective for all λ ∈ IR∗.



Now, if λ = 0 and η 6= 0, the system (14) is reduced to the following
system 

u = −f1,
ϕxx = −f2,
(ξ2 + η)φ− u(L)µ(ξ) = f3,

1
mϕx(L) + ζ

m

∫ +∞

−∞
µ(ξ)φ(ξ) dξ = f4.

(19)

We deduce from (19)2

ϕ(x) = −
∫ x

0

∫ s

0
f2(r) dr ds + Cx.

From (19)1, (19)3 and (19)4, we have

− γ
m
ηα−1f1(L) +

1
m
ϕx(L) = f4 −

ζ

m

∫ +∞

−∞

µ(ξ)f3(ξ)

ξ2 + η
dξ.

We find

C =

∫ L

0
f2(r) dr + γηα−1f1(L) + mf4 − ζ

∫ +∞

−∞

µ(ξ)f3(ξ)

ξ2 + η
dξ.

Hence A is surjective.



Lemma
Let A∗ be the adjoint operator of A. Then

A∗


ϕ
u
φ
v

 =


−u
−ϕxx

−(ξ2 + η)φ− u(L)µ(ξ)
1
m
ϕx(L) +

ζ

m

∫ +∞

−∞
µ(ξ)φ(ξ) dξ

 (20)

with domain

D(A∗) =

(ϕ, u, φ, v)T in H : ϕ ∈ H2(0,L) ∩ H1
L(0,L), u ∈ H1

L(0,L), v ∈ IC
−(ξ2 + η)φ− u(L)µ(ξ) ∈ L2(−∞,+∞), u(L) = v
|ξ|φ ∈ L2(−∞,+∞)


(21)



Theorem

σr(A) = ∅, where σr(A) denotes the set of residual spectrum of A.

Proof
Since λ ∈ σr(A), λ ∈ σp(A∗) the proof will be accomplished if we can
show that σp(A) = σp(A∗). This is because obviously the eigenvalues
of A are symmetric on the real axis.



Case η 6= 0

Theorem

The semigroup SA(t)t≥0 is polynomially stable and

‖SA(t)U0‖H ≤
1

t1/(4−2α) ‖U0‖D(A).

Proof
We will need to study the resolvent equation (iλ−A)U = F, for
λ ∈ IR, namely

iλϕ− u = f1,
iλu− ϕxx = f2,
iλφ+ (ξ2 + η)φ− u(L)µ(ξ) = f3,

iλv + 1
mϕx(L) + ζ

m

∫ +∞

−∞
µ(ξ)φ(ξ) dξ = f4,

(22)

where F = (f1, f2, f3, f4)T . Taking inner product in H with U and using
(4) we get

|Re〈AU,U〉| ≤ ‖U‖H‖F‖H. (23)



This implies that

ζ

∫ +∞

−∞
(ξ2 + η)(ϕi(ξ, t))2 dξ ≤ ‖U‖H‖F‖H. (24)

and, applying (22)1, we obtain

||λ||ϕ(L)| − |f1(L)||2 ≤ |u(L)|2.

We deduce that

|λ|2|ϕ(L)|2 ≤ c|f1(L)|2 + c|u(L)|2.

Moreover, from (22)4, we have

ϕx(L) = −imλu(L)− ζ
∫ +∞

−∞
µ(ξ)φ(ξ) dξ + mf4.

Then

|ϕx(L)|2 ≤ 2m2|λ|2|u(L)|2 + 2m2f 2
4 + 2ζ2

∣∣∣∣∫ +∞

−∞
µ(ξ)φ(ξ) dξ

∣∣∣∣2
≤ 2m2|λ|2|u(L)|2 + 2m2f 2

4 + 2ζ2
(∫ +∞

−∞
(ξ2 + η)−1|µ(ξ)|2 dξ

)∫ +∞

−∞
(ξ2 + η)|φ(ξ)|2 dξ

≤ 2m2|λ|2|u(L)|2 + c‖U‖H‖F‖H + c′‖F‖2
H.

(25)



From (22)3, we obtain

u(L)µ(ξ) = (iλ+ ξ2 + η)φ− f3(ξ). (26)

By multiplying (26)1 by (iλ+ ξ2 + η)−1µ(ξ), we get

(iλ+ ξ2 + η)−1u(L)µ2(ξ) = µ(ξ)φ− (iλ+ ξ2 + η)−1µ(ξ)f3(ξ). (27)

Hence, by taking absolute values of both sides of (27), integrating
over the interval ]−∞,+∞[ with respect to the variable ξ and
applying Cauchy-Schwartz inequality, we obtain

S|u(L)| ≤ U
(∫ +∞

−∞
(ξ2 + η)|φ|2 dξ

) 1
2

+ V
(∫ +∞

−∞
|f3(ξ)|2 dξ

) 1
2

(28)



where

S =

∫ +∞

−∞
(|λ|+ ξ2 + η)−1|µ(ξ)|2 dξ

U =

(∫ +∞

−∞
(ξ2 + η)−1|µ(ξ)|2 dξ

) 1
2

V =

(∫ +∞

−∞
(|λ|+ ξ2 + η)−2|µ(ξ)|2 dξ

) 1
2

.

Thus, by using again the inequality 2PQ ≤ P2 + Q2,P ≥ 0,Q ≥ 0, we
get

S2|u(L)|2 ≤ 2U2
(∫ +∞

−∞
(ξ2 + η)|φ|2 dξ

)
+ 2V2

(∫ +∞

−∞
|f3(ξ)|2 dξ

)
.

(29)
We deduce that

|u(L)|2 ≤ c|λ|2−2α‖U‖H‖F‖H + c‖F‖2
H. (30)



Let us introduce the following notation

Iϕ(α) = |u(α)|2 + |ϕx(α)|2

Eϕ(L) =

∫ L

0
q(x)Iϕ(s) ds.

Lemma

Let q ∈ H1(0,L). We have that

Eϕ(L) = [qIϕ]L0 + R (31)

where R satisfies
|R| ≤ CEϕ(L) + ‖q1/2F‖2

H.

for a positive constant C.



Proof
To get (31), let us multiply the equation (22)2 by qϕx Integrating on
(0,L) we obtain

iλ
∫ L

0
uqϕx dx−

∫ L

0
ϕxxqϕx dx =

∫ L

0
f2qϕx dx

or

−
∫ L

0
uq(iλϕx) dx−

∫ L

0
qϕxxϕx dx =

∫ L

0
f2qϕx dx.

Since iλϕx = ux + f1x taking the real part in the above equality results
in

−1
2

∫ L

0
q

d
dx
|u|2 dx− 1

2

∫ L

0
q

d
dx
|ϕx|2 dx = Re

∫ L

0
f2qϕx dx + Re

∫ L

0
uqf 1x dx.

Performing an integration by parts we get∫ L

0
q′(s)[|u(s)|2 + |ϕx(s)|2] ds = [qIϕ]L0 + R



where

R = 2Re
∫ L

0
f2qϕx dx + 2Re

∫ L

0
uqf 1x dx.

If we take q(x) =
∫ x

0 ens ds = enx−1
n (Here n will be chosen large

enough) in Lemma 5.3 we arrive at

Eϕ(L) = q(L)Iϕ(L) + R. (32)

Also, we have

|R| ≤
∫ L

0
q(x)(|u(s)|2 + |ϕx(s)|2) ds +

∫ L

0
q(x)(|f2(s)|2 + |f1x(s)|2) ds

≤ C
eLn

n
‖F‖2

H +
c′

n
Eϕ(L)

(33)
Using inequalities (32) and (33) we conclude that there exists a
positive constant C such that∫ L

0
Iϕ(s) ds ≤ CIϕ(L) + C′‖F‖2

H. (34)

provided n is large enough.



Since that∫ +∞

−∞
(φ(ξ))2 dξ ≤ C

∫ +∞

−∞
(ξ2 + η)(φ(ξ))2 dξ ≤ C‖U‖H‖F‖H.

Substitution of inequalities (25)and (30) into (34) we get that

‖U‖2
H ≤ C(|λ|4−2α + |λ|2−2α + 1)‖U‖H‖F‖H + C′(|λ|2 + 1)‖F‖2

H.

So we have
‖U‖H ≤ C|λ|4−2α‖F‖H.

The conclusion then follows by applying the Theorem 4.
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