Regular propagators of bilinear quantum systems

Nabile Boussaïd with Marco Caponigro \& Thomas Chambrion

$$
\left(\mathbf{L m}^{8}\right)
$$

Conference Stability of nonconservative systems Université de Valenciennes

Abstract framework

In a separable Hilbert space (possibly infinite dimensional) \mathcal{H}, we consider the controllability problem of the abstract Schrödinger equation:

$$
\partial_{t} \psi=A \psi+u(t) B \psi
$$

where

- \boldsymbol{A} is a skew-adjoint operator,
- B a control potential and
- \boldsymbol{u} is the control command which is a real valued function.

Abstract framework

In a separable Hilbert space (possibly infinite dimensional) \mathcal{H}, we consider the controllability problem of the abstract Schrödinger equation:

$$
\partial_{t} \psi=A \psi+u(t) B \psi
$$

where

- \boldsymbol{A} is a maximal dissipative operator,
- B a control potential (some \boldsymbol{A}-bounded operator) and
- \boldsymbol{u} is the control command which is a real valued function.

We consider the following questions:

We consider the following questions:

- Under "natural" assumptions on \boldsymbol{A} and \boldsymbol{B}, what conditions on the control \boldsymbol{u} ensures the wellposedness of the problem (in a sense to be made more precise) ?

We consider the following questions:

- Under "natural" assumptions on \boldsymbol{A} and \boldsymbol{B}, what conditions on the control \boldsymbol{u} ensures the wellposedness of the problem (in a sense to be made more precise) ?
For instance, if \boldsymbol{A} is skew-adjoint and \boldsymbol{B} is \boldsymbol{A}-bounded with \boldsymbol{A}-bound zero then if \boldsymbol{u} is piecewise constant $\boldsymbol{u}=\sum_{j=1}^{p} \boldsymbol{u}_{j} \mathbf{1}_{\left[\tau_{j}, \tau_{j+1}\right)}$ where $\boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{\boldsymbol{p}} \in \mathbf{R}$ by concatenation we obtain a solution: $\boldsymbol{s}=\tau_{1}<\tau_{2}<\ldots<\tau_{p+1}$ on pose

$$
x(t, s)=e^{\left(t-\tau_{j}\right)\left(A+u_{j} B\right)} \circ e^{\left(\tau_{j}-\tau_{j-1}\right)\left(A+u_{j-1} B\right)} \circ \cdots \circ e^{\left(\tau_{2}-\tau_{1}\right)\left(A+u_{1} B\right)} x_{s}
$$

for t in $\left(\tau_{j}, \tau_{j+1}\right)$.

We consider the following questions:

- Under "natural" assumptions on \boldsymbol{A} and \boldsymbol{B}, what conditions on the control \boldsymbol{u} ensures the wellposedness of the problem (in a sense to be made more precise) ?
- What is the regularity of the solution \boldsymbol{x} (in "space", in time and in \boldsymbol{u})?

We consider the following questions:

- Under "natural" assumptions on \boldsymbol{A} and \boldsymbol{B}, what conditions on the control \boldsymbol{u} ensures the wellposedness of the problem (in a sense to be made more precise) ?
- What is the regularity of the solution \boldsymbol{x} (in "space", in time and in \boldsymbol{u})?
- What can we say on the image of $\boldsymbol{u} \mapsto \boldsymbol{x}(\boldsymbol{T}, \boldsymbol{s})(\boldsymbol{T}>\boldsymbol{s}$ "given" $)$?

We consider the following questions:

- Under "natural" assumptions on \boldsymbol{A} and \boldsymbol{B}, what conditions on the control \boldsymbol{u} ensures the wellposedness of the problem (in a sense to be made more precise) ?
- What is the regularity of the solution \boldsymbol{x} (in "space", in time and in \boldsymbol{u})?
- What can we say on the image of $\boldsymbol{u} \mapsto \boldsymbol{x}(\boldsymbol{T}, \boldsymbol{s})(\boldsymbol{T}>\boldsymbol{s}$ "given" $)$? Note that this image is in the sphere ball of radius $\left\|x_{s}\right\|$.

We consider the following questions:

- Under "natural" assumptions on \boldsymbol{A} and \boldsymbol{B}, what conditions on the control \boldsymbol{u} ensures the wellposedness of the problem (in a sense to be made more precise) ?
- What is the regularity of the solution \boldsymbol{x} (in "space", in time and in \boldsymbol{u})?
- What can we say on the image of $\boldsymbol{u} \mapsto \boldsymbol{x}(\boldsymbol{T}, \boldsymbol{s})(\boldsymbol{T}>\boldsymbol{s}$ "given" $)$?

Note that this image is in the sphere ball of radius $\left\|x_{s}\right\|$.
In the sequel, we denote by $\Upsilon_{t, s}^{u}$ the maps defined by $x(t, s)=: \Upsilon_{t, s}^{u} x_{s}$ and we will consider the attainable set:

$$
\bigcup_{T>s}\left\{\boldsymbol{r}_{T, s}^{u} x_{s}, u \in Z(0, T)\right\}
$$

for some $\boldsymbol{x}_{\boldsymbol{s}}$ (and even $\boldsymbol{s}=\mathbf{0}$) and a class of control $\boldsymbol{Z}(\mathbf{0}, \boldsymbol{T})$ to be chosen.

We consider the following questions:

- Under "natural" assumptions on \boldsymbol{A} and \boldsymbol{B}, what conditions on the control \boldsymbol{u} ensures the wellposedness of the problem (in a sense to be made more precise) ?
- What is the regularity of the solution \boldsymbol{x} (in "space", in time and in \boldsymbol{u})?
- What can we say on the image of $\boldsymbol{u} \mapsto \boldsymbol{x}(\boldsymbol{T}, \boldsymbol{s})(\boldsymbol{T}>\boldsymbol{s}$ "given" $)$?

Note that this image is in the sphere ball of radius $\left\|x_{s}\right\|$.
In the sequel, we denote by $\Upsilon_{t, s}^{u}$ the maps defined by $x(t, s)=: \Upsilon_{t, s}^{u} x_{s}$ and we will consider the attainable set:

$$
\bigcup_{T>s}\left\{\boldsymbol{r}_{T, s}^{u} x_{s}, u \in Z(0, T)\right\}
$$

for some $\boldsymbol{x}_{\boldsymbol{s}}$ (and even $\boldsymbol{s}=\mathbf{0}$) and a class of control $\boldsymbol{Z}(\mathbf{0}, \boldsymbol{T})$ to be chosen.
We want to give bounds on the attainable set.

An example

Our main example is the Schrödinger equation

$$
\mathrm{i} \frac{\partial \psi}{\partial t}=-\frac{1}{2} \Delta \psi+V(x) \psi(x, t)+u(t) W(x) \psi(x, t)
$$

where $\boldsymbol{\Delta}$ is the Laplace-Beltrami operator on $\boldsymbol{\Omega}$, a riemannian manifold, and $\boldsymbol{V}: \boldsymbol{\Omega} \rightarrow \mathbb{R}$ is a potential.

The system is submitted to an excitation by an external field (e.g. a laser) $\boldsymbol{W}: \Omega \rightarrow \mathbb{R}$ and \boldsymbol{u} is a real function of the time modulating its amplitude.

In our abstract framework, we have

$$
A=\frac{\mathrm{i}}{2} \Delta-\mathrm{i} V(x) \quad \text { and } \quad B=-\mathrm{i} W(x)
$$

Some bibliography

(R. J. M. Ball, J. E. Marsden, et M. Slemrod.

Controllability for distributed bilinear systems.
SIAM J. Control Optim., 20(4):575-597, 1982.
Theorem ([Ball, Marsden \& Slemrod 82, Theorem 3.6])
Let \boldsymbol{X} be a Banach space of infinite dimension, \boldsymbol{A} the generator of a C^{0} semi-group on \boldsymbol{X}, and \boldsymbol{B} a bounded operator on \boldsymbol{X}. Then for all $\boldsymbol{T} \geq \mathbf{0}$, the input-output mapping $\boldsymbol{u} \mapsto \Upsilon_{T, 0}^{\boldsymbol{u}} x_{0}$ has a unique continuous extension to $L^{1}([0, T])$ and the attainable set

$$
\bigcup_{r>1} \bigcup_{T \geq 0} \bigcup_{u \in L^{r}([0, T], \mathbb{R})}\left\{\Upsilon_{t, 0}^{u} x_{0}, t \in[0, T]\right\}
$$

is included in a countable union of compact subsets of \boldsymbol{X}.

Some bibliography

國 K. Beauchard.
Local controllability of a 1-D Schrödinger equation. J. Math. Pures Appl., 84(7):851-956, 2005.

Some bibliography

國 K. Beauchard et C. Laurent.
Local controllability of 1D linear et nonlinear Schrödinger equations with bilinear control. J. Math. Pures Appl., 94(5):520-554, 2010.

Some bibliography

Theorem ([Beauchard \& Laurent 10])

Let $\boldsymbol{T}>\mathbf{0}$ and $\boldsymbol{\mu} \in \boldsymbol{H}^{3}((\mathbf{0}, \mathbf{1}), \mathbb{R})$ such that $\frac{c}{k^{3}} \leqslant\left|\left\langle\mu \varphi_{1}, \varphi_{k}\right\rangle\right|$, for all $k \in \mathbb{N}^{*}$. There exist $\delta>0$ and a C^{1} mapping $\Gamma: \mathcal{V}_{T} \rightarrow L^{2}((0, T), \mathbb{R})$ where

$$
\mathcal{V}_{T}:=\left\{\psi_{f} \in H_{(0)}^{3}((0,1)),\left\|\psi_{f}\right\|=1,\left\|\psi_{f}-\psi_{1}(T)\right\|_{H^{3}}<\delta\right\},
$$

such that $\Gamma\left(\psi_{1}(T)\right)=0$ and for all $\psi_{f} \in \mathcal{V}_{T}$, is the solution of
$\left\{i \frac{\partial \psi}{\partial t}(t, x)=-\frac{\partial^{2} \psi}{\partial x^{2}}(t, x)-u(t) \mu(x) \psi(t, x), x \in(0,1), t \in(0, T)\right.$,
$\psi(t, 0)=\psi(t, 1)=0$,
with initial condition $\phi(0)=\varphi_{1}$ and $u=\Gamma\left(\psi_{f}\right)$ satisfies $\psi(T)=\psi_{f}$.
$\boldsymbol{H}_{(\mathbf{0})}^{s}\left(\mathbf{(0 , 1))}\right.$ the domain of $|\boldsymbol{A}|^{\boldsymbol{s} / 2}$ where \boldsymbol{A} is the Laplace-Dirichlet operator on $(\mathbf{0}, \mathbf{1})$ and φ_{k} is "the" \boldsymbol{k}-the normalised eigenvector.

Propagator on a Hilbert space

Let I be a real interval and

$$
\Delta_{I}:=\left\{(s, t) \in I^{2} \mid s \leq t\right\}
$$

A family $(\boldsymbol{s}, \boldsymbol{t}) \in \boldsymbol{\Delta}_{\boldsymbol{I}} \mapsto \boldsymbol{X}(\boldsymbol{s}, \boldsymbol{t})$ of linear (contractions), on a Hilbert space \mathcal{H}, strongly continuous in \boldsymbol{t} and \boldsymbol{s} and such that

1. for any $s<r<t, X(t, s)=X(t, r) X(r, s)$,
2. $X(t, t)=I_{\mathcal{H}}$,
is called a (contraction) propagator on \mathcal{H}.

Bounded variation functions

A family $\boldsymbol{t} \in \boldsymbol{I} \mapsto \boldsymbol{U}(\boldsymbol{t}) \in \boldsymbol{E}, \boldsymbol{E}$ a subset of a Banach space \boldsymbol{X}, is in $B V(I, E)$ if there exists $\boldsymbol{N} \geq \mathbf{0}$ such that

$$
\sum_{j=1}^{n}\left\|U\left(t_{j}\right)-U\left(t_{j-1}\right)\right\|_{x} \leq N
$$

for any partition $\boldsymbol{a}=\boldsymbol{t}_{\mathbf{0}}<\boldsymbol{t}_{\mathbf{1}}<\ldots<\boldsymbol{t}_{\boldsymbol{n}}=\boldsymbol{b}$ of the interval $(\boldsymbol{a}, \boldsymbol{b})$.
The mapping

$$
U \in B V(I, E) \mapsto \sup _{a=t_{0}<t_{1}<\ldots<t_{n}=b} \sum_{j=1}^{n}\left\|U\left(t_{j}\right)-U\left(t_{j-1}\right)\right\| x
$$

is a semi-norm on $B V(I, E)$ denoted $\|\cdot\|_{B V(I, E)}$ and called total variation.

Our assumptions

Let us now fix some scalar function $\boldsymbol{u}: \boldsymbol{I} \mapsto \mathbb{R}$ and define

$$
A(t)=A+u(t) B
$$

Let I be a real interval and \mathcal{D} dense subset of \mathcal{H}

1. $\boldsymbol{A}(\boldsymbol{t})$ is a maximal dissipative operator on \mathcal{H} with domain \mathcal{D},
2. $\boldsymbol{t} \mapsto \boldsymbol{A}(\boldsymbol{t})$ has bounded variation from \boldsymbol{I} to $\boldsymbol{L}(\mathcal{D}, \mathcal{H})$, where \mathcal{D} is endowed with the graph topology associated to $\boldsymbol{A}(\boldsymbol{a})$ for $\boldsymbol{a}=\mathbf{i n f} \boldsymbol{I}$,
3. $M:=\sup _{t \in I}\left\|(1-A(t))^{-1}\right\|_{L(\mathcal{H}, \mathcal{D})}<\infty$.

The map $\boldsymbol{t} \mapsto \boldsymbol{A}(\boldsymbol{t})$ is not necessarily continuous but admits right and left limits which are equal except on a at most countable set.

Our assumptions

Let I be a real interval and \mathcal{D} dense subset of \mathcal{H}

1. $\boldsymbol{A}(\boldsymbol{t})$ is a maximal dissipative operator on \mathcal{H} with domain \mathcal{D},
2. $\boldsymbol{t} \mapsto \boldsymbol{A}(\boldsymbol{t})$ has bounded variation from \boldsymbol{I} to $\boldsymbol{L}(\mathcal{D}, \mathcal{H})$, where \mathcal{D} is endowed with the graph topology associated to $\boldsymbol{A}(\boldsymbol{a})$ for $\boldsymbol{a}=\mathbf{i n f} \boldsymbol{I}$,
3. $M:=\sup _{t \in I}\left\|(1-A(t))^{-1}\right\|_{L(\mathcal{H}, \mathcal{D})}<\infty$.

The map $\boldsymbol{t} \mapsto \boldsymbol{A}(\boldsymbol{t})$ is not necessarily continuous but admits right and left limits which are equal except on a at most countable set.

A theorem by T. Kato

The the core of our analysis is the following result due to Tosio Kato (1953).

Theorem

If $\boldsymbol{t} \in I \mapsto \boldsymbol{A}(\boldsymbol{t})$ satisfies the above assumptions, then there exists a unique (contraction) propagator $\boldsymbol{X}: \boldsymbol{\Delta}_{\mathbf{I}} \rightarrow \boldsymbol{L}(\mathcal{H})$ such that if $\psi_{0} \in \mathcal{D}$ then $X(t, s) \psi_{0} \in \mathcal{D}$ and for $(t, s) \in \boldsymbol{\Delta}_{I}$

$$
\left\|\boldsymbol{A}(t) X(t, s) \psi_{0}\right\| \leq M e^{M\|A\|_{B V(1, L(D, \mathcal{H})}\left\|\boldsymbol{A}(s) \psi_{0}\right\|}
$$

and in this case $\boldsymbol{X}(\boldsymbol{t}, \boldsymbol{s}) \psi_{0}$ is strongly left differentiable in \boldsymbol{t} and right differentiable in s with derivative (when $\boldsymbol{t}=\boldsymbol{s}$) $\boldsymbol{A}(\boldsymbol{t}+0) \psi_{0}$ and $-A(t-0) \psi_{0}$ respectively.

An immediate consequence

In the estimates

$$
\left\|A(t) X(t, s) \psi_{0}\right\| \leq M e^{M\|A\|_{B V(I, L(\mathcal{D}, \mathcal{H}))}\left\|A(s) \psi_{0}\right\|}
$$

we "read" that the attainable set from any eigenvector is included in the domain.

When $\boldsymbol{u}(\boldsymbol{t})$ is a constant \boldsymbol{u} then these estimates can be extend to any (semi-)norm of the type

$$
\psi \in D\left((A+u B)^{k}\right) \mapsto\left\|(A+u B)^{k} \psi\right\|
$$

First question

We consider the attainable set from an eigenvector. Since eigenvectors are in the domain of $\boldsymbol{A}^{\boldsymbol{k}}$ for any integer \boldsymbol{k} then the first question we considered was:

At what extent is these still true for the non-autonomous case ?

The weak coupling

Let \boldsymbol{k} be a non negative real. A couple of skew-adjoint operators $(\boldsymbol{A}, \boldsymbol{B})$ is \boldsymbol{k}-weakly coupled if

1. \boldsymbol{A} is invertible with bounded inverse from $\boldsymbol{D}(\boldsymbol{A})$ to \mathcal{H},
2. there exist $\boldsymbol{c} \geq \mathbf{0}$ and $\boldsymbol{c}^{\prime} \geq \mathbf{0}$ such that $\boldsymbol{B}-\boldsymbol{c}$ and $-\boldsymbol{B}-\boldsymbol{c}^{\prime}$ generate contraction semigroups on $\boldsymbol{D}\left(|\boldsymbol{A}|^{\boldsymbol{k} / 2}\right)$ for the norm $\psi \mapsto\left\||\boldsymbol{A}|^{\boldsymbol{k} / 2} \boldsymbol{u}\right\|$.
We set, for every positive real \boldsymbol{k},

$$
\|\psi\|_{k / 2}=\sqrt{\left.\left.\langle | \boldsymbol{A}\right|^{k} \psi, \psi\right\rangle}
$$

The optimal exponential growth is defined by

$$
c_{k}(A, B):=\sup _{t \in \mathbb{R}} \frac{\log \left\|e^{t B}\right\|_{L\left(D\left(|A|^{k / 2}\right), D\left(|A|^{k / 2}\right)\right.}}{|t|} .
$$

If \boldsymbol{B} is \boldsymbol{A}-bounded, we set:

$$
\|B\|_{A}:=\inf _{\lambda>0}\left\|B(\lambda-A)^{-1}\right\|
$$

Theorem

For any $\boldsymbol{u} \in B V([0, T], \mathbb{R}) \cap B_{L_{\infty}([0, T])}\left(0,1 /\|B\|_{A}\right)$, there exists a family of contraction propagators in \mathcal{H} that extends uniquely as propagators to $\boldsymbol{D}\left(|A|^{k / 2}\right): \Upsilon^{u}: \Delta_{[0, T]} \rightarrow \boldsymbol{L}\left(\boldsymbol{D}\left(|A|^{k / 2}\right)\right)$ such that for any $\boldsymbol{t} \in[0, T]$, for any $\psi_{0} \in D\left(|A|^{k / 2}\right)$

$$
\left\|\Upsilon_{t}^{u}\left(\psi_{0}\right)\right\|_{k / 2} \leq e^{c_{k}(A, B)\left|\int_{0}^{t} u\right|}\left\|\psi_{0}\right\|_{k / 2}
$$

Moreover, there exists \boldsymbol{m} (depending only on $\boldsymbol{A}, \boldsymbol{B}$ and $\|\boldsymbol{u}\|_{L^{\infty}([0, T])}$)

$$
\left\|\Upsilon_{t}^{u}\left(\psi_{0}\right)\right\|_{1+k / 2} \leq m e^{\left.m\|u\|_{B v(0, ~}\right)(,, R)} e^{c_{k}(A, B) \mid \int_{0}^{t} u}\| \| \psi_{0} \|_{1+k / 2}
$$

where Υ_{t}^{u} stands for the propagator $\boldsymbol{X}(\boldsymbol{t}, \mathbf{0})$ associated with $\boldsymbol{A}+\boldsymbol{u}(\boldsymbol{t}) \boldsymbol{B}$.

A compactness result

Theorem (Helly's selection theorem)

Let $\left(f_{n}\right)_{n \in \mathbb{N}}$ be a sequence in $B V(I, R)$, where I is a compact interval. If

1. there exists $\mathbf{M}>\mathbf{0}$ such that for all $\boldsymbol{n} \in \mathbf{N},\left\|\boldsymbol{f}_{\boldsymbol{n}}\right\|_{B V(I, R)} \leq M$,
2. there exists $x_{0} \in I$ such that $\left(f_{n}\left(x_{0}\right)\right)_{n \in N}$ is bounded.

Then $\left(f_{n}\right)_{n \in \mathbb{N}}$ admits a pointwise convergent subsequence.
For every ψ_{0} in $\boldsymbol{D}\left(|\boldsymbol{A}|^{k / 2}\right)$, the end-point mapping

$$
\begin{aligned}
\Upsilon\left(\psi_{0}\right): B V([0, T], K) \cap L^{1}([0, T]) & \rightarrow D\left(|A|^{k / 2}\right) \\
u & \mapsto \Upsilon_{T}^{u}\left(\psi_{0}\right)
\end{aligned}
$$

is continuous for the topology corresponding to the previous lemma.

An upper bound

Theorem

Let $\psi_{0} \in D\left(|A|^{k / 2}\right)$. Then
$\bigcup\left\{\alpha \Upsilon_{t}^{u}\left(\psi_{0}\right),\|u\|_{B V([0, T], \mathbb{R}) \cap L^{1}([0, T])} \leq L, t \in[0, T],|\alpha| \leq a\right\}$ $L, T, a>0$
is a meagre set (in the sense of Baire) in $L^{\infty}\left(I, D\left(|A|^{k / 2}\right)\right)$ as a union of relatively compact subsets.

Galerkin Approximation

For a Hilbert basis $\boldsymbol{\Phi}=\left(\phi_{\boldsymbol{k}}\right)_{\boldsymbol{k} \in \mathbb{N}}$ of \mathcal{H} made of eigenvectors of \boldsymbol{A}, let

$$
\pi_{N}^{\Phi}: \psi \in \mathcal{H} \mapsto \sum_{j \leq N}\left\langle\phi_{j}, \psi\right\rangle \phi_{j} \in \mathcal{H}
$$

be the orthogonal projector to $\mathcal{L}_{N}^{\Phi}=\operatorname{span}\left(\phi_{1}, \ldots, \phi_{N}\right)$.
The Galerkin approximation of order \boldsymbol{N} of our system is the system

$$
\dot{x}=\left(A^{(\Phi, N)}+u B^{(\Phi, N)}\right) x
$$

where

$$
A^{(\Phi, N)}:=A^{(\Phi, N)}=\pi_{N}^{\Phi} \boldsymbol{A}_{\mid \mathcal{L}_{N}^{\phi}} \quad \text { and } \quad B^{(\Phi, N)}:=B^{(\Phi, N)}=\pi_{N}^{\Phi} B_{\mid \mathcal{L}_{N}^{\oplus}} .
$$

$\left(\boldsymbol{A}^{(\Phi, N)}, \boldsymbol{B}^{(\Phi, N)}\right)$ satisfies the same assumptions as $(\boldsymbol{A}, \boldsymbol{B})$. We can define the associated contraction propagator $X_{(\Phi, N)}^{u}(\boldsymbol{t}, \mathbf{0})$.

Good Galerkin Approximation

Theorem

If $\boldsymbol{B}(\mathbf{1}-\boldsymbol{A})^{-1}$ compact then for s real with $\mathbf{0} \leq s<k$ for every $\varepsilon>\mathbf{0}$, $L \geq \mathbf{0}, \boldsymbol{n} \in \mathbb{N}$, and $\left(\psi_{j}\right)_{1 \leq j \leq n}$ in $D\left(|A|^{k / 2}\right)^{n}$ there exists $N \in \mathbb{N}$ such that for any $\boldsymbol{u} \in \mathcal{R}(\mathbf{(0 , T])}$,

$$
\|u\|_{B V([0, T])}<L \Rightarrow\left\|\Upsilon_{t}^{u}\left(\psi_{j}\right)-X_{(N)}^{u}(t, 0) \pi_{N} \psi_{j}\right\|_{s / 2}<\varepsilon,
$$

for every $t \geq 0$ and $j=1, \ldots, n$.
Hence if these finite dimensional systems are controllable with a uniform bound on the total variation of the needed controls \boldsymbol{u} then the system is approximately controllable.

Second question

Is it possible to consider a larger class of controls?

Extension to Radon measures

We denote by $\boldsymbol{\mathcal { R }}(\boldsymbol{I})$ the set of signed Radon measures on \boldsymbol{I}.

- A positive Radon measure is a locally finite and inner regular borelian measure.
- A signed Radon measure $\boldsymbol{\mu}$ can be written as the difference $\boldsymbol{\mu}=\boldsymbol{\mu}^{+}-\boldsymbol{\mu}^{-}$(Hahn-Jordan decomposition) of two positive Radon measures μ^{+}and μ^{-}(with disjoint supports).
- Denote $|\boldsymbol{\mu}|=\mu^{+}+\mu^{-}$and $|\boldsymbol{\mu}|(\boldsymbol{I})$ the total variation of $\boldsymbol{\mu}$ on \boldsymbol{I}.

Extension to Radon measures

We denote by $\boldsymbol{\mathcal { R }}(\boldsymbol{I})$ the set of signed Radon measures on \boldsymbol{I}.

- The cumulative function of a Radon measure has local bounded variation, The total variations of the cumulative function and the measure coincide.
- We consider that $\left(\boldsymbol{u}_{n}\right)_{n \in N} \in \mathcal{R}(I)$ converges to $\boldsymbol{u} \in \mathcal{R}(I)$ if:
$\square \sup _{n}\left|u_{n}\right|(I)<+\infty$ (bounded total variations);
$\square u_{n}((0, t]) \rightarrow u((0, t])$ for all $t \in I$.

Extension to Radon measures

We denote by $\boldsymbol{\mathcal { R }}(\boldsymbol{I})$ the set of signed Radon measures on \boldsymbol{I}.

- Any $\boldsymbol{L}_{\text {loc }}^{1}(\boldsymbol{I})$ can be considered as a density of an absolute continuous function and thus as a Radon measure .

Extension to Radon measures

We denote by $\boldsymbol{\mathcal { R }}(\boldsymbol{I})$ the set of signed Radon measures on \boldsymbol{I}.

Assumption

The couple ($\boldsymbol{A}, \boldsymbol{B}$), with \boldsymbol{A} generator of a contraction semi-group on \mathcal{H} is such that

1. there exist $c \geq 0$ and $c^{\prime} \geq 0$ such that $B-c$ and $-\boldsymbol{B}-\boldsymbol{c}^{\prime}$ generate contractions semi-groups on \mathcal{H} leaving $D(A)$ invariant,
2. for all $\boldsymbol{u} \in \mathcal{R}((\mathbf{0}, \mathrm{T}])$,

$$
t \in[0, T] \mapsto \mathcal{A}(t):=e^{u((0, t]) B} A e^{-u((0, t]) B}
$$

is a family of contraction semi-group generators with domain $D(A)$ and:
$\square \mathcal{A}$ has bounded variation from $[0, T]$ to $L(D(A), \mathcal{H})$,
$\square \sup _{t \in[0, T]}\left\|(1-\mathcal{A}(t))^{-1}\right\|_{L(\mathcal{H}, D(A))}<+\infty$.

Lemma (Continuity in the control)

Let $\left(v_{n}\right)_{n \in \mathbb{N}}$ in $\mathcal{R}(\boldsymbol{I})$ be uniformly bounded (for the total variation on I) such that the distributions functions are almost everywhere convergent to the distribution function of some $\boldsymbol{v} \in \mathcal{R}(I)$. Let

$$
\begin{aligned}
\mathcal{A}_{n}(t) & =e^{-v_{n}((0, t]) B} A e^{\left.v_{n}(0, t]\right) B} \\
\mathcal{A}(t) & =e^{-v((0, t]) B} A e^{v((0, t]) B}
\end{aligned}
$$

and \boldsymbol{X}_{n} (resp. X) the propagators associated with $\mathcal{A}_{n}($ resp. $\mathcal{A})$. If $\sup _{n \in \mathrm{~N}}\left\|\mathcal{A}_{n}\right\|_{B V(I, L(D(A), \mathcal{H}))}<+\infty$, then $X_{n}(t, s)$ converges strongly to $X(t, s)$ locally uniformly in $s, t \in I$ (with $s \leq t$).

Lemma (Continuity in the control)

Let $\left(v_{n}\right)_{n \in \mathbb{N}}$ in $\mathcal{R}(\boldsymbol{I})$ be uniformly bounded (for the total variation on \boldsymbol{I}) such that the distributions functions are almost everywhere convergent to the distribution function of some $\boldsymbol{v} \in \mathcal{R}(I)$. Let

$$
\begin{aligned}
\mathcal{A}_{n}(t) & =e^{-v_{n}((0, t]) B} A e^{\left.v_{n}(0, t]\right) B} \\
\mathcal{A}(t) & =e^{-v((0, t]) B} A e^{v((0, t]) B}
\end{aligned}
$$

and \boldsymbol{X}_{n} (resp. \boldsymbol{X}) the propagators associated with \mathcal{A}_{n} (resp. \mathcal{A}). If $\sup _{n \in \mathbb{N}}\left\|\mathcal{A}_{n}\right\|_{B V(1, L(D(A), \mathcal{H}))}<+\infty$, then $X_{n}(t, s)$ converges strongly to $X(t, s)$ locally uniformly in $s, t \in I$ (with $s \leq t$).

Assumption

1. \boldsymbol{A} generates a contraction semi-group on \mathcal{H} with domain $D(A)$,
2. there exist $\boldsymbol{c} \geq \mathbf{0}$ and $\boldsymbol{c}^{\prime} \geq \mathbf{0}$ such that $\boldsymbol{B}-\boldsymbol{c}$ and $-\boldsymbol{B}-\boldsymbol{c}^{\prime}$ generate contraction semi-groups on \mathcal{H} leaving $D(A)$ invariant,
3. $t \in R \mapsto e^{t B} A e^{-t B} \in L(D(A), \mathcal{H})$ is locally Lipschitz.

Assumption

The couple $(\boldsymbol{A}, \boldsymbol{B})$ with \boldsymbol{A} generator of a contraction semi-group on \mathcal{H} and B an operator on \mathcal{H} such that $\boldsymbol{D}(\mathbf{A}) \subset \boldsymbol{D}(\boldsymbol{B})$ and $\boldsymbol{A}+\boldsymbol{u}$ generates a contraction semi-group on \mathcal{H} for any $\boldsymbol{u} \in \mathbf{R}$, with domain $\boldsymbol{D}(\mathbf{A})$.

Assumption

The couple $(\boldsymbol{A}, \boldsymbol{B})$ with \boldsymbol{A} generator of a contraction semi-group on \mathcal{H} and B an operator on \mathcal{H} such that $\boldsymbol{D}(\boldsymbol{A}) \subset \boldsymbol{D}(\boldsymbol{B})$ and $\boldsymbol{A}+\boldsymbol{u} \boldsymbol{B}$ generates a contraction semi-group on \mathcal{H} for any $\boldsymbol{u} \in \mathbf{R}$, with domain $\boldsymbol{D}(\mathbf{A})$.

Proposition

Let $\boldsymbol{t} \mapsto Y_{t}^{u}$ be the propagator (with $s=0$) associated with

$$
\mathcal{A}(t):=e^{-u((0, t]) B} A e^{u((0, t]) B},
$$

for $\boldsymbol{u} \in \mathcal{R}((\mathbf{0}, \mathrm{T}])$, and Υ_{t}^{u} the one (with $s=\mathbf{0}$) associated with $A+u(t) B$ for $u \in B V([0, T], R)$.
Then for any $\psi_{0} \in \mathcal{H}, t \in[0, T]$ the mapping

$$
\Upsilon_{t}\left(\psi_{0}\right): u \mapsto \Upsilon_{t}^{u}\left(\psi_{0}\right) \in \mathcal{H}
$$

ha a unique continuous extension to $\mathcal{R}((0, T])$, denoted $\Upsilon_{t}\left(\psi_{0}\right)$, satisfying

$$
\Upsilon_{t}^{u}\left(\psi_{0}\right)=e^{u((0, t)) B} \gamma_{t}^{u}\left(\psi_{0}\right), \forall u \in \mathcal{R}((0, T]), \forall t \in[0, T] .
$$

Assumption

The couple $(\boldsymbol{A}, \boldsymbol{B})$ with \boldsymbol{A} generator of a contraction semi-group on \mathcal{H} and B an operator on \mathcal{H} such that $\boldsymbol{D}(\boldsymbol{A}) \subset \boldsymbol{D}(\boldsymbol{B})$ and $\boldsymbol{A}+\boldsymbol{u} \boldsymbol{B}$ generates a contraction semi-group on \mathcal{H} for any $\boldsymbol{u} \in \mathbf{R}$, with domain $\boldsymbol{D}(\mathbf{A})$.

Proposition

Let $\boldsymbol{t} \mapsto Y_{t}^{u}$ be the propagator (with $s=0$) associated with

$$
\mathcal{A}(t):=e^{-u((0, t]) B} A e^{u((0, t]) B},
$$

for $\boldsymbol{u} \in \mathcal{R}((0, T])$, and Υ_{t}^{u} the one (with $\left.s=0\right)$ associated with $A+u(t) B$ for $u \in B V([0, T], R)$.
Then for any $\psi_{0} \in \mathcal{H}, t \in[0, T]$ the mapping

$$
\Upsilon_{t}\left(\psi_{0}\right): u \mapsto \Upsilon_{t}^{u}\left(\psi_{0}\right) \in \mathcal{H}
$$

ha a unique continuous extension to $\mathcal{R}((0, T])$, denoted $\Upsilon_{t}\left(\psi_{0}\right)$, satisfying

$$
\Upsilon_{t}^{u}\left(\psi_{0}\right)=e^{u((0, t)) B} \gamma_{t}^{u}\left(\psi_{0}\right), \forall u \in \mathcal{R}((0, T]), \forall t \in[0, T] .
$$

Assumption

The couple $(\boldsymbol{A}, \boldsymbol{B})$ with \boldsymbol{A} generator of a contraction semi-group on \mathcal{H} and B an operator on \mathcal{H} such that $\boldsymbol{D}(\boldsymbol{A}) \subset \boldsymbol{D}(\boldsymbol{B})$ and $\boldsymbol{A}+\boldsymbol{u} \boldsymbol{B}$ generates a contraction semi-group on \mathcal{H} for any $\boldsymbol{u} \in \mathbf{R}$, with domain $\boldsymbol{D}(\mathbf{A})$.

Proposition

Let $\boldsymbol{t} \mapsto \boldsymbol{Y}_{t}^{u}$ be the propagator (with $s=0$) associated with

$$
\mathcal{A}(t):=e^{-u((0, t]) B} A e^{u((0, t]) B},
$$

for $\boldsymbol{u} \in \mathcal{R}((\mathbf{0}, \mathrm{T}])$, and Υ_{t}^{u} the one (with $s=0$) associated with $A+u(t) B$ for $u \in B V([0, T], R)$.
Then for any $\psi_{0} \in \mathcal{H}, t \in[0, T]$ the mapping

$$
\Upsilon_{t}\left(\psi_{0}\right): u \mapsto \Upsilon_{t}^{u}\left(\psi_{0}\right) \in \mathcal{H}
$$

ha a unique continuous extension to $\mathcal{R}((0, T])$, denoted $\Upsilon_{t}\left(\psi_{0}\right)$, satisfying

$$
\Upsilon_{t}^{u}\left(\psi_{0}\right)=e^{u((0, t)) B} \gamma_{t}^{u}\left(\psi_{0}\right), \forall u \in \mathcal{R}((0, T]), \forall t \in[0, T] .
$$

Assumption

The couple $(\boldsymbol{A}, \boldsymbol{B})$ with \boldsymbol{A} generator of a contraction semi-group on \mathcal{H} and B an operator on \mathcal{H} such that $\boldsymbol{D}(\boldsymbol{A}) \subset \boldsymbol{D}(\boldsymbol{B})$ and $\boldsymbol{A}+\boldsymbol{u} \boldsymbol{B}$ generates a contraction semi-group on \mathcal{H} for any $\boldsymbol{u} \in \mathbf{R}$, with domain $\boldsymbol{D}(\mathbf{A})$.

Proposition

Let $\boldsymbol{t} \mapsto \boldsymbol{Y}_{t}^{u}$ be the propagator (with $s=0$) associated with

$$
\mathcal{A}(t):=e^{-u((0, t]) B} A e^{u((0, t]) B},
$$

for $\boldsymbol{u} \in \mathcal{R}((0, T])$, and Υ_{t}^{u} the one (with $\left.s=0\right)$ associated with $A+u(t) B$ for $u \in B V([0, T], R)$.
Then for any $\psi_{0} \in \mathcal{H}, t \in[0, T]$ the mapping

$$
\Upsilon_{t}\left(\psi_{0}\right): u \mapsto \Upsilon_{t}^{u}\left(\psi_{0}\right) \in \mathcal{H}
$$

ha a unique continuous extension to $\mathcal{R}((0, T])$, denoted $\Upsilon_{t}\left(\psi_{0}\right)$, satisfying

$$
\Upsilon_{t}^{u}\left(\psi_{0}\right)=e^{u((0, t)) B} Y_{t}^{u}\left(\psi_{0}\right), \forall u \in \mathcal{R}((0, T]), \forall t \in[0, T] .
$$

Proposition

Let $\boldsymbol{T}>\mathbf{0}$ and $\psi_{0} \in \mathcal{H}$. The for any $L>0$, the set

$$
\left\{\Upsilon_{t}^{u}\left(\psi_{0}\right): u \in \mathcal{R}((0, T]),|u|((0, T]) \leq L, t \in[0, T]\right\}
$$

is relatively compact in \mathcal{H}.
So

$$
\bigcup_{L, T>0}\left\{\Upsilon_{t}^{u}\left(\psi_{0}\right), u \in \mathcal{R}((0, T]),|u|((0, T]) \leq L, t \in[0, T]\right\}
$$

is included in a countable union of compact subsets of \mathcal{H}.

The case of bounded controls potentials B

The construction of a solution when \boldsymbol{B} is bounded on a Banach space \boldsymbol{X} can be done by a Dyson expansion (iterations Duhamel's formula)

$$
\begin{gathered}
\Upsilon_{t, s}^{u} \psi_{0}=e^{(t-s) A} \psi_{0}+\sum_{n=1}^{\infty} \int_{s<s_{1}<s_{2}<\ldots<s_{n} \leq t} e^{\left(t-s_{n}\right) A} B e^{\left(s_{n}-s_{n-1}\right) A} \circ \ldots \\
\cdots
\end{gathered}
$$

without any assumption but the one needed to make the sum and the integrals convergent.

The case of bounded controls potentials B

The construction of a solution when \boldsymbol{B} is bounded on a Banach space \boldsymbol{X} can be done by a Dyson expansion (iterations Duhamel's formula)

The results on the continuity are still valid and Helly's selection theorem can be used as well.

The case of bounded controls potentials B

The construction of a solution when \boldsymbol{B} is bounded on a Banach space \boldsymbol{X} can be done by a Dyson expansion (iterations Duhamel's formula)

The results on the continuity are still valid and Helly's selection theorem can be used as well.

Proposition

For any $\boldsymbol{T}>\mathbf{0}$, there exists a unique "continuous" extension to $\mathcal{R}([0, T])$ of the input-output

$$
u \mapsto \Upsilon_{T, 0}^{u} \in L(X, X)
$$

and for all $\psi_{0} \in \mathcal{H}$,

$$
\bigcup_{T \geq 0} \bigcup_{u \in L^{1}([0, T], R)}\left\{\Upsilon_{t, 0}^{u} \psi_{0}, t \in[0, T]\right\}
$$

is included in a countable union of compacts subsets of \mathcal{X}.

