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Ω ⊂ Rn (smooth) bdd domain with boundary Γ.
Relationship between the BVP for the conductivity problem and the BVP
for a Schrödinger operator :

div(γ∇u) = 0 in Ω, u = ϕ on Γ.

⇓ v =
√
γu (Liouville transform)

(−∆ + qγ)v = 0 in Ω, u =
√
γϕ on Γ.

Here

qγ =
∆
√
γ

√
γ
.
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Let q ∈ L∞(Ω) and ξ ∈ Cn so that ξ · ξ = 0. In that case

∆e−iξ·x = 0.

Complex Geometric Optic (CGO) solutions : we seek a solution of

(−∆ + q)u = 0 in Ω

of the form
u = e−iξ·x(1 + wξ)

with

‖w‖L2(Ω) = O

(
1
|=ξ|

)
.
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For q ∈ L∞, let Aq = −∆ + q with domain

D(Aq) = H1
0 (Ω) ∩ H2(Ω).

If 0 6∈ σ(Aq), associate to q the Dirichlet-to-Neumann (DtN) map

Λq : ϕ ∈ H3/2(Γ)→ ∂νu ∈ H1/2(Γ),

where u = uq,ϕ ∈ H2(Ω) is the unique variational solution of the BVP

(−∆ + q)u = 0 in Ω, u = ϕ on Γ.
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Useful identity∫
Ω

(q1 − q2)u1u2dx =

∫
Γ

(Λq1 − Λq2)(u1|Γ)u2dσ,

for any solutions uj ∈ H2(Ω) of (−∆ + qj)uj = 0 in Ω, j = 1, 2.
Uniqueness : Λq1 = Λq2 ⇒∫

Ω

(q1 − q2)u1u2dx = 0, uj ∈ H2(Ω) and (−∆ + qj)uj = 0 in Ω. (1)

Assume that n ≥ 3 and fix k ∈ R. For any R > 0, there exist ξ1, ξ2 ∈ Cn

so that
ξ1 + ξ2 = k , ξj · ξj = 0, |=ξj | ≥ R, j = 1, 2.
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For R sufficiently large, we can choose uj in (1) of the form

uj = e−iξj ·x(1 + wj) with ‖wj‖L2(Ω) = O

(
1
R

)
. (2)

We get ∫
Ω

(q1 − q2)e−ik·xdx = O

(
1
R

)
.

Making R →∞, we obtain

F ((q1 − q2)χΩ)(k) =

∫
Ω

(q1 − q2)e−ik·xdx = 0 ⇒ q1 = q2.
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Set q = (q1 − q2)χΩ.
Stability : Again, uj , j = 1, 2, given by (2) in (1) yield

|q̂(k)| ≤ C

(
1
r

+ ‖Λq1 − Λq2‖ eCr
)
, |k| ≤ r . (3)

We control the high frequencies by assuming an additional estimate of
the form

‖q‖Hs (Rn) ≤ M, for some s > 0 :∫
|k|≥R

|q̂(k)|2dk ≤ 1
r2s

∫
|k|≥R

〈k〉2s |q̂(k)|2dk ≤ M2

r2s . (4)

For instance, if s = 1, one gets from (3) and (4)

‖q1 − q2‖L2(Ω) ≤ C
(
|ln ‖Λq1 − Λq2‖|

− 2
n+2 + ‖Λq1 − Λq2‖

)
.
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Back to the inverse conductivity problem : Let γ ∈W 2,∞(Ω) satisfying
γ ≥ γ0, for some constant γ0 > 0. We associate to γ the DtN map

Λγ : ϕ ∈ H3/2(Γ)→ γ∂νu ∈ H1/2(Γ),

where u = uγ,ϕ ∈ H2(Ω) is the unique solution of the BVP

div(γ∇u) = 0 in Ω and u = ϕ on Γ.

The map Λγ is connected to Λqγ , where qγ = γ−1/2∆γ1/2, by the
formula

Λγ =
1
2
γ−1∂νγI + γ−1/2Λqγγ

−1/2.

We firstly need to determine γ and ∇γ on Γ. To do that we employ
singular solutions having singularities localized near the boundary. The
scheme of the proof is

Λγ1 = Λγ2 ⇒ γ1 = γ2, ∇γ1 = ∇γ2 on Γ

⇒ Λqγ1
= Λqγ2

⇒ qγ1 = qγ2 ⇒ γ1 = γ2.
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Partial DtN map

Recall that, for q ∈ L∞(Ω),

Aq = −∆ + q with D(Aq) = H1
0 (Ω) ∩ H2(Ω).

Let
Q = {q ∈ L∞(Ω;R); 0 6∈ σ(Aq)}.

For any q ∈ Q and ϕ ∈ H−1/2(Γ), the BVP

(−∆ + q)u = 0 in Ω, u = ϕ on Γ

admits a unique (transposition) solution uq,ϕ ∈ H∆(Ω), where

H∆(Ω) = {u ∈ L2(Ω); ∆u ∈ L2(Ω)}.
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Lemma 1 (trace theorem)

For j = 0, 1, the trace map

tju = ∂jνu|Γ, u ∈ D(Ω),

extends to a continuous operator, still denoted by tj , from H∆(Ω) into
H−j−1/2(Γ). Namely, there exists cj > 0, such that the estimate

‖tju‖H−j−1/2(Γ) ≤ cj‖u‖H∆(Ω),

holds for every u ∈ H∆(Ω).
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Additionally we get with the help of Lemma 1 that the mapping

Λq : ϕ ∈ H−1/2(Γ)→ ∂νuq,ϕ ∈ H−3/2(Γ)

defines a bounded operator.
Remark : By employing the method of Lee-Uhlamnn, one can check that
Λq is ΨDO of order 1 ; while Λq1,q2 = Λq1 − Λq2 is a ΨDO of order −1 :

Λq1,q2 ∈ B(H−1/2(Γ),H1/2(Γ)).
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Set, for ξ ∈ Sn−1,

Γ±,ξ = {x ∈ Γ; ±ξ · ν(x) > 0}.

Let F (resp. G ) an open neighborhood of Γ+,ξ (resp. Γ−,ξ) in Γ. Define

Λ̃q1,q2 : ϕ ∈ H−1/2(Γ) ∩ E ′(F )→ Λq1,q2(ϕ)|G .

This operator is bounded from H−1/2(Γ) ∩ E ′(F ), endowed with the
norm of H−1/2(Γ), into H1/2(G ).

The norm of Λ̃q1,q2 in B(H−1/2(Γ) ∩ E ′(F ),H1/2(G )) is denoted by
‖Λ̃q1,q2‖.
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Theorem 1 (Choulli-Kian-Soccorsi ’15)

For any δ > 0 and t > 0, there exists a constant C > 0, depending only
on δ and t, so that

‖q1 − q2‖L2(Ω) ≤ C

(
‖Λ̃q1,q2‖+

∣∣∣ln ∣∣∣ln ‖Λ̃q1,q2‖
∣∣∣∣∣∣−t) ,

for any q1, q2 ∈ Q ∩ δBL∞(Ω) satisfying (q2 − q1)χΩ ∈ δBHt(Rn), and

‖q1 − q2‖H−1(Ω) ≤ C

(
‖Λ̃q1,q2‖+

∣∣∣ln ∣∣∣ln ‖Λ̃q1,q2‖
∣∣∣∣∣∣−1

)
,

for any q1, q2 ∈ Q ∩ δBL2(Ω).

Here and henceforth BX is the unit ball of the Banach space X .
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Proposition 1

For δ > 0 fixed, let q ∈ δBL∞(Ω). Let ζ, η ∈ Sn−1 satisfy ζ · η = 0 and fix
ε > 0 so small that Γε− = Γε−(ζ) = {x ∈ Γ; ζ · ν(x) < −ε} 6= ∅. There
exists τ0 = τ0(δ) > 0, so that the BVP{

(−∆ + q)u = 0 in Ω,
u = 0 on Γε−.

has a solution of the form u = eτ(ζ+iη)·x(1 +ψ) ∈ H∆(Ω) with ψ obeying

‖ψ‖L2(Ω) ≤ Cτ−1/2,

for some constant C > 0 depending only on δ, Ω and ε.
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The key point in the proof of this lemma is a Carleman inequality by
Bukhgeim-Uhlamnn : there exist τ0 = τ0(δ) > 0 and C = C (δ) > 0 so
that

Cτ2
∫

Ω

e−2τx·ζ |v |2dx + τ

∫
Γ+

|ζ · ν(x)|e−2τx·ζ |∂νv |2dσ

≤
∫

Ω

e−2τx·ζ |(∆− q)v |2dx + τ

∫
Γ−

|ζ · ν(x)|e−2τx·ζ |∂νv |2dσ

holds for all τ ≥ τ0 and v ∈ H1
0 (Ω) ∩ H2(Ω).
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Stability estimate : sketch of the proof

Denote by 〈·, ·〉 the duality pairing between H1/2(Γ) and H−1/2(Γ).
Let uj be a CGO solution given by Proposition 1 and corresponding to
qj ∈ δBL∞(Ω), j = 1, 2.
Generalized Green’s formula yields∫

Ω

(q2 − q1)u1u2dx = 〈t1Λq1,q2(t0u2), t0u1〉.

The estimate in Proposition 1 implies : there exist a subset E of Sn−1

with |E | > 0 so that∣∣∣∣∫
Ω

(q2 − q1)e−iκ·xdx

∣∣∣∣ ≤ C
(
e2dτ‖Λ̃q1,q2‖+ τ−1/2

)
, (5)

holds uniformly in κ ∈ rE and r ∈ (0, 2τ).
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Theorem 2 (Apraiz-Escauriaza-Wang-Zhang)

Assume that F : 2Bn → C is real-analytic and satisfies

|∂αF (κ)| ≤ K
|α|!
ρ|α|

, κ ∈ 2B, α ∈ Nn,

for some (K , ρ) ∈ R∗+ × (0, 1]. Then for any measurable set E ⊂ B with
|E | > 0, there exist two constants M = M(ρ, |E |) > 0 and
θ = θ(ρ, |E |) ∈ (0, 1) such that

‖F‖L∞(B) ≤ MK 1−θ
(

1
|E |

∫
E

|F (κ)|dκ
)θ

.
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(5) + Theorem 2 ⇒

|q̂(rκ)| ≤ Ce(1−θ)r
(
edτ‖Λ̃q1,q2‖+ τ−1/2

)θ
, κ ∈ B,

Combine this with an estimate for high frequencies in order to derive

‖q‖2L2(Ω) ≤ Crne2(1−θ)r
(
edτ‖Λ̃q1,q2‖+ τ−1/2

)2θ
+

M2

r2t ,

r ∈ (0, 2τ), τ ∈ [τ0,+∞). Whence

‖q‖2L2(Ω) ≤ C ′e(n+2)r
∣∣∣ln ‖Λ̃q1,q2‖

∣∣∣−θ +
M2

r2t , r ∈ (0, 2τ∗).

The proof is completed by a minimizing with respect to r .
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Application to conductivity problem

If σ ∈W 1,∞
+ (Ω) = {c ∈W 1,∞(Ω;R); c(x) ≥ c0 for some c0 > 0},

introduce the Hilbert space

Hdiv(σ∇)(Ω) = {u ∈ L2(Ω), div(σ∇u) ∈ L2(Ω)}

endowed with the norm

‖u‖Hdiv(σ∇)(Ω) =
(
‖u‖2L2(Ω) + ‖div(σ∇u)‖2L2(Ω)

)1/2
.

By a slight modification of the proof of Lemma 1 the trace map

tσj u = σj∂jνu|Γ, u ∈ D(Ω), j = 0, 1,

is extended to a linear continuous operator, still denoted by tσj , from
Hdiv(σ∇)(Ω) into H−j−1/2(Γ).
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For g ∈ H−1/2(Γ), the mapping

Λσ : g ∈ H−1/2(Γ) 7→ tσ1 uσ,g ∈ H−3/2(Γ)

defines a bounded operator, where uσ,g ∈ Hdiv(σ∇)(Ω) is the unique
(transposition) solution of the BVP

div(σ∇u) = 0 in Ω, u = g on Γ,

Recall that
Λqσ =

1
2
σ−1(∂νσ)I + σ−1/2Λσσ

−1/2, (6)

with qσ = σ−1/2∆σ1/2.
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Let

Λ̃σ1,σ2 : g ∈ H−1/2(Γ) ∩ E ′(F ) 7→ (Λσ1 − Λσ2)(g)|G ∈ H1/2(G ).

Then, with reference to (6),

Λ̃q1,q2g = σ
−1/2
1 Λ̃σ1,σ2(σ

−1/2
1 g),

for every g ∈ H−1/2(Γ) ∩ E ′(F ), provided

σ1 = σ2 on Γ and ∂νσ1 = ∂νσ2 on F ∩ G .

Therefore
‖Λ̃q1,q2‖ ≤ C‖Λ̃σ1,σ2‖, (7)

where ‖ · ‖ still denotes the norm of B(H−1/2(Γ) ∩ E ′(F ),H1/2(G )).
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Taking into account that φ = σ
1/2
1 − σ1/2

2 is solution The BVP{
(−∆ + q1)φ = σ

1/2
2 (q2 − q1) in Ω

φ = 0 on Γ,

we prove
‖σ1/2

1 − σ1/2
2 ‖L2(Ω) ≤ C‖q2 − q1‖H−1(Ω)

and then
‖σ1 − σ2‖L2(Ω) ≤ C‖q2 − q1‖H−1(Ω). (8)
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(7) +(8) +Theorem 1 ⇒

Corollary 3 (Choulli-Kian-Soccorsi ’15)

Let δ > 0 and σ0 > 0. Then for any σj ∈ δBW 2,∞(Ω), j = 1, 2, obeying
σj ≥ σ0 and

σ1 = σ2 on Γ and ∂νσ1 = ∂νσ2 on F ∩ G ,

we may find a constant C > 0, independent of σ1 and σ2, so that

‖σ1 − σ2‖L2(Ω) ≤ C

(
‖Λ̃σ1,σ2‖+

∣∣∣ln ∣∣∣ln ‖Λ̃σ1,σ2‖∣∣∣∣∣∣−1
)
.
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Extension to the parabolic case

Let Ω be a C 2-bdd domain of Rn, n ≥ 2, with boundary Γ and, for
T > 0, set

Q = Ω× (0,T ), Ω+ = Ω× {0}, Σ = Γ× (0,T ).

Consider the IBVP (∂t −∆ + q(x , t))u = 0 in Q,
u|Ω+

= 0,
u|Σ = g .

(9)

Following Lions and Magenes, H−r ,−s(Σ), r , s > 0, denotes the dual
space of

H r ,s
,0 (Σ) = L2(0,T ;H r (Γ)) ∩ Hs

0(0,T ; L2(Γ)).
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Extension to the parabolic case

For q ∈ L∞(Q) and g ∈ H−
1
2 ,−

1
4 (Σ), the IBVP (9) admits a unique

(transposition) solution uq,g ∈ L2(Q). Additionally the following
parabolic DtN map

Λq : H−
1
2 ,−

1
4 (Σ)→ H−

3
2 ,−

3
4 (Σ)

g 7→ ∂νuq,g

is bounded.
Recall that, for ω ∈ Sn−1,

Γ±,ω = {x ∈ Γ; ±ν(x) · ω > 0}

and set
Σ±,ω = Γ±,ω × (0,T ).
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Extension to the parabolic case

Fix ω0 ∈ Sn−1, U± a neighborhood of Γ±,ω0 in Γ and set

V+ = U+ × [0,T ], V− = U− × (0,T ).

Define then the partial parabolic DtN operator

Λ̂q : H−
1
2 ,−

1
4 (Σ) ∩ E ′(V+)→ H−

3
2 ,−

3
4 (V−)

g 7→ ∂νuq,g |V− .

Observe that as in the elliptic case Λ̂q − Λ̂q̃ is a smoothing operator :
Λ̂q − Λ̂q̃ ∈ B(H−

1
2 ,−

1
4 (Σ),H

1
2 ,

1
4 (Σ)).
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For 1
2(n+3) < s < 1

2(n+1) , set

Ψs(ρ) = ρ+ | ln ρ|−
1−2s(n+1)

8 , ρ > 0, (10)

extended by continuity at ρ = 0 by setting Ψs(0) = 0.

Theorem 4 (Choulli-Kian ’16)

Fix δ > 0 and 1
2(n+3) < s < 1

2(n+1) . There exists a constant C > 0, that
can depend only on δ, Q and s, so that, for any q1, q2 ∈ δBL∞(Q),

‖q1 − q2‖H−1(Q) ≤ CΨs (‖Λq1 − Λq2‖) . (11)

Here ‖Λq1 − Λq2‖ stands for the norm of Λq1 − Λq2 in
B(H−

1
2 ,−

1
4 (Σ);H

1
2 ,

1
4 (Σ)).
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Set
Φs(ρ) = ρ+ | ln | ln ρ||−s , ρ > 0, s > 0, (12)

extended by continuity at ρ = 0 by setting Φs(0) = 0.

Theorem 5 (Choulli-Kian ’16)

Let δ > 0, there exist two constants C > 0 and s ∈ (0, 1/2), that can
depend only on δ, Q and V±, so that, for any q1, q2 ∈ δBL∞(Q),

‖q1 − q2‖H−1(Q) ≤ CΦs

(
‖Λ̂q−1 − Λ̂q2‖

)
. (13)

Here ‖Λ̂q − Λ̂q̃‖ denotes the norm of Λ̂q − Λ̂q̃ in
B(H−

1
2 ,−

1
4 (Σ);H

1
2 ,

1
4 (V−)).
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Thank you for your attention
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