Stability in the identification of a scalar potential by a partial elliptic DtN map

Mourad Choulli
Institut Élie Cartan de Lorraine

> Stability of non-conservative systems, Valenciennes, July 4th-7th, 2016

Summary

1 "On an inverse boundary value problem" by A. P. Calderón

2 Introduction

3 Partial DtN map

4 CGO solutions vanishing at a part of the boundary

5 Stability estimate : sketch of the proof

6 Application to conductivity problem

7 Extension to the parabolic case

Summary

1 "On an inverse boundary value problem" by A. P. Calderón

2 Introduction

3 Partial DtN map

4 CGO solutions vanishing at a part of the boundary

5 Stability estimate : sketch of the proof

6 Application to conductivity problem

7 Extension to the parabolic case

Alberto Pedro Calderón

Calderón, On an inverse boundary problem, Seminar on Numerical Analysis and its Applications to Continuum Physics, Soc. Brasileira de Matemática, Rio de Janeíro (1980), 65-73.

L"On an inverse boundary value problem" by A. P. Calderón

By A.P. Calderan

In this note we shall diseuss the following problem. Let D be a bounded domain in $\mathbb{R}^{n}, \pi \geq 2$, with Lipschizzian bound ary AD , and y be a real bounded measurable function in D with a positive bower bound. Consicer the differeratial opecator

$$
I_{y}(W) \approx \nabla \cdot(\gamma \nabla W)
$$

acting on functions of $\mathrm{H}^{1}(D)$ and the quadratic form $Q_{Y}(\phi)$, where the functions ϕ are restrictions to $d D$ of functions in $H^{2}\left(\mathbb{R}^{n}\right)$, defined by

$$
\begin{aligned}
& Q_{\gamma}(\psi)=\int_{D} Y(\nabla W)^{2} d x \quad, W E H^{1}\left(\mathbb{R}^{n}\right),\left.W\right|_{d D}=\phi \\
& I_{\gamma} W=\nabla_{0}(\gamma \nabla W)=0 \text { in } D_{.}
\end{aligned}
$$

The problem is thon to decide whether γ is uniquely determined by Q_{Y} and to calculate Y in temms Q_{Y}, if y is indeed detemined by Q_{γ}.

This problems originates in the followlng problem of electrical prospection. If D represents an in-homogeneous conduceing body with electrical conductivity γ, determine γ by means of direct current steady state electrical neasurements carriec aut on the surface of D, that is, without penetrating D. In this physicak situation $O_{\gamma}(\phi)$ represents the power necessary to maintain an electrical potential yon $d D$.

In principle Q_{γ} can be determined through measurements effected on $d D$ and contains alJ. the information about γ which can be thus obtained.

But let us retwen to our mathamatical problen. Let us introduce the following norms in the space of functions y
on $d D$ and in the space of guadrate forms $Q(9)$

$$
\begin{aligned}
& \|\phi\|^{2}=\int_{\mathrm{D}}|\nabla u|^{2} \mathrm{dx} ;\left.\mathrm{u}\right|_{\mathrm{dD}}=\phi, \Delta u=0 \mathrm{AD} \mathrm{D} . \\
& \|\cdot \phi\|^{\circ}=\sup |\Delta(\phi)| \\
& \|\left.\phi\right|^{\prime} \leq 2
\end{aligned}
$$

Then tre mapping

$$
\theta: Y \rightarrow Q_{\gamma} .
$$

I

Is bounded ard analytio in the subset of $\exists^{\infty}(D)$ consisting of functions which are real and have a positive lower bound. Our goal is then to determine whethe $\overline{0}$ is inivectire, and invert o If this 15 the case. This wa aze yet urakle to do, and 13 , as far as we known, an open problen. However we shall show that $\left.\therefore \quad \bar{y}\right|_{Y}=$ corst. $1 s$ indeed Lnyective, that is, the linearized problom has an afzimative arswar. If $\left.d p\right|_{r=\text { const }}$, which is a Innear operator, had a ciosec range, one could conelude that - itself is inyective in a sufさiciently small netohburhood of $N_{=}=$const. Sut the rance of $A=$ is not ciosed and the desired conclusion cannot be ojtainec in this fashion, Novertheless, as we shall ses below, if γ is sufficiently close to a constant,比 is neaziy detemaned by R_{Y} and in some cesos it can be caloulated itith an exror mitch smaller thar $\mid \gamma-\operatorname{corst} \|_{L^{m}}$

To show this let ra frat obtain an expression for the solution of the equation

$$
I_{Y}(w)=V \cdot(Y \vee W)=\sigma,\left.W\right|_{A D}=\phi \cdot \gamma=1+\delta
$$

Jeet $\mathrm{w}=\mathrm{u}+\mathrm{v}$, where $\mathrm{su}=\mathrm{L}_{\mathrm{L}} \mathrm{u}=0$, $\mathrm{u}_{\mathrm{dD}}=\phi$. Then
$I_{\gamma}(W)=L_{1+\delta}\left[1+2=1=I_{1} \gamma+I_{\delta} v+I_{\delta} v-0\right.$
Ence $\left.x\right|_{\text {an }}=\left.W\right|_{\text {ab }}$ we have $\left.v\right|_{\mathrm{dD}}=0$ and $v E H_{0}^{1}(D)$, the closure in $H^{1}\left(\mathbb{R}^{n}\right)$ of functions of C^{∞} an $w i t h$ support in D. But L_{1}, as

L"On an inverse boundary value problem" by A. P. Calderón

an operator from $H_{0}^{1}(D)$ into $1^{-1}(D)$, has a bounded invorse G, and From the last expresston tre obtaln

$$
\mathrm{V}+\mathrm{GL}_{\varepsilon} \mathrm{V}=-\mathrm{GL}_{\varepsilon} \mathrm{U}
$$

and
(1) $\quad v=-\left[\sum_{0}^{\infty}(-1)^{j}\left(\mathrm{GL}_{j_{0}}\right)^{j}\right]_{\left(G L_{j} u\right)} \quad$ (D) $L E$
 the romm $D=G$, the series above will converge for \mid oll $L_{m^{A}}<1$
and

$$
\|v\|_{H^{1}(D)} \leq \frac{A\|\delta\|_{m}\|\phi\|}{1-\lambda\|\delta\|_{L^{\infty}}} \quad=\sec ^{\infty}
$$

From (1) it follows that ϕ is analyt $\pm c$ at $\gamma=1$. The same argument would ahow that 4 is anelytia nt any other point γ.

$$
\begin{aligned}
& \text { Next let us calcilate }\left.\mathrm{d} \Psi\right|_{\gamma=1} \text {. We have } \\
& Q_{2+\delta}(\phi)=\int_{0}(1+\delta)|\nabla \pi|^{2} \mathrm{~d} x=\int_{D}\left[(1+\delta)|\nabla u|^{2}+2(\nabla u, \nabla v)-\right.
\end{aligned}
$$

$$
\left.+2 \delta(\nabla u \cdot \nabla v)+(I+\delta) \mid \nabla v^{2}\right] \mathrm{dx}
$$

The contribution 02 the secorf tern in the tategrand of the last integral vanlsies on account of the Eact that $\mathrm{Au}=0$. Furthermore, from (1) one scos reacily that the pazts linear in A of the last two tems in the irtegrand vanlsh. Thus settirg $d y=8$ we obtain

$$
\left.d Q_{\gamma}(1)\right|_{\gamma=1}=\int_{D} \delta|\nabla u|^{2} d x, \Delta u=0,\left.u\right|_{d D}=\phi
$$

To show that $\left.d Q_{Y}\right|_{Y-1}$ Ls inycotive, we nexedy have to show that If the last intecxal vanishos for all u with $\Delta u=0$ then $\dot{o}=0$. But if the tretegral vanlshes for all such u, wen we also have.

$$
\begin{equation*}
\delta\left(\nabla u_{1} \cdot \nabla \mu_{2}\right) d x-0 \tag{4}
\end{equation*}
$$

whenever $\Delta u_{1}=\Delta u_{2}=0$ 1. D. Now le= \bar{a} be nny vector $\pm n \mathbb{R}^{n}$ and a ancther vector such that $|\underline{\Delta}|=|z|, \underline{a} \cdot z\rangle=0$, then the functions

$$
\begin{equation*}
u_{0}(x)-e^{\pi i(2 \cdot x)+\pi(\underline{a} \cdot x)}, u_{2}=e^{-1(2 \cdot x)-7(\underline{g} \cdot x)} \tag{5}
\end{equation*}
$$

are hamorte; and sustituttng in (3) we obtain

$$
2 ד|z|^{2} \int_{D} \delta(x) e^{2 \pi \pm(z \cdot x)} d x=0 \quad, v z \quad y^{\prime} \cdots
$$

Whence $1 t$ follows that $\mathrm{f}-\mathrm{C}$.
Now let us revurn to $G_{\gamma}(W)$. We set aqain $r=1+5$ znct introduce the bilinear form

$$
3\left(\phi_{1}, \phi_{2}\right)=\frac{1}{2}\left[Q_{\gamma}\left(\omega_{1}-W_{2}\right)-Q_{r}\left(\sigma_{1}\right)-Q_{\gamma}\left(\omega_{2}\right)\right]
$$

and settins $W_{j}=u_{j}+v_{j}, j-1,2, \Delta u_{j}=0,\left.u_{j}\right|_{d x}=\phi_{j}$ we obtain

$$
\mathrm{B}\left(\phi_{1} \cdot \phi_{2}\right)=\int_{\mathrm{D}}(I+\delta)\left(\nabla 1_{1} \cdot \nabla u_{2}\right)+\delta\left[\left(\nabla u_{1} \cdot \nabla v_{2}\right)+\left(\nabla u_{2} \cdot \nabla v_{1}\right]+\right.
$$

$$
\left.+(I+\delta)\left(\nabla v_{1} \cdot \nabla v_{2}\right)\right] \mathrm{dx} .
$$

Now, substi-ution of the exponentiale in (5) for ui and u_{2} in the precering expression (taking a to be a function of z such that $|a|=\mid 2,(\underline{a}, z)=0)$ ylelds

$$
\begin{equation*}
\hat{r}(g)=\hat{F}(z)+\mathrm{p}(\%) \tag{5}
\end{equation*}
$$

where $\hat{y}(z)$ is the fourler transfore of γ extended ta be zero outste. D , the function

$$
\hat{F}(z)-\frac{1}{2 \pi^{2}|z|^{2}} \mathrm{~B}\left(\epsilon^{ \pm \pi(z \cdot x)+\pi(a, x)}, e^{1 \pi(z, x)-\pi(a, x)}\right)
$$

is known and, as fcllows readily [Iom(z),

L"On an inverse boundary value problem" by A. P. Calderón

$$
\begin{equation*}
|R(z)| \leq c\|\delta\|_{\mathrm{T}}{ }^{\infty} \mathrm{e}^{2 \pi z|z|} \tag{7}
\end{equation*}
$$

provided that $A\|\delta\|_{L^{\infty} \leq 1-\varepsilon}$, where C depends only on D ard z, and I is the racius of the smallest sphere containing D. Now $R(z)$ is too large to pernit estimating $\gamma(z)$. However, under favorable circuistances $1=$ is still possible to oktain satisfase ory information about γ. Choose $a, 2<\alpha<2$, then for
(8)

$$
|z| \leq \frac{2-c}{I Y} \log \frac{1}{\|\partial\|_{L^{m}}}=\sigma
$$

We have $|R(Z)| \leq c\|\delta\|_{L^{-}}^{a}$. Let π bc a function such that
 Then we have

$$
\hat{\gamma}(z) \hat{\eta}\left(\frac{z}{\sigma}\right)=\hat{F}(z) \hat{\eta}\left(\frac{z}{\sigma}\right)+R(z) \hat{\eta}\left(\frac{z}{\sigma}\right)
$$

and
(9)

$$
\left(\gamma * \pi_{\sigma}\right)(x)=\left(F * n_{\sigma}\right)(x)-\rho(x)
$$

where * denotes convolution and

$$
\begin{aligned}
|\rho(z)| & \leq c\|\delta\|_{L^{\infty}}^{\alpha} \int \hat{n}\left(\frac{z}{\sigma}\right) d z= \\
& \left.=c_{1}\|\delta\|_{L^{\infty}}^{\alpha}-\log \frac{1}{\|\delta\|_{L^{\infty}}}\right]^{n}
\end{aligned}
$$

where C_{1} depends only on D, c ance ε.

$$
\text { Thus if }\left\|\delta^{\prime}\right\|_{L^{\infty}} \text { is sufficiently small, (9) gives an }
$$

approxbination for $\gamma^{*} \eta_{0}$ with an erroe which is riuck smaller than $\|5\|_{L^{m}}$. Clearly, if $\|\delta\|_{L^{\infty}}$ is small then a is large and $r * \eta_{0}$ is 1tselㄹ, in some sease, a good apposemation to y.

Approximations to the functon γ iesclf'be obteined
if one assunes that γ, extended to he equal to Loutside n, is in $\mathrm{Cl}, \mathrm{m}=\mathrm{n}$. In this case one obtaine

$$
\hat{o}(z)=\hat{F}_{1}(z)-R(z)
$$

where F_{1} is known and $\mathbb{R}(\mathrm{Z})$ is the same as in (5). One then calc ulates $f(x)$ by integrating over $|x| \leq \sigma$ with c as inc (8) and estimates the error by using the decay of $\hat{\delta}$ at m. Thus one obtains

$$
r(x)=F_{2}(x)+p(x)
$$

where $Z_{2}(x)$ is known and.

$$
|\rho(x)| \leq c\|\delta\|_{L^{\infty}}^{\infty}\left[\log \frac{1}{T_{L^{\infty}}}\right]^{n}+\operatorname{cm}\left[\log \frac{1}{\prod_{1} \prod_{L^{\infty}}}\right]^{m+5}
$$

Where $M \pm s$ a bound for the dertvatives of order m of γ.

L"On an inverse boundary value problem" by A. P. Calderón

Eiblioqracly

We have been undole to find treatnents of the problen diacussec above in the literature, at luat not in the general setting is which we are intercsted, Sinilar problems have been studied in the papers listed below.
[1] JiR: Cannen, Jetermization of certain raxaneters in heat conduction prob"?ms, J.Math.Anal. Appl, ε. (1954), p.p. 188-201.
[2] \qquad , Determination of an unkown coefficient in a parabolic differential eqaation, Duke Math. J. (30), (1963), 叉.p. 313-323.
[3] \qquad , Determination of the unknown coefficient $k(u)$ in the equation $\nabla, k(u) 7=0$ Erom ovarspecizied, boundary data, C.Math.Ane1, Appl., 13 (1967), p.p. 112-114.
(4) J.R. Cannon and Paul Du Chatean, Deternining unknown coefficients
in a non-iinear heat conduction prokiem. s-aM
J. spe:..4ath., 24, n³(1973) pp. 298-314.
(5] Jim Douglas, Jr, and G.F. Jones, Deternination of a coefticient in a parabolic differentia: eguation, part II: numerical approximation, T.Math.Mech, 11 (1962) p.p. 919-926.
[6] E.F. Jones, Varicus mathods for Eindiag unknown coefficients in parabolic cifferentiel equationa, Comm. Fure Appl. Math., 16 (1963) 2p. 33-44,

Summary

1 "On an inverse boundary value problem" by A. P. Calderón

2 Introduction

3 Partial DtN map

4 CGO solutions vanishing at a part of the boundary

5 Stability estimate : sketch of the proof

6 Application to conductivity problem

7 Extension to the parabolic case
$\Omega \subset \mathbb{R}^{n}$ (smooth) bdd domain with boundary Γ.
Relationship between the BVP for the conductivity problem and the BVP for a Schrödinger operator :

$$
\begin{gathered}
\operatorname{div}(\gamma \nabla u)=0 \text { in } \Omega, u=\varphi \text { on Г. } \\
\Downarrow v=\sqrt{\gamma} u \text { (Liouville transform) } \\
\left(-\Delta+q_{\gamma}\right) v=0 \text { in } \Omega, u=\sqrt{\gamma} \varphi \text { on } \Gamma .
\end{gathered}
$$

Here

$$
q_{\gamma}=\frac{\Delta \sqrt{\gamma}}{\sqrt{\gamma}} .
$$

Let $q \in L^{\infty}(\Omega)$ and $\xi \in \mathbb{C}^{n}$ so that $\xi \cdot \xi=0$. In that case

$$
\Delta e^{-i \xi \cdot x}=0 .
$$

Complex Geometric Optic (CGO) solutions : we seek a solution of

$$
(-\Delta+q) u=0 \text { in } \Omega
$$

of the form

$$
u=e^{-i \xi \cdot x}\left(1+w_{\xi}\right)
$$

with

$$
\|w\|_{L^{2}(\Omega)}=O\left(\frac{1}{|\Im \xi|}\right) .
$$

For $q \in L^{\infty}$, let $A_{q}=-\Delta+q$ with domain

$$
D\left(A_{q}\right)=H_{0}^{1}(\Omega) \cap H^{2}(\Omega) .
$$

If $0 \notin \sigma\left(A_{q}\right)$, associate to q the Dirichlet-to-Neumann (DtN) map

$$
\Lambda_{q}: \varphi \in H^{3 / 2}(\Gamma) \rightarrow \partial_{\nu} u \in H^{1 / 2}(\Gamma)
$$

where $u=u_{q, \varphi} \in H^{2}(\Omega)$ is the unique variational solution of the BVP

$$
(-\Delta+q) u=0 \text { in } \Omega, u=\varphi \text { on } \Gamma .
$$

Useful identity

$$
\int_{\Omega}\left(q_{1}-q_{2}\right) u_{1} u_{2} d x=\int_{\Gamma}\left(\Lambda_{q_{1}}-\Lambda_{q_{2}}\right)\left(u_{1 \mid \Gamma}\right) u_{2} d \sigma
$$

for any solutions $u_{j} \in H^{2}(\Omega)$ of $\left(-\Delta+q_{j}\right) u_{j}=0$ in $\Omega, j=1,2$.
Uniqueness : $\Lambda_{q_{1}}=\Lambda_{q_{2}} \Rightarrow$

$$
\begin{equation*}
\int_{\Omega}\left(q_{1}-q_{2}\right) u_{1} u_{2} d x=0, \quad u_{j} \in H^{2}(\Omega) \text { and }\left(-\Delta+q_{j}\right) u_{j}=0 \text { in } \Omega . \tag{1}
\end{equation*}
$$

Assume that $n \geq 3$ and fix $k \in \mathbb{R}$. For any $R>0$, there exist $\xi_{1}, \xi_{2} \in \mathbb{C}^{n}$ so that

$$
\xi_{1}+\xi_{2}=k, \quad \xi_{j} \cdot \xi_{j}=0, \quad\left|\Im \xi_{j}\right| \geq R, \quad j=1,2 .
$$

For R sufficiently large, we can choose u_{j} in (1) of the form

$$
\begin{equation*}
u_{j}=e^{-i \xi_{j} \cdot x}\left(1+w_{j}\right) \quad \text { with }\left\|w_{j}\right\|_{L^{2}(\Omega)}=O\left(\frac{1}{R}\right) . \tag{2}
\end{equation*}
$$

We get

$$
\int_{\Omega}\left(q_{1}-q_{2}\right) e^{-i k \cdot x} d x=O\left(\frac{1}{R}\right) .
$$

Making $R \rightarrow \infty$, we obtain

$$
\mathscr{F}\left(\left(q_{1}-q_{2}\right) \chi_{\Omega}\right)(k)=\int_{\Omega}\left(q_{1}-q_{2}\right) e^{-i k \cdot x} d x=0 \quad \Rightarrow q_{1}=q_{2} .
$$

Set $q=\left(q_{1}-q_{2}\right) \chi_{\Omega}$.
Stability: Again, $u_{j}, j=1,2$, given by (2) in (1) yield

$$
\begin{equation*}
|\widehat{q}(k)| \leq C\left(\frac{1}{r}+\left\|\Lambda_{q_{1}}-\Lambda_{q_{2}}\right\| e^{C_{r}}\right), \quad|k| \leq r . \tag{3}
\end{equation*}
$$

We control the high frequencies by assuming an additional estimate of the form

$$
\begin{gather*}
\|q\|_{H^{s}\left(\mathbb{R}^{n}\right)} \leq M, \text { for some } s>0: \\
\int_{|k| \geq R}|\widehat{q}(k)|^{2} d k \leq \frac{1}{r^{2 s}} \int_{|k| \geq R}\langle k\rangle^{2 s}|\widehat{q}(k)|^{2} d k \leq \frac{M^{2}}{r^{2 s}} . \tag{4}
\end{gather*}
$$

For instance, if $s=1$, one gets from (3) and (4)

$$
\left\|q_{1}-q_{2}\right\|_{L^{2}(\Omega)} \leq C\left(\|\ln \| \Lambda_{q_{1}}-\Lambda_{q_{2}}\| \|^{-\frac{2}{n+2}}+\left\|\Lambda_{q_{1}}-\Lambda_{q_{2}}\right\|\right) .
$$

Back to the inverse conductivity problem : Let $\gamma \in W^{2, \infty}(\Omega)$ satisfying $\gamma \geq \gamma_{0}$, for some constant $\gamma_{0}>0$. We associate to γ the DtN map

$$
\Lambda_{\gamma}: \varphi \in H^{3 / 2}(\Gamma) \rightarrow \gamma \partial_{\nu} u \in H^{1 / 2}(\Gamma)
$$

where $u=u_{\gamma, \varphi} \in H^{2}(\Omega)$ is the unique solution of the BVP

$$
\operatorname{div}(\gamma \nabla u)=0 \text { in } \Omega \text { and } u=\varphi \text { on } \Gamma
$$

The map Λ_{γ} is connected to $\Lambda_{q_{\gamma}}$, where $q_{\gamma}=\gamma^{-1 / 2} \Delta \gamma^{1 / 2}$, by the formula

$$
\Lambda_{\gamma}=\frac{1}{2} \gamma^{-1} \partial_{\nu} \gamma I+\gamma^{-1 / 2} \Lambda_{q_{\gamma}} \gamma^{-1 / 2}
$$

We firstly need to determine γ and $\nabla \gamma$ on Γ. To do that we employ singular solutions having singularities localized near the boundary. The scheme of the proof is

$$
\begin{aligned}
\Lambda_{\gamma_{1}}=\Lambda_{\gamma_{2}} \Rightarrow \gamma_{1} & =\gamma_{2}, \quad \nabla \gamma_{1}=\nabla \gamma_{2} \text { on } \Gamma \\
& \Rightarrow \Lambda_{q_{\gamma_{1}}}=\Lambda_{q_{\gamma_{2}}} \Rightarrow q_{\gamma_{1}}=q_{\gamma_{2}} \Rightarrow \gamma_{1}=\gamma_{2}
\end{aligned}
$$

Some literature

Uniqueness for the global DtN map :
Sylvester-Uhlmann, A global uniqueness theorem for an inverse boundary value problem, Ann. Math. 125 (1987), 153-169.

Log stability for the global DtN map :
Alessandrini, Stable determination of conductivity by boundary measurements, Appl. Anal. 27 (1988), 153-172.
The log stability is the best possible :
Mandache, Exponential instability in an inverse problem for the Schrödinger equation, Inverse Problems 17 (2001), 1435-1444.

Partial DtN map :
Bukhgeim-Uhlmann, Recovering a potential from partial Cauchy data, Commun. Part. Diff. Equat. 27 (2002), 653-658.
Kenig-Sjöstrand-Uhlmann, The Calderòn problem with partial data, Ann. Math. 165 (2007), 567-791.

Reconstruction :
Nachman and B. Street, Reconstruction in the Calderòn problem with partial data, Commun. Part. Diff. Equat. 35 (2010), 375-390.

Stability of a partial DtN map :
Heck and J.-N. Wang, Stability estimate for the inverse boundary value problem by partial Cauchy data, Inv. Probl. 22 (2006), 1787-1797. Caro-Dos Santos Ferreira-Ruiz, Stability estimates for the Calderón problem with partial data, JDE 2016.

Summary

1 "On an inverse boundary value problem" by A. P. Calderón

2 Introduction

3 Partial DtN map

4 CGO solutions vanishing at a part of the boundary

5 Stability estimate : sketch of the proof

6 Application to conductivity problem

7 Extension to the parabolic case

Recall that, for $q \in L^{\infty}(\Omega)$,

$$
A_{q}=-\Delta+q \text { with } D\left(A_{q}\right)=H_{0}^{1}(\Omega) \cap H^{2}(\Omega) .
$$

Let

$$
\mathcal{Q}=\left\{q \in L^{\infty}(\Omega ; \mathbb{R}) ; 0 \notin \sigma\left(A_{q}\right)\right\} .
$$

For any $q \in \mathcal{Q}$ and $\varphi \in H^{-1 / 2}(\Gamma)$, the BVP

$$
(-\Delta+q) u=0 \text { in } \Omega, u=\varphi \text { on 「 }
$$

admits a unique (transposition) solution $u_{q, \varphi} \in H_{\Delta}(\Omega)$, where

$$
H_{\Delta}(\Omega)=\left\{u \in L^{2}(\Omega) ; \Delta u \in L^{2}(\Omega)\right\} .
$$

Lemma 1 (trace theorem)

For $j=0,1$, the trace map

$$
t_{j} u=\partial_{\nu}^{j} u_{\mid \Gamma}, u \in \mathscr{D}(\bar{\Omega}),
$$

extends to a continuous operator, still denoted by t_{j}, from $H_{\Delta}(\Omega)$ into $H^{-j-1 / 2}(\Gamma)$. Namely, there exists $c_{j}>0$, such that the estimate

$$
\left\|t_{j} u\right\|_{H^{-j-1 / 2}(\Gamma)} \leq c_{j}\|u\|_{H_{\Delta}(\Omega)},
$$

holds for every $u \in H_{\Delta}(\Omega)$.

Additionally we get with the help of Lemma 1 that the mapping

$$
\Lambda_{q}: \varphi \in H^{-1 / 2}(\Gamma) \rightarrow \partial_{\nu} u_{q, \varphi} \in H^{-3 / 2}(\Gamma)
$$

defines a bounded operator.
Remark: By employing the method of Lee-Uhlamnn, one can check that Λ_{q} is Ψ DO of order 1 ; while $\Lambda_{q_{1}, q_{2}}=\Lambda_{q_{1}}-\Lambda_{q_{2}}$ is a Ψ DO of order -1:

$$
\Lambda_{q_{1}, q_{2}} \in \mathscr{B}\left(H^{-1 / 2}(\Gamma), H^{1 / 2}(\Gamma)\right) .
$$

Set, for $\xi \in \mathbb{S}^{n-1}$,

$$
\Gamma_{ \pm, \xi}=\{x \in \Gamma ; \pm \xi \cdot \nu(x)>0\} .
$$

Let F (resp. G) an open neighborhood of $\Gamma_{+, \xi}\left(\right.$ resp. $\left.\Gamma_{-, \xi}\right)$ in Γ. Define

$$
\widetilde{\Lambda}_{q_{1}, q_{2}}: \varphi \in H^{-1 / 2}(\Gamma) \cap \mathscr{E}^{\prime}(F) \rightarrow \Lambda_{q_{1}, q_{2}}(\varphi)_{\mid G} .
$$

This operator is bounded from $H^{-1 / 2}(\Gamma) \cap \mathscr{E}^{\prime}(F)$, endowed with the norm of $H^{-1 / 2}(\Gamma)$, into $H^{1 / 2}(G)$.
The norm of $\widetilde{\Lambda}_{q_{1}, q_{2}}$ in $\mathscr{B}\left(H^{-1 / 2}(\Gamma) \cap \mathscr{E}^{\prime}(F), H^{1 / 2}(G)\right)$ is denoted by $\left\|\widetilde{\Lambda}_{q_{1}, q_{2}}\right\|$.

Theorem 1 (Choulli-Kian-Soccorsi '15)

For any $\delta>0$ and $t>0$, there exists a constant $C>0$, depending only on δ and t, so that

$$
\left\|q_{1}-q_{2}\right\|_{L^{2}(\Omega)} \leq C\left(\left\|\tilde{\Lambda}_{q_{1}, q_{2}}\right\|+|\ln | \ln \left\|\tilde{\Lambda}_{q_{1}, q_{2}}\right\|| |^{-t}\right)
$$

for any $q_{1}, q_{2} \in \mathcal{Q} \cap \delta B_{L^{\infty}(\Omega)}$ satisfying $\left(q_{2}-q_{1}\right) \chi_{\Omega} \in \delta B_{H^{t}\left(\mathbb{R}^{n}\right)}$, and

$$
\left\|q_{1}-q_{2}\right\|_{H^{-1}(\Omega)} \leq C\left(\left\|\tilde{\Lambda}_{q_{1}, q_{2}}\right\|+|\ln | \ln \left\|\tilde{\Lambda}_{q_{1}, q_{2}}\right\| \|^{-1}\right)
$$

for any $q_{1}, q_{2} \in \mathcal{Q} \cap \delta B_{L^{2}(\Omega)}$.
Here and henceforth B_{X} is the unit ball of the Banach space X.

Summary

1 "On an inverse boundary value problem" by A. P. Calderón

2 Introduction

3 Partial DtN map
4 CGO solutions vanishing at a part of the boundary

5 Stability estimate : sketch of the proof
6 Application to conductivity problem

7 Extension to the parabolic case

Proposition 1

For $\delta>0$ fixed, let $q \in \delta B_{L^{\infty}(\Omega)}$. Let $\zeta, \eta \in \mathbb{S}^{n-1}$ satisfy $\zeta \cdot \eta=0$ and fix $\epsilon>0$ so small that $\Gamma_{-}^{\epsilon}=\Gamma_{-}^{\epsilon}(\zeta)=\{x \in \Gamma ; \zeta \cdot \nu(x)<-\epsilon\} \neq \emptyset$. There exists $\tau_{0}=\tau_{0}(\delta)>0$, so that the BVP

$$
\begin{cases}(-\Delta+q) u=0 & \text { in } \Omega, \\ u=0 & \text { on } \Gamma_{-}^{\epsilon} .\end{cases}
$$

has a solution of the form $u=e^{\tau(\zeta+i \eta) \cdot \times}(1+\psi) \in H_{\Delta}(\Omega)$ with ψ obeying

$$
\|\psi\|_{L^{2}(\Omega)} \leq C \tau^{-1 / 2},
$$

for some constant $C>0$ depending only on δ, Ω and ϵ.

The key point in the proof of this lemma is a Carleman inequality by Bukhgeim-Uhlamnn : there exist $\tau_{0}=\tau_{0}(\delta)>0$ and $C=C(\delta)>0$ so that

$$
\begin{aligned}
& C \tau^{2} \int_{\Omega} e^{-2 \tau x \cdot \zeta}|v|^{2} d x+\tau \int_{\Gamma_{+}}|\zeta \cdot \nu(x)| e^{-2 \tau x \cdot \zeta}\left|\partial_{\nu} v\right|^{2} d \sigma \\
& \quad \leq \int_{\Omega} e^{-2 \tau x \cdot \zeta}|(\Delta-q) v|^{2} d x+\tau \int_{\Gamma_{-}}|\zeta \cdot \nu(x)| e^{-2 \tau x \cdot \zeta}\left|\partial_{\nu} v\right|^{2} d \sigma
\end{aligned}
$$

holds for all $\tau \geq \tau_{0}$ and $v \in H_{0}^{1}(\Omega) \cap H^{2}(\Omega)$.

Summary

1 "On an inverse boundary value problem" by A. P. Calderón

2 Introduction

3 Partial DtN map

4 CGO solutions vanishing at a part of the boundary

5 Stability estimate : sketch of the proof

6 Application to conductivity problem

7 Extension to the parabolic case

Denote by $\langle\cdot, \cdot\rangle$ the duality pairing between $H^{1 / 2}(\Gamma)$ and $H^{-1 / 2}(\Gamma)$. Let u_{j} be a CGO solution given by Proposition 1 and corresponding to $q_{j} \in \delta B_{L^{\infty}(\Omega)}, j=1,2$.
Generalized Green's formula yields

$$
\int_{\Omega}\left(q_{2}-q_{1}\right) u_{1} u_{2} d x=\left\langle t_{1} \overline{\Lambda_{q_{1}, q_{2}}\left(t_{0} u_{2}\right)}, t_{0} u_{1}\right\rangle .
$$

The estimate in Proposition 1 implies : there exist a subset E of \mathbb{S}^{n-1} with $|E|>0$ so that

$$
\begin{equation*}
\left|\int_{\Omega}\left(q_{2}-q_{1}\right) e^{-i \kappa \cdot x} d x\right| \leq C\left(e^{2 d \tau}\left\|\widetilde{\Lambda}_{q_{1}, q_{2}}\right\|+\tau^{-1 / 2}\right), \tag{5}
\end{equation*}
$$

holds uniformly in $\kappa \in r E$ and $r \in(0,2 \tau)$.

Theorem 2 (Apraiz-Escauriaza-Wang-Zhang)

Assume that $F: 2 \mathbb{B}^{n} \rightarrow \mathbb{C}$ is real-analytic and satisfies

$$
\left|\partial^{\alpha} F(\kappa)\right| \leq K \frac{|\alpha|!}{\rho^{|\alpha|}}, \quad \kappa \in 2 \mathbb{B}, \alpha \in \mathbb{N}^{n},
$$

for some $(K, \rho) \in \mathbb{R}_{+}^{*} \times(0,1]$. Then for any measurable set $E \subset \mathbb{B}$ with $|E|>0$, there exist two constants $M=M(\rho,|E|)>0$ and $\theta=\theta(\rho,|E|) \in(0,1)$ such that

$$
\|F\|_{L^{\infty}(\mathbb{B})} \leq M K^{1-\theta}\left(\frac{1}{|E|} \int_{E}|F(\kappa)| d \kappa\right)^{\theta} .
$$

(5) + Theorem $2 \Rightarrow$

$$
|\widehat{q}(r \kappa)| \leq C e^{(1-\theta) r}\left(e^{d \tau}\left\|\widetilde{\Lambda}_{q_{1}, q_{2}}\right\|+\tau^{-1 / 2}\right)^{\theta}, \kappa \in \mathbb{B},
$$

Combine this with an estimate for high frequencies in order to derive

$$
\|q\|_{L^{2}(\Omega)}^{2} \leq C r^{n} e^{2(1-\theta) r}\left(e^{d \tau}\left\|\tilde{\Lambda}_{q_{1}, q_{2}}\right\|+\tau^{-1 / 2}\right)^{2 \theta}+\frac{M^{2}}{r^{2 t}},
$$

$r \in(0,2 \tau), \tau \in\left[\tau_{0},+\infty\right)$. Whence

$$
\|q\|_{L^{2}(\Omega)}^{2} \leq C^{\prime} e^{(n+2) r}\left|\ln \left\|\widetilde{\Lambda}_{q_{1}, q_{2}}\right\|\right|^{-\theta}+\frac{M^{2}}{r^{2 t}}, r \in\left(0,2 \tau_{*}\right) .
$$

The proof is completed by a minimizing with respect to r.

Summary

1 "On an inverse boundary value problem" by A. P. Calderón

2 Introduction

3 Partial DtN map

4 CGO solutions vanishing at a part of the boundary

5 Stability estimate : sketch of the proof

6 Application to conductivity problem

7 Extension to the parabolic case

If $\sigma \in W_{+}^{1, \infty}(\Omega)=\left\{c \in W^{1, \infty}(\Omega ; \mathbb{R}) ; c(x) \geq c_{0}\right.$ for some $\left.c_{0}>0\right\}$, introduce the Hilbert space

$$
H_{\operatorname{div}(\sigma \nabla)}(\Omega)=\left\{u \in L^{2}(\Omega), \operatorname{div}(\sigma \nabla u) \in L^{2}(\Omega)\right\}
$$

endowed with the norm

$$
\|u\|_{H_{\operatorname{div}(\sigma \nabla)}(\Omega)}=\left(\|u\|_{L^{2}(\Omega)}^{2}+\|\operatorname{div}(\sigma \nabla u)\|_{L^{2}(\Omega)}^{2}\right)^{1 / 2} .
$$

By a slight modification of the proof of Lemma 1 the trace map

$$
t_{j}^{\sigma} u=\sigma^{j} \partial_{\nu}^{j} u_{\mid \Gamma}, u \in \mathscr{D}(\bar{\Omega}), j=0,1,
$$

is extended to a linear continuous operator, still denoted by t_{j}^{σ}, from $H_{\operatorname{div}(\sigma \nabla)}(\Omega)$ into $H^{-j-1 / 2}(\Gamma)$.

For $g \in H^{-1 / 2}(\Gamma)$, the mapping

$$
\Lambda_{\sigma}: g \in H^{-1 / 2}(\Gamma) \mapsto t_{1}^{\sigma} u_{\sigma, g} \in H^{-3 / 2}(\Gamma)
$$

defines a bounded operator, where $u_{\sigma, g} \in H_{\operatorname{div}(\sigma \nabla)}(\Omega)$ is the unique (transposition) solution of the BVP

$$
\operatorname{div}(\sigma \nabla u)=0 \text { in } \Omega, \quad u=g \text { on } \Gamma,
$$

Recall that

$$
\begin{equation*}
\Lambda_{q_{\sigma}}=\frac{1}{2} \sigma^{-1}\left(\partial_{\nu} \sigma\right) I+\sigma^{-1 / 2} \Lambda_{\sigma} \sigma^{-1 / 2} \tag{6}
\end{equation*}
$$

with $q_{\sigma}=\sigma^{-1 / 2} \Delta \sigma^{1 / 2}$.

Let

$$
\widetilde{\Lambda}_{\sigma_{1}, \sigma_{2}}: g \in H^{-1 / 2}(\Gamma) \cap \mathscr{E}^{\prime}(F) \mapsto\left(\Lambda_{\sigma_{1}}-\Lambda_{\sigma_{2}}\right)(g)_{\mid G} \in H^{1 / 2}(G) .
$$

Then, with reference to (6),

$$
\widetilde{\Lambda}_{q_{1}, q_{2}} g=\sigma_{1}^{-1 / 2} \widetilde{\Lambda}_{\sigma_{1}, \sigma_{2}}\left(\sigma_{1}^{-1 / 2} g\right)
$$

for every $g \in H^{-1 / 2}(\Gamma) \cap \mathscr{E}^{\prime}(F)$, provided

$$
\sigma_{1}=\sigma_{2} \text { on } \Gamma \text { and } \partial_{\nu} \sigma_{1}=\partial_{\nu} \sigma_{2} \text { on } F \cap G .
$$

Therefore

$$
\begin{equation*}
\left\|\widetilde{\Lambda}_{q_{1}, q_{2}}\right\| \leq C\left\|\widetilde{\Lambda}_{\sigma_{1}, \sigma_{2}}\right\|, \tag{7}
\end{equation*}
$$

where $\|\cdot\|$ still denotes the norm of $\mathscr{B}\left(H^{-1 / 2}(\Gamma) \cap \mathscr{E}^{\prime}(F), H^{1 / 2}(G)\right)$.

Taking into account that $\phi=\sigma_{1}^{1 / 2}-\sigma_{2}^{1 / 2}$ is solution The BVP

$$
\begin{cases}\left(-\Delta+q_{1}\right) \phi=\sigma_{2}^{1 / 2}\left(q_{2}-q_{1}\right) & \text { in } \Omega \\ \phi=0 & \text { on } \Gamma,\end{cases}
$$

we prove

$$
\left\|\sigma_{1}^{1 / 2}-\sigma_{2}^{1 / 2}\right\|_{L^{2}(\Omega)} \leq C\left\|q_{2}-q_{1}\right\|_{H^{-1}(\Omega)}
$$

and then

$$
\begin{equation*}
\left\|\sigma_{1}-\sigma_{2}\right\|_{L^{2}(\Omega)} \leq C\left\|q_{2}-q_{1}\right\|_{H^{-1}(\Omega)} . \tag{8}
\end{equation*}
$$

(7) $+(8)+$ Theorem $1 \Rightarrow$

Corollary 3 (Choulli-Kian-Soccorsi '15)

Let $\delta>0$ and $\sigma_{0}>0$. Then for any $\sigma_{j} \in \delta B_{W^{2}, \infty}(\Omega), j=1,2$, obeying $\sigma_{j} \geq \sigma_{0}$ and

$$
\sigma_{1}=\sigma_{2} \text { on } \Gamma \text { and } \partial_{\nu} \sigma_{1}=\partial_{\nu} \sigma_{2} \text { on } F \cap G,
$$

we may find a constant $C>0$, independent of σ_{1} and σ_{2}, so that

$$
\left\|\sigma_{1}-\sigma_{2}\right\|_{L^{2}(\Omega)} \leq C\left(\left\|\widetilde{\Lambda}_{\sigma_{1}, \sigma_{2}}\right\|+|\ln | \ln \left\|\tilde{\Lambda}_{\sigma_{1}, \sigma_{2}}\right\| \|^{-1}\right) .
$$

Summary

1 "On an inverse boundary value problem" by A. P. Calderón

2 Introduction

3 Partial DtN map

4 CGO solutions vanishing at a part of the boundary

5 Stability estimate : sketch of the proof

6 Application to conductivity problem

7 Extension to the parabolic case

Let Ω be a C^{2}-bdd domain of $\mathbb{R}^{n}, n \geq 2$, with boundary Γ and, for $T>0$, set

$$
Q=\Omega \times(0, T), \quad \Omega_{+}=\Omega \times\{0\}, \quad \Sigma=\Gamma \times(0, T) .
$$

Consider the IBVP

$$
\left\{\begin{array}{l}
\left(\partial_{t}-\Delta+q(x, t)\right) u=0 \quad \text { in } Q, \tag{9}\\
u_{\mid \Omega_{+}}, 0, \\
u_{\mid \Sigma}=g .
\end{array}\right.
$$

Following Lions and Magenes, $H^{-r,-s}(\Sigma), r, s>0$, denotes the dual space of

$$
H_{, 0}^{r, s}(\Sigma)=L^{2}\left(0, T ; H^{r}(\Gamma)\right) \cap H_{0}^{s}\left(0, T ; L^{2}(\Gamma)\right) .
$$

For $q \in L^{\infty}(Q)$ and $g \in H^{-\frac{1}{2},-\frac{1}{4}}(\Sigma)$, the IBVP (9) admits a unique (transposition) solution $u_{q, g} \in L^{2}(Q)$. Additionally the following parabolic DtN map

$$
\begin{aligned}
\Lambda_{q}: H^{-\frac{1}{2},-\frac{1}{4}}(\Sigma) & \rightarrow H^{-\frac{3}{2},-\frac{3}{4}}(\Sigma) \\
g & \mapsto \partial_{\nu} u_{q, g}
\end{aligned}
$$

is bounded.
Recall that, for $\omega \in \mathbb{S}^{n-1}$,

$$
\Gamma_{ \pm, \omega}=\{x \in \Gamma ; \pm \nu(x) \cdot \omega>0\}
$$

and set

$$
\Sigma_{ \pm, \omega}=\Gamma_{ \pm, \omega} \times(0, T) .
$$

Fix $\omega_{0} \in \mathbb{S}^{n-1}, \mathcal{U}_{ \pm}$a neighborhood of $\Gamma_{ \pm, \omega_{0}}$ in Γ and set

$$
\mathcal{V}_{+}=\mathcal{U}_{+} \times[0, T], \quad \mathcal{V}_{-}=\mathcal{U}_{-} \times(0, T)
$$

Define then the partial parabolic DtN operator

$$
\begin{aligned}
\hat{\Lambda}_{q}: H^{-\frac{1}{2},-\frac{1}{4}}(\Sigma) \cap \mathscr{E}^{\prime}\left(\mathcal{V}_{+}\right) & \rightarrow H^{-\frac{3}{2},-\frac{3}{4}}\left(\mathcal{V}_{-}\right) \\
g & \mapsto \partial_{\nu} u_{q, g \mid \mathcal{V}_{-}}
\end{aligned}
$$

Observe that as in the elliptic case $\widehat{\Lambda}_{q}-\widehat{\Lambda}_{\tilde{q}}$ is a smoothing operator: $\widehat{\Lambda}_{q}-\widehat{\Lambda}_{\widetilde{q}} \in \mathscr{B}\left(H^{-\frac{1}{2},-\frac{1}{4}}(\Sigma), H^{\frac{1}{2}, \frac{1}{4}}(\Sigma)\right)$.

For $\frac{1}{2(n+3)}<s<\frac{1}{2(n+1)}$, set

$$
\begin{equation*}
\Psi_{s}(\rho)=\rho+|\ln \rho|^{-\frac{1-2 s(n+1)}{8}}, \quad \rho>0 \tag{10}
\end{equation*}
$$

extended by continuity at $\rho=0$ by setting $\Psi_{s}(0)=0$.

Theorem 4 (Choulli-Kian '16)

Fix $\delta>0$ and $\frac{1}{2(n+3)}<s<\frac{1}{2(n+1)}$. There exists a constant $C>0$, that can depend only on δ, Q and s, so that, for any $q_{1}, q_{2} \in \delta B_{L^{\infty}(Q)}$,

$$
\begin{equation*}
\left\|q_{1}-q_{2}\right\|_{H^{-1}(Q)} \leq C \Psi_{s}\left(\left\|\Lambda_{q_{1}}-\Lambda_{q_{2}}\right\|\right) . \tag{11}
\end{equation*}
$$

Here $\left\|\Lambda_{q_{1}}-\Lambda_{q_{2}}\right\|$ stands for the norm of $\Lambda_{q_{1}}-\Lambda_{q_{2}}$ in $\mathscr{B}\left(H^{-\frac{1}{2},-\frac{1}{4}}(\Sigma) ; H^{\frac{1}{2}, \frac{1}{4}}(\Sigma)\right)$.

Set

$$
\begin{equation*}
\Phi_{s}(\rho)=\rho+|\ln | \ln \rho| |^{-s}, \quad \rho>0, s>0, \tag{12}
\end{equation*}
$$

extended by continuity at $\rho=0$ by setting $\Phi_{s}(0)=0$.

Theorem 5 (Choulli-Kian '16)

Let $\delta>0$, there exist two constants $C>0$ and $s \in(0,1 / 2)$, that can depend only on δ, Q and $\mathcal{V}_{ \pm}$, so that, for any $q_{1}, q_{2} \in \delta B_{L^{\infty}(Q)}$,

$$
\begin{equation*}
\left\|q_{1}-q_{2}\right\|_{H^{-1}(Q)} \leq C \Phi_{s}\left(\left\|\widehat{\Lambda}_{q-1}-\widehat{\Lambda}_{q_{2}}\right\|\right) . \tag{13}
\end{equation*}
$$

Here $\left\|\widehat{\Lambda}_{q}-\widehat{\Lambda}_{\tilde{q}}\right\|$ denotes the norm of $\widehat{\Lambda}_{q}-\widehat{\Lambda}_{\tilde{q}}$ in $\mathscr{B}\left(H^{-\frac{1}{2},-\frac{1}{4}}(\Sigma) ; H^{\frac{1}{2}, \frac{1}{4}}\left(\mathcal{V}_{-}\right)\right)$.

Thank you for your attention

