Numerical approximation of boundary controls for beam equations

Nicolae Cîndea

 joint work with Sorin Micu and Ionel Rovența

Valenciennes, July 4-7, 2016
Stability of non-conservative systems

Controllability of the Euler-Bernoulli beam equation

We consider the following clamped beam equation :

$$
\begin{aligned}
& \begin{cases}\ddot{u}(x, t)+\partial_{x}^{4} u(x, t)=0, & (0,1) \times(0, T) \\
u(0, t)=u(1, t)=0, & t \in(0, T) \\
\partial_{x} u(0, t)=0, \quad \partial_{x} u(1, t)=v(t), & t \in(0, T) \\
u(x, 0)=u_{0}(x), \quad \dot{u}(x, 0)=u_{1}(x), & x \in(0,1)\end{cases} \\
& \text { - } T>0
\end{aligned} \begin{aligned}
& \text { - } u_{0} \in L^{2}(0,1) \\
& \text { - } u_{1} \in H^{-2}(0,1)
\end{aligned}
$$

Controllability of the Euler-Bernoulli beam equation

We consider the following clamped beam equation :

$$
\begin{align*}
& \begin{cases}\ddot{u}(x, t)+\partial_{x}^{4} u(x, t)=0, & (0,1) \times(0, T) \\
u(0, t)=u(1, t)=0, & t \in(0, T) \\
\partial_{x} u(0, t)=0, \quad \partial_{x} u(1, t)=v(t), & t \in(0, T) \\
u(x, 0)=u_{0}(x), \quad \dot{u}(x, 0)=u_{1}(x), & x \in(0,1)\end{cases} \\
& \text { - } \begin{array}{l}
\text { - } u_{0} \in L^{2}(0,1) \\
\text { - } u_{1} \in H^{-2}(0,1)
\end{array} \tag{CS}
\end{align*}
$$

Definition

We say that the beam equation (CS) is null controllable in time $T>0$, if for every initial data $\left(u_{0}, u_{1}\right) \in L^{2}(0,1) \times H^{-2}(0,1)$ there exists a control $v \in L^{2}(0, T)$ such that

$$
u(\cdot, T)=\dot{u}(\cdot, T)=0
$$

Controllability of the Euler-Bernoulli beam equation

We consider the following hinged beam equation:

$$
\begin{align*}
& \begin{cases}\ddot{u}(x, t)+\partial_{x}^{4} u(x, t)=0, & (0,1) \times(0, T) \\
u(0, t)=u(1, t)=0, & t \in(0, T) \\
\partial_{x}^{2} u(0, t)=0, \quad \partial_{x}^{2} u(1, t)=v(t), & t \in(0, T) \\
u(x, 0)=u_{0}(x), \quad \dot{u}(x, 0)=u_{1}(x), & x \in(0,1)\end{cases} \\
& \text { - } T>0
\end{aligned} \begin{aligned}
& \text { - } u_{0} \in H_{0}^{1}(0,1) \\
& \text { - } u_{1} \in H^{-1}(0,1) \tag{CS}
\end{align*}
$$

Definition

We say that the beam equation (CS) is null controllable in time $T>0$, if for every initial data $\left(u_{0}, u_{1}\right) \in H_{0}^{1}(0,1) \times H^{-1}(0,1)$ there exists a control $v \in L^{2}(0, T)$ such that

$$
u(\cdot, T)=\dot{u}(\cdot, T)=0
$$

Observability of the beam equation

In order to define the dual observability concept, we consider the following homogeneous clamped beam equation :

$$
\begin{cases}\ddot{y}(x, t)+\partial_{x}^{4} y(x, t)=0, & (0,1) \times(0, T) \\ y(0, t)=y(1, t)=0, & t \in(0, T) \tag{S}\\ \partial_{x} y(0, t)=\partial_{x} y(1, t)=0, & t \in(0, T) \\ y(x, 0)=y_{0}(x), \quad \dot{y}(x, 0)=y_{1}(x), & x \in(0,1)\end{cases}
$$

Observability of the beam equation

In order to define the dual observability concept, we consider the following homogeneous clamped beam equation :

$$
\begin{cases}\ddot{y}(x, t)+\partial_{x}^{4} y(x, t)=0, & (0,1) \times(0, T) \\ y(0, t)=y(1, t)=0, & t \in(0, T) \\ \partial_{x} y(0, t)=\partial_{x} y(1, t)=0, & t \in(0, T) \tag{S}\\ y(x, 0)=y_{0}(x), \quad \dot{y}(x, 0)=y_{1}(x), & x \in(0,1)\end{cases}
$$

Definition

We say that the beam equation (S) is exactly observable in time $T>0$, if there exists a constant $K_{T}>0$ such that for every initial data $\left(y_{0}, y_{1}\right) \in H_{0}^{2}(0,1) \times L^{2}(0,1)$ the solution y satisfies

$$
\begin{equation*}
\left\|y_{0}\right\|_{H_{0}^{2}(0,1)}^{2}+\left\|y_{1}\right\|_{L^{2}(0,1)}^{2} \leq K_{T} \int_{0}^{T}\left|\partial_{x}^{2} y(1, t)\right|^{2} d t \tag{OBS}
\end{equation*}
$$

Observability of the beam equation

In order to define the dual observability concept, we consider the following homogeneous clamped beam equation :

$$
\begin{cases}\ddot{y}(x, t)+\partial_{x}^{4} y(x, t)=0, & (0,1) \times(0, T) \\ y(0, t)=y(1, t)=0, & t \in(0, T) \\ \partial_{x} y(0, t)=\partial_{x} y(1, t)=0, & t \in(0, T) \tag{S}\\ y(x, 0)=y_{0}(x), \quad \dot{y}(x, 0)=y_{1}(x), & x \in(0,1)\end{cases}
$$

Controllability \longleftrightarrow ObSERVability

Definition

We say that the beam equation (S) is exactly observable in time $T>0$, if there exists a constant $K_{T}>0$ such that for every initial data $\left(y_{0}, y_{1}\right) \in H_{0}^{2}(0,1) \times L^{2}(0,1)$ the solution y satisfies

$$
\begin{equation*}
\left\|y_{0}\right\|_{H_{0}^{2}(0,1)}^{2}+\left\|y_{1}\right\|_{L^{2}(0,1)}^{2} \leq K_{T} \int_{0}^{T}\left|\partial_{x}^{2} y(1, t)\right|^{2} d t \tag{OBS}
\end{equation*}
$$

Observability of the beam equation

In order to define the dual observability concept, we consider the following homogeneous hinged beam equation

$$
\begin{cases}\ddot{y}(x, t)+\partial_{x}^{4} y(x, t)=0, & (0,1) \times(0, T) \\ y(0, t)=y(1, t)=0, & t \in(0, T) \\ \partial_{x}^{2} y(0, t)=\partial_{x}^{2} y(1, t)=0, & t \in(0, T) \tag{S}\\ y(x, 0)=y_{0}(x), \quad \dot{y}(x, 0)=y_{1}(x), & x \in(0,1)\end{cases}
$$

Controllability \longleftrightarrow Observability

Definition

We say that the beam equation (S) is exactly observable in time $T>0$, if there exists a constant $K_{T}>0$ such that for every initial data $\left(y_{0}, y_{1}\right) \in H_{0}^{1}(0,1) \times H^{-1}(0,1)$ the solution y satisfies

$$
\begin{equation*}
\left\|y_{0}\right\|_{H_{0}^{1}(0,1)}^{2}+\left\|y_{1}\right\|_{H^{-1}(0,1)}^{2} \leq K_{T} \int_{0}^{T}\left|\partial_{x} y(1, t)\right|^{2} d t \tag{OBS}
\end{equation*}
$$

Finite differences semi－discretization

N discretization points in $(0,1)$
$h=\frac{1}{N+1}$

$$
\begin{aligned}
& x_{j}=j h \\
& x_{0} \xlongequal[=]{=} \text { ーーーーーー } x_{N+1}=1
\end{aligned}
$$

Finite differences semi-discretization

N discretization points in $(0,1)$

$$
\begin{gathered}
x_{j}=j h \\
x_{0} \stackrel{\text { ®-D }}{=0}-\longrightarrow-\underset{x_{N+1}=1}{\longrightarrow}
\end{gathered}
$$

$$
\partial_{x}^{4} u\left(x_{j}, t\right) \approx \frac{u\left(x_{j-2}, t\right)-4 u\left(x_{j-1}, t\right)+6 u\left(x_{j}, t\right)-4 u\left(x_{j+1}, t\right)+u\left(x_{j+2}, t\right)}{h^{4}}
$$

Finite differences semi－discretization

N discretization points in $(0,1)$

$$
x_{j}=j h
$$

$h=\frac{1}{N+1}$

$$
x_{0} \stackrel{\bullet-}{=} \text { ーーーーーー- } x_{N+1}=1
$$

$$
\partial_{x}^{4} u\left(x_{j}, t\right) \approx \frac{u\left(x_{j-2}, t\right)-4 u\left(x_{j-1}, t\right)+6 u\left(x_{j}, t\right)-4 u\left(x_{j+1}, t\right)+u\left(x_{j+2}, t\right)}{h^{4}}
$$

clamped
beam

-4 \& 6 \& -4 \& 1 \& 0 \& ··· \& ··· \& ··· \& 0

1 \& -4 \& 6 \& -4 \& 1 \& 0 \& ··· \& ··· \& 0

0 \& 1 \& -4 \& 6 \& -4 \& 1 \& 0 \& ··· \& 0

\vdots \& \ddots \& \vdots

0 \& ··· \& 0 \& 1 \& -4 \& 6 \& -4 \& 1 \& 0

0 \& ··· \& ··· \& 0 \& 1 \& -4 \& 6 \& -4 \& 1

0 \& ··· \& ··· \& ··· \& 0 \& 1 \& -4 \& 6 \& -4

0 \& ··· \& ··· \& ··· \& ··· \& 0 \& 1 \& -4 \& 7\end{array}\right)\)

Finite differences semi－discretization

N discretization points in $(0,1)$

$$
x_{j}=j h
$$

$h=\frac{1}{N+1}$

$$
x_{0} \stackrel{\bullet-}{=} \text { ーーーーーー- } x_{N+1}=1
$$

$$
\partial_{x}^{4} u\left(x_{j}, t\right) \approx \frac{u\left(x_{j-2}, t\right)-4 u\left(x_{j-1}, t\right)+6 u\left(x_{j}, t\right)-4 u\left(x_{j+1}, t\right)+u\left(x_{j+2}, t\right)}{h^{4}}
$$

hinged
beam

-4 \& 6 \& -4 \& 1 \& 0 \& ··· \& ··· \& ··· \& 0

1 \& -4 \& 6 \& -4 \& 1 \& 0 \& ··· \& ··· \& 0

0 \& 1 \& -4 \& 6 \& -4 \& 1 \& 0 \& ··· \& 0

\vdots \& \ddots \& \vdots

0 \& ··· \& 0 \& 1 \& -4 \& 6 \& -4 \& 1 \& 0

0 \& ··· \& ··· \& 0 \& 1 \& -4 \& 6 \& -4 \& 1

0 \& ··· \& ··· \& ··· \& 0 \& 1 \& -4 \& 6 \& -4

0 \& ··· \& ··· \& ··· \& ··· \& 0 \& 1 \& -4 \& 5\end{array}\right)\)

The following semi-discrete finite-dimensional system is an approximation of the clamped beam equation (CS)

$$
\left\{\begin{array}{l}
\ddot{U}_{h}(t)+A_{h} U_{h}(t)=F_{h}(t), \quad t \in(0, T) \tag{h}\\
U_{h}(0)=U_{h}^{0}, \quad \dot{U}_{h}(0)=U_{h}^{1}
\end{array}\right.
$$

where $A_{h}=\frac{1}{h^{4}} A$ and

$$
U_{h}^{i}=\left(\begin{array}{c}
u_{1}^{i} \\
u_{2}^{i} \\
\vdots \\
u_{N}^{i}
\end{array}\right), U_{h}(t)=\left(\begin{array}{c}
u_{1}(t) \\
u_{2}(t) \\
\vdots \\
u_{N}(t)
\end{array}\right) \quad F_{h}(t)=-\frac{1}{h^{3}}\left(\begin{array}{c}
0 \\
0 \\
\vdots \\
v_{h}(t)
\end{array}\right) \text {. } \begin{gathered}
\text { clamped } \\
\text { beam }
\end{gathered}
$$

Discrete controllability problem

For a given time $T>0$ and for every initial data $\left(U_{h}^{0}, U_{h}^{1}\right) \in \mathbb{C}^{N} \times \mathbb{C}^{N}$ find a control $v_{h} \in L^{2}(0, T)$ such that

$$
U_{h}(T)=\dot{U}_{h}(T)=0
$$

The following semi-discrete finite-dimensional system is an approximation of the clamped beam equation (CS)

$$
\left\{\begin{array}{l}
\ddot{U}_{h}(t)+A_{h} U_{h}(t)=F_{h}(t), \quad t \in(0, T) \tag{h}\\
U_{h}(0)=U_{h}^{0}, \quad \dot{U}_{h}(0)=U_{h}^{1}
\end{array}\right.
$$

where $A_{h}=\frac{1}{h^{4}} A$ and
$U_{h}^{i}=\left(\begin{array}{c}u_{1}^{i} \\ u_{2}^{i} \\ \vdots \\ u_{N}^{i}\end{array}\right), U_{h}(t)=\left(\begin{array}{c}u_{1}(t) \\ u_{2}(t) \\ \vdots \\ u_{N}(t)\end{array}\right) \quad F_{h}(t)=-\frac{1}{h^{2}}\left(\begin{array}{c}0 \\ 0 \\ \vdots \\ v_{h}(t)\end{array}\right) . \begin{gathered}\text { hinged } \\ \text { beam }\end{gathered}$

Discrete controllability problem

For a given time $T>0$ and for every initial data $\left(U_{h}^{0}, U_{h}^{1}\right) \in \mathbb{C}^{N} \times \mathbb{C}^{N}$ find a control $v_{h} \in L^{2}(0, T)$ such that

$$
U_{h}(T)=\dot{U}_{h}(T)=0
$$

A uniform observability inequality?

Aim: to study the discrete observability property corresponding to the controlled problem $\left(\mathrm{CS}_{h}\right)$ which reads as follows: there exists a constant K_{h} such that the following inequality holds
clamped beam

$$
\begin{equation*}
\left\|Y_{h}^{0}\right\|_{2}^{2}+\left\|Y_{h}^{1}\right\|_{0}^{2} \leq K_{h} \int_{0}^{T}\left|\frac{Y_{h N}(t)}{h^{2}}\right|^{2} d t \tag{h}
\end{equation*}
$$

for any $\binom{Y_{h}^{0}}{Y_{h}^{1}} \in \mathbb{C}^{2 N}$, where $\binom{Y_{h}}{\dot{Y}_{h}}$ is the solution of the following semi-discretization of (S)

$$
\left\{\begin{array}{l}
\ddot{Y}_{h}(t)+A_{h} Y_{h}(t)=0, \quad t \in(0, T) \tag{h}\\
Y_{h}(0)=Y_{h}^{0}, \quad \dot{Y}_{h}(0)=Y_{h}^{1}
\end{array}\right.
$$

A uniform observability inequality?

Aim: to study the discrete observability property corresponding to the controlled problem $\left(\mathrm{CS}_{h}\right)$ which reads as follows: there exists a constant K_{h} such that the following inequality holds

$$
\begin{gather*}
\text { hinged } \\
\text { beam }
\end{gather*}\left\|Y_{h}^{0}\right\|_{1}^{2}+\left\|Y_{h}^{1}\right\|_{-1}^{2} \leq K_{h} \int_{0}^{T}\left|\frac{Y_{h N}(t)}{h}\right|^{2} d t
$$

for any $\binom{Y_{h}^{0}}{Y_{h}^{1}} \in \mathbb{C}^{2 N}$, where $\binom{Y_{h}}{\dot{Y}_{h}}$ is the solution of the following semi-discretization of (S)

$$
\left\{\begin{array}{l}
\ddot{Y}_{h}(t)+A_{h} Y_{h}(t)=0, \quad t \in(0, T) \tag{h}\\
Y_{h}(0)=Y_{h}^{0}, \quad \dot{Y}_{h}(0)=Y_{h}^{1}
\end{array}\right.
$$

A uniform observability inequality?

Aim: to study the discrete observability property corresponding to the controlled problem $\left(\mathrm{CS}_{h}\right)$ which reads as follows: there exists a constant K_{h} such that the following inequality holds

$$
\begin{gathered}
\text { hinged } \\
\text { beam }
\end{gathered}\left\|Y_{h}^{0}\right\|_{1}^{2}+\left\|Y_{h}^{1}\right\|_{-1}^{2} \leq K_{h} \int_{0}^{T}\left|\frac{Y_{h N}(t)}{h}\right|^{2} d t
$$

for any $\binom{Y_{h}^{0}}{Y_{h}^{1}} \in \mathbb{C}^{2 N}$, where $\binom{Y_{h}}{\dot{Y}_{h}}$ is the solution of the following semi-discretization of (S)

$$
\left\{\begin{array}{l}
\ddot{Y}_{h}(t)+A_{h} Y_{h}(t)=0, \quad t \in(0, T) \\
Y_{h}(0)=Y_{h}^{0}, \quad \dot{Y}_{h}(0)=Y_{h}^{1}
\end{array}\right.
$$

Question

The constant K_{h} is uniformly bounded w.r.t. h ?

The case of the hinged beam equation

目 L. León, E. Zuazua, Boundary controllability of the finite-difference space semi-discretizations of the beam equation. ESAIM COCV, 2002, 8, 827-862.

- explicit form of the eigenvalues and eigenvectors of the matrix A
- Ingham's inequality
\Rightarrow uniform observability
- filtering of the high-frequencies at the level γh^{-4} for $\gamma \in(0,1)$
- adding an extra boundary control acting on 0 .

The case of the hinged beam equation

國 L. León, E. Zuazua, Boundary controllability of the finite-difference space semi-discretizations of the beam equation. ESAIM COCV, 2002, 8, 827-862.

- explicit form of the eigenvalues and eigenvectors of the matrix A
- Ingham's inequality
\Rightarrow uniform observability
- filtering of the high-frequencies at the level γh^{-4} for $\gamma \in(0,1)$
- adding an extra boundary control acting on 0 .

嗇 I.F. Bugariu, S. Micu,; I. Rovenţa, Approximation of the controls for the beam equation with vanishing viscosity. Math. Comp. 85 (2016), no. 301, 2259-2303.

- adding a viscous term of the form $\varepsilon A_{h} \dot{Y}_{h}$ with $\varepsilon \in\left(\frac{h^{2}}{2 T} \ln \left(h^{-1}\right), h\right)$
- moment method
\Rightarrow uniform controllability

The case of the clamped beam equation

Theorem (NC, S. Micu, I.Rovența)

Let $T>0$ and $\gamma \in(0,1)$. There exists $N_{0} \in \mathbb{N}$ such that for every $N \geq N_{0}$ the observability inequality $\left(\mathrm{OBS}_{h}\right)$ holds, with a positive constant K independent of h, for every solution of (S) with initial data in the space $C_{h}(\gamma)$. Moreover,

$$
\lim _{h \rightarrow \infty} \sup \left\{\begin{array}{l|l}
\left\|Y_{h}^{0}\right\|_{2}^{2}+\left\|Y_{h}^{1}\right\|_{0}^{2} & \binom{Y_{h}^{0}}{Y_{h}^{1}} \in \mathbb{C}^{2 N} \text { and } \\
\int_{0}^{T}\left|\frac{Y_{h N}(t)}{h^{2}}\right|^{2} d t & \binom{Y_{h}}{\dot{Y}_{h}} \text { solution of }\left(\mathrm{S}_{h}\right)
\end{array}\right\}=\infty .
$$

The case of the clamped beam equation

Theorem (NC, S. Micu, I.Rovența)

Let $T>0$ and $\gamma \in(0,1)$. There exists $N_{0} \in \mathbb{N}$ such that for every $N \geq N_{0}$ the observability inequality $\left(\mathrm{OBS}_{h}\right)$ holds, with a positive constant K independent of h, for every solution of (S) with initial data in the space $C_{h}(\gamma)$. Moreover,

$$
\lim _{h \rightarrow \infty} \sup \left\{\begin{array}{l|l}
\left\|Y_{h}^{0}\right\|_{2}^{2}+\left\|Y_{h}^{1}\right\|_{0}^{2} & \binom{Y_{h}^{0}}{Y_{h}^{1}} \in \mathbb{C}^{2 N} \text { and } \\
\int_{0}^{T}\left|\frac{Y_{h N}(t)}{h^{2}}\right|^{2} d t & \binom{Y_{h}}{\dot{Y}_{h}} \text { solution of }\left(\mathrm{S}_{h}\right)
\end{array}\right\}=\infty .
$$

$$
\mathcal{C}_{h}(\gamma)=\left\{\binom{Y_{h}^{0}}{Y_{h}^{1}}=\sum_{1 \leq|n| \leq \gamma N} a_{n} \Phi^{n}, \quad\left(a_{n}\right)_{1 \leq|n| \leq \gamma N} \subset \mathbb{C}\right\}
$$

The case of the clamped beam equation

Theorem (NC, S. Micu, I.Rovența)

Let $T>0$ and $\gamma \in(0,1)$. There exists $N_{0} \in \mathbb{N}$ such that for every $N \geq N_{0}$ the observability inequality $\left(\mathrm{OBS}_{h}\right)$ holds, with a positive constant K independent of h, for every solution of (S) with initial data in the space $C_{h}(\gamma)$. Moreover,

$$
\lim _{h \rightarrow \infty} \sup \left\{\begin{array}{l|l}
\left\|Y_{h}^{0}\right\|_{2}^{2}+\left\|Y_{h}^{1}\right\|_{0}^{2} \\
\int_{0}^{T}\left|\frac{Y_{h N}(t)}{h^{2}}\right|^{2} d t & \left.\begin{array}{l}
\binom{Y_{h}^{0}}{Y_{h}^{1}} \in \mathbb{C}^{2 N} \text { and } \\
\binom{Y_{h}}{\dot{Y}_{h}} \text { solution of }\left(\mathrm{S}_{h}\right)
\end{array}\right\}=\infty . .
\end{array}\right.
$$

$$
\begin{aligned}
& A \phi^{n}=\lambda_{n} \phi^{n} \quad \Phi^{n}=\binom{\frac{h^{2}}{\sqrt{\lambda_{|n|}}}}{-\operatorname{sgn}(n) i} \phi^{|n|} \\
& \left.\sum_{1 \leq|n| \leq \gamma N} a_{n} \Phi^{n}, \quad\left(a_{n}\right)_{1 \leq|n| \leq \gamma N} \subset \mathbb{C}\right\} .
\end{aligned}
$$

Comments and references

- Case of the hinged beam equation

$$
\begin{cases}\ddot{u}(x, t)+\partial_{x}^{4} u(x, t)=0, & (0,1) \times(0, T) \\ u(0, t)=u(1, t)=0, & t \in(0, T) \\ \partial_{x}^{2} u(0, t)=0, \quad \partial_{x}^{2} u(1, t)=v(t), & t \in(0, T) \\ u(x, 0)=u_{0}(x), \quad \dot{u}(x, 0)=u_{1}(x), & x \in(0,1) .\end{cases}
$$

周 L. León, E. Zuazua
R I.F. Bugariu, S. Micu, I. Rovenţa

Comments and references

- Case of the hinged beam equation

$$
\begin{cases}\ddot{u}(x, t)+\partial_{x}^{4} u(x, t)=0, & (0,1) \times(0, T) \\ u(0, t)=u(1, t)=0, & t \in(0, T) \\ \partial_{x}^{2} u(0, t)=0, \quad \partial_{x}^{2} u(1, t)=v(t), & t \in(0, T) \\ u(x, 0)=u_{0}(x), \quad \dot{u}(x, 0)=u_{1}(x), & x \in(0,1) .\end{cases}
$$

similar results for hinged and clamped beam
回 L. León, E. ZuAzua
I.F. Bugariu, S. Micu, I. Rovenţa

Comments and references

- Case of the hinged beam equation

$$
\begin{cases}\ddot{u}(x, t)+\partial_{x}^{4} u(x, t)=0, & (0,1) \times(0, T) \\ u(0, t)=u(1, t)=0, & t \in(0, T) \\ \partial_{x}^{2} u(0, t)=0, \quad \partial_{x}^{2} u(1, t)=v(t), & t \in(0, T) \\ u(x, 0)=u_{0}(x), \quad \dot{u}(x, 0)=u_{1}(x), & x \in(0,1)\end{cases}
$$

similar results for hinged and clamped beam
囯 L. León, E. Zuazua
I.F. Bugariu, S. Micu, I. Rovenţa

- Abstract systems case
S. Ervedoza, Spectral conditions for admissibility and observability of wave systems: applications to finite element schemes. Numer. Math., 2009, 113, 377-415

Comments and references

- Case of the hinged beam equation

$$
\begin{cases}\ddot{u}(x, t)+\partial_{x}^{4} u(x, t)=0, & (0,1) \times(0, T) \\ u(0, t)=u(1, t)=0, & t \in(0, T) \\ \partial_{x}^{2} u(0, t)=0, \quad \partial_{x}^{2} u(1, t)=v(t), & t \in(0, T) \\ u(x, 0)=u_{0}(x), \quad \dot{u}(x, 0)=u_{1}(x), & x \in(0,1)\end{cases}
$$

similar results for hinged and clamped beam
囯 L. León, E. Zuazua
I.F. Bugariu, S. Micu, I. Rovenţa

- Abstract systems case
S. Ervedoza, Spectral conditions for admissibility and observability of wave systems: applications to finite element schemes. Numer. Math., 2009, 113, 377-415
filtering at the range $C h^{-\frac{4}{3}+\varepsilon}$

Idea of the proof

Spectral properties of the matrix A

Proposition

The matrix A has only real eigenvalues $\left(\lambda_{n}\right)_{1 \leq n \leq N} \subset(0,16)$ and there exists an orthonormal basis in \mathbb{C}^{N} (with respect to the canonical inner product $\langle\cdot, \cdot\rangle_{0}$) consisting of eigenvectors $\left(\phi^{n}\right)_{1 \leq n \leq N}$ of A.
$A=\left(\begin{array}{rrrrrrrrr}7 & -4 & 1 & 0 & \ldots & \ldots & \ldots & \ldots & 0 \\ -4 & 6 & -4 & 1 & 0 & \ldots & \ldots & \ldots & 0 \\ 1 & -4 & 6 & -4 & 1 & 0 & \ldots & \ldots & 0 \\ 0 & 1 & -4 & 6 & -4 & 1 & 0 & \ldots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \ldots & 0 & 1 & -4 & 6 & -4 & 1 & 0 \\ 0 & \ldots & \ldots & 0 & 1 & -4 & 6 & -4 & 1 \\ 0 & \ldots & \ldots & \ldots & 0 & 1 & -4 & 6 & -4 \\ 0 & \ldots & \ldots & \ldots & \ldots & 0 & 1 & -4 & 7\end{array}\right)$

Idea of the proof

Spectral properties of the matrix A

Proposition

The matrix A has only real eigenvalues $\left(\lambda_{n}\right)_{1 \leq n \leq N} \subset(0,16)$ and there exists an orthonormal basis in \mathbb{C}^{N} (with respect to the canonical inner product $\langle\cdot, \cdot\rangle_{0}$) consisting of eigenvectors $\left(\phi^{n}\right)_{1 \leq n \leq N}$ of A.
$A=\left(\begin{array}{rrrrrrrrr}5 & -4 & 1 & 0 & \ldots & \ldots & \ldots & \ldots & 0 \\ -4 & 6 & -4 & 1 & 0 & \ldots & \ldots & \ldots & 0 \\ 1 & -4 & 6 & -4 & 1 & 0 & \ldots & \ldots & 0 \\ 0 & 1 & -4 & 6 & -4 & 1 & 0 & \ldots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \ldots & 0 & 1 & -4 & 6 & -4 & 1 & 0 \\ 0 & \ldots & \ldots & 0 & 1 & -4 & 6 & -4 & 1 \\ 0 & \ldots & \ldots & \ldots & 0 & 1 & -4 & 6 & -4 \\ 0 & \ldots & \ldots & \ldots & \ldots & 0 & 1 & -4 & 5\end{array}\right) \begin{aligned} & \\ & \lambda_{n}=16 \sin ^{4}\left(\frac{n \pi h}{2}\right) \\ & \phi_{j}^{n}=\sin (j n \pi h)\end{aligned}$

Idea of the proof

Spectral properties of the matrix A

Proposition

With the above notation, λ is a eigenvalue of the matrix A if and only if verifies one of the following relations
$\cos \left((N+1) \arg \left(X_{4}\right)\right)=\frac{8 X_{1}^{N+1}-\sqrt{\lambda} X_{1}^{2(N+1)}-\sqrt{\lambda}}{2\left(2 X_{1}^{2(N+1)}-\sqrt{\lambda} X_{1}^{N+1}+2\right)}$,

$$
\sin \left((N+1) \arg \left(X_{4}\right)\right)>0,
$$

or
$\cos \left((N+1) \arg \left(X_{4}\right)\right)=\frac{8 X_{1}^{N+1}+\sqrt{\lambda} X_{1}^{2(N+1)}+\sqrt{\lambda}}{2\left(2 X_{1}^{2(N+1)}+\sqrt{\lambda} X_{1}^{N+1}+2\right)}, \quad \sin \left((N+1) \arg \left(X_{4}\right)\right)<0$,
where for each $j \in\{1,2,3,4\}$ the numbers X_{j} are given by

$$
X_{1,2}=\frac{2+\sqrt{\lambda} \pm \sqrt{(2+\sqrt{\lambda})^{2}-4}}{2}, X_{3,4}=\frac{2-\sqrt{\lambda} \pm i \sqrt{4-(2-\sqrt{\lambda})^{2}}}{2}
$$

The proof of the proposition is somehow similar the same as for the discrete Laplacian in the the book of Keller and Isaacson:

- n-th line of linear system $A \phi=\lambda \phi$

$$
\phi_{n+2}-4 \phi_{n+1}+(6-\lambda) \phi_{n}-4 \phi_{n-1}+\phi_{n-2}=0
$$

The proof of the proposition is somehow similar the same as for the discrete Laplacian in the the book of Keller and Isaacson:

- n-th line of linear system $A \phi=\lambda \phi$

$$
\phi_{n+2}-4 \phi_{n+1}+(6-\lambda) \phi_{n}-4 \phi_{n-1}+\phi_{n-2}=0
$$

- $X_{i}(i \in\{1,2,3,4\})$ are the solutions of

$$
x^{4}-4 x^{3}+(6-\lambda) x^{2}-4 x+1=0 .
$$

The proof of the proposition is somehow similar the same as for the discrete Laplacian in the the book of Keller and Isaacson:

- n-th line of linear system $A \phi=\lambda \phi$

$$
\phi_{n+2}-4 \phi_{n+1}+(6-\lambda) \phi_{n}-4 \phi_{n-1}+\phi_{n-2}=0
$$

- $X_{i}(i \in\{1,2,3,4\})$ are the solutions of

$$
x^{4}-4 x^{3}+(6-\lambda) x^{2}-4 x+1=0 .
$$

- components of the eigenvector ϕ write as

$$
\phi_{n}=C_{1} X_{1}^{n}+C_{2} X_{2}^{n}+C_{3} X_{3}^{n}+C_{4} X_{4}^{n}
$$

The proof of the proposition is somehow similar the same as for the discrete Laplacian in the the book of Keller and Isaacson:

- n-th line of linear system $A \phi=\lambda \phi$

$$
\phi_{n+2}-4 \phi_{n+1}+(6-\lambda) \phi_{n}-4 \phi_{n-1}+\phi_{n-2}=0
$$

- $X_{i}(i \in\{1,2,3,4\})$ are the solutions of

$$
x^{4}-4 x^{3}+(6-\lambda) x^{2}-4 x+1=0 .
$$

- components of the eigenvector ϕ write as

$$
\phi_{n}=C_{1} X_{1}^{n}+C_{2} X_{2}^{n}+C_{3} X_{3}^{n}+C_{4} X_{4}^{n}
$$

- boundary conditions on ϕ

$$
\begin{array}{r}
\phi_{0}=\phi_{N+1}=0 \\
\phi_{-1}=\phi_{1}, \quad \phi_{N}=\phi_{N+2}
\end{array}
$$

$$
\left\{\begin{array}{rlrlrlrl}
C_{1} & + & C_{2} & + & C_{3} & + & C_{4} & = \\
R_{+} C_{1} & - & R_{+} C_{2} & + & i R_{-} C_{3} & - & i R_{-} C_{4} & = \\
X_{1}^{N+1} C_{1} & + & X_{2}^{N+1} C_{2} & + & X_{3}^{N+1} C_{3} & + & X_{4}^{N+1} C_{4} & = \\
0 & 0 \\
X_{1}^{N+1} R_{+} C_{1} & - & X_{2}^{N+1} R_{+} C_{2} & + & i X_{3}^{N+1} R_{-} C_{3} & - & i X_{4}^{N+1} R_{-} C_{4} & = \\
0
\end{array}\right.
$$

From the first two equations we extract

$$
\begin{aligned}
C_{3} & =-\frac{1}{2}\left(1-i \frac{R_{+}}{R_{-}}\right) C_{1}-\frac{1}{2}\left(1+i \frac{R_{+}}{R_{-}}\right) C_{2} \\
C_{4} & =-\frac{1}{2}\left(1+i \frac{R_{+}}{R_{-}}\right) C_{1}-\frac{1}{2}\left(1-i \frac{R_{+}}{R_{-}}\right) C_{2}
\end{aligned}
$$

and from the last two equations

$$
\begin{aligned}
C_{3} & =-\frac{1}{2}\left(1-i \frac{R_{+}}{R_{-}}\right) \frac{X_{1}^{N+1}}{X_{3}^{N+1}} C_{1}-\frac{1}{2}\left(1+i \frac{R_{+}}{R_{-}}\right) \frac{X_{2}^{N+1}}{X_{3}^{N+1}} C_{2} \\
C_{4} & =-\frac{1}{2}\left(1+i \frac{R_{+}}{R_{-}}\right) \frac{X_{1}^{N+1}}{X_{4}^{N+1}} C_{1}-\frac{1}{2}\left(1-i \frac{R_{+}}{R_{-}}\right) \frac{X_{2}^{N+1}}{X_{4}^{N+1}} C_{2}
\end{aligned}
$$

Idea of the proof

Spectral properties of the matrix A

- any number $\lambda \in(0,16)$ can be written as

$$
\lambda=16 \sin ^{4}\left(\frac{h z}{2}\right)
$$

for some $z \in\left(0, \frac{\pi}{h}\right)$ and, hence, $\arg \left(X_{4}\right)=2 \pi-z h$.

Idea of the proof

Spectral properties of the matrix A

- any number $\lambda \in(0,16)$ can be written as

$$
\lambda=16 \sin ^{4}\left(\frac{h z}{2}\right)
$$

for some $z \in\left(0, \frac{\pi}{h}\right)$ and, hence, $\arg \left(X_{4}\right)=2 \pi-z h$.

- the new variable z satisfies the equations

$$
f^{ \pm}(z):=g^{ \pm}(z)-\frac{2\left(1-\sin ^{4}\left(\frac{h z}{2}\right)\right) r^{N+1}(z)}{r^{2(N+1)}(z) \mp 2 \sin ^{2}\left(\frac{h z}{2}\right) r^{N+1}(z)+1}=0,
$$

where

$$
\begin{gathered}
g^{ \pm}(z)=\cos (z) \pm \sin ^{2}\left(\frac{z h}{2}\right) \\
r(z)=1+2 \sin ^{2}\left(\frac{z h}{2}\right)+2 \sqrt{\sin ^{2}\left(\frac{z h}{2}\right)\left(1+\sin ^{2}\left(\frac{z h}{2}\right)\right)}
\end{gathered}
$$

Characterization of the high-frequencies

Figure: Solutions z_{n} of equations $g^{ \pm}(z)=0$ for $N=10$.

$$
g^{ \pm}(z)=\cos (z) \pm \sin ^{2}\left(\frac{z h}{2}\right)
$$

By Rouché's Theorem, if N and n are large enough, the zeros $y_{n}^{ \pm}$of $f^{ \pm}$are close to zeros $z_{n}^{ \pm}$of $g^{ \pm}$.

Proposition (NC, S. Micu, I. Rovența)

Let $\varrho>1$. There exists $\delta_{0}>0$ such that, for each $\delta \in\left(0, \delta_{0}\right)$, there exists $N_{0}(\delta) \in \mathbb{N}^{*}$ with the property that the eigenvalues $\left(\lambda_{n}\right)_{\varrho \ln N \leq n \leq N}$ of the matrix $A \in \mathcal{M}_{N}(\mathbb{R})$ with $N \geq N_{0}(\delta)$ are given by

$$
\lambda_{n}= \begin{cases}16 \sin ^{4}\left(\frac{y_{k}^{+} h}{2}\right) & \text { if } n=2 k+2 \\ 16 \sin ^{4}\left(\frac{y_{k}^{-} h}{2}\right) & \text { if } n=2 k+1\end{cases}
$$

where y_{k}^{+}and y_{k}^{-}are zeros of the functions f^{+}and f^{-}.

Observability of the high-order eigenvectors

Theorem (N.C., S. Micu, I. Rovenţa)

Let $\sigma \in(0,1)$. There exist $K>0$ and $N_{0} \in \mathbb{N}^{*}$ such that, for each $N \geq N_{0}$ and each λ eigenvalue of the matrix A with the property that $\lambda \in(\sigma, 16-\sigma)$, the corresponding normalized eigenvector $\phi=\left(\phi_{k}\right)_{1 \leq k \leq N} \in \mathbb{R}^{N}$ has the following property

$$
\left|\phi_{N}\right|>K \sqrt{\lambda}
$$

Moreover, if $\phi^{N} \in \mathbb{R}^{N}$ is the eigenvector corresponding to the last eigenvalue λ_{N}, we have that

$$
\frac{\left|\phi_{N}^{N}\right|}{\sqrt{\lambda_{N}}}=O(h)
$$

Observability of the high-order eigenvectors

$$
\begin{aligned}
& \phi^{k}=C_{1} X_{1}^{k}+C_{2} X_{2}^{k}+C_{3} X_{3}^{k}+C_{4} X_{4}^{k} \\
& C_{1}=\frac{\mathcal{C}}{X_{1}^{N+1} r_{N}^{1}}, \quad C_{2}=-\frac{\mathcal{C}}{X_{2}^{N+1} r_{N}^{2}} \\
& C_{3}=-\alpha C_{1}\left(\frac{X_{1}}{X_{3}}\right)^{N+1}-\beta C_{2}\left(\frac{X_{2}}{X_{3}}\right)^{N+1} \\
& C_{4}=-\beta C_{1}\left(\frac{X_{1}}{X_{4}}\right)^{N+1}-\alpha C_{2}\left(\frac{X_{2}}{X_{4}}\right)^{N+1} \\
& \alpha=\frac{1}{2}\left(1-i \frac{\sqrt{(2+\sqrt{\lambda})^{2}-4}}{\sqrt{4-(2-\sqrt{\lambda})^{2}}}\right), \quad \beta=\frac{1}{2}\left(1+i \frac{\sqrt{(2+\sqrt{\lambda})^{2}-4}}{\sqrt{4-(2-\sqrt{\lambda})^{2}}}\right) \\
& r_{N}^{j}=\sqrt{\left(\left(\frac{X_{4}}{X_{j}}\right)^{N+1}-1\right)\left(\left(\frac{X_{3}}{X_{j}}\right)^{N+1}-1\right)} \quad(j \in\{1,2\})
\end{aligned}
$$

Observability of the high-order eigenvectors

Lemma

There exists $N_{0} \in \mathbb{N}^{*}$ such that for each $N>N_{0}$ and any eigenvalue λ of the matrix A with the property that $\lambda \geq(3 h \ln N)^{4}$ the following estimates hold:

$$
\begin{gathered}
\frac{1}{X_{1}^{N+1}}=o(1) \sqrt{\lambda} \\
\left|1-r_{N}^{1}\right| \leq\left(\frac{1}{X_{1}}\right)^{N+1} \\
r_{N}^{2} \geq X_{1}^{N+1}-1
\end{gathered}
$$

Observability of the high-order eigenvectors

Figure: Evolution of the quantity $\frac{\left(\phi_{N}^{N}\right)^{2}}{\lambda_{N}}$ as a function of h.

Characterisation of low eigenvalues and eigenvectors

Proposition

Let $\varepsilon \in(0,2)$. There exist $N_{0}>0$ and $d>0$ such that, for each $N \geq N_{0}$, the following estimate holds:

$$
\frac{1}{h^{2}}\left|\sqrt{\lambda_{n+1}}-\sqrt{\lambda_{n}}\right| \geq d n \quad\left(1 \leq n \leq N^{\frac{1}{6}(2-\varepsilon)}\right)
$$

Proposition

Let $N \in \mathbb{N}^{*}, \sigma \in(0,1)$ and $\phi=\left(\phi_{k}\right)_{1 \leq k \leq N}$ be the normalized eigenvector of A corresponding to the eigenvalue $\lambda \in(0,16-\sigma)$. Then there exists a constant $K>0$, independent of N and λ, such that the following estimate holds

$$
\left|\phi_{N}\right| \geq K \sqrt{\lambda}
$$

Low eigenvalues distribution

- Let $(\widetilde{A}, D(\widetilde{A}))$ be the operator in $L^{2}(0,1)$ associated to the clamped beam equation

$$
\widetilde{A} u=\partial_{x}^{4} u \quad(u \in D(\widetilde{A})), \quad D(\widetilde{A})=H^{4}(0,1) \cap H_{0}^{2}(0,1)
$$

Low eigenvalues distribution

- Let $(\widetilde{A}, D(\widetilde{A}))$ be the operator in $L^{2}(0,1)$ associated to the clamped beam equation

$$
\widetilde{A} u=\partial_{x}^{4} u \quad(u \in D(\widetilde{A})), \quad D(\widetilde{A})=H^{4}(0,1) \cap H_{0}^{2}(0,1) .
$$

- \widetilde{A} has a sequence of simple eigenvalues $\left(\widetilde{\lambda}_{n}\right)_{n \geq 1}$:

$$
\widetilde{\lambda}_{n}=\left(n+\frac{1}{2}\right)^{4} \pi^{4}+v_{n} \quad(n \geq 1)
$$

where $\left(v_{n}\right)_{n \geq 1}$ is a sequence converging exponentially to zero.

Low eigenvalues distribution

- Let $(\widetilde{A}, D(\widetilde{A}))$ be the operator in $L^{2}(0,1)$ associated to the clamped beam equation

$$
\widetilde{A} u=\partial_{x}^{4} u \quad(u \in D(\widetilde{A})), \quad D(\widetilde{A})=H^{4}(0,1) \cap H_{0}^{2}(0,1) .
$$

- \widetilde{A} has a sequence of simple eigenvalues $\left(\widetilde{\lambda}_{n}\right)_{n \geq 1}$:

$$
\widetilde{\lambda}_{n}=\left(n+\frac{1}{2}\right)^{4} \pi^{4}+v_{n} \quad(n \geq 1)
$$

where $\left(v_{n}\right)_{n \geq 1}$ is a sequence converging exponentially to zero.

- Let $\varepsilon \in(0,2)$. There exist $N_{0}>0$ and $C>0$ such that, for each $N \geq N_{0}$, the following estimate holds:

$$
\left|\widetilde{\lambda}_{n}-\frac{\lambda_{n}}{h^{4}}\right| \leq C h^{\varepsilon} \quad\left(1 \leq n \leq N^{\frac{1}{6}(2-\varepsilon)}\right) .
$$

Low eigenvectors observability

- We employ a discrete multiplier method:

$$
A \phi=\lambda \phi \quad \mid \quad \cdot J . D_{1 c} \phi,
$$

where

$$
D_{1 c}=\left(\begin{array}{rrrrrrr}
0 & 1 & 0 & \ldots & \ldots & \ldots & 0 \\
-1 & 0 & 1 & 0 & \ldots & \ldots & 0 \\
0 & -1 & 0 & 1 & 0 & \ldots & 0 \\
\vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots \\
0 & \ldots & 0 & -1 & 0 & 1 & 0 \\
0 & \ldots & \ldots & 0 & -1 & 0 & 1 \\
0 & \ldots & \ldots & \ldots & 0 & -1 & 0
\end{array}\right) \quad J=\left(\begin{array}{c}
1 \\
2 \\
3 \\
\vdots \\
N-2 \\
N-1 \\
N
\end{array}\right) .
$$

Low eigenvectors observability

- We employ a discrete multiplier method:

$$
A \phi=\lambda \phi \quad \mid \quad \cdot J . D_{1 c} \phi
$$

where

$$
D_{1 c}=\left(\begin{array}{rrrrrrr}
0 & 1 & 0 & \ldots & \cdots & \cdots & 0 \\
-1 & 0 & 1 & 0 & \ldots & \cdots & 0 \\
0 & -1 & 0 & 1 & 0 & \cdots & 0 \\
\vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots \\
0 & \ldots & 0 & -1 & 0 & 1 & 0 \\
0 & \cdots & \cdots & 0 & -1 & 0 & 1 \\
0 & \cdots & \cdots & \cdots & 0 & -1 & 0
\end{array}\right) \quad J=\left(\begin{array}{c}
1 \\
2 \\
3 \\
\vdots \\
N-2 \\
N-1 \\
N
\end{array}\right) .
$$

- One deduce the following expression for ϕ_{N} :

$$
\phi_{N}^{2}=\langle A \phi, \phi\rangle-\frac{\lambda}{4}\langle B \phi, \phi\rangle-\frac{h}{4}\left(4 \phi_{1}^{2}+4 \phi_{N}^{2}-\phi_{1} \phi_{2}-\phi_{N-1} \phi_{N}\right) .
$$

Low eigenvectors observability

Some discrete "derivation" formula

Lemma

With the above notation we have that

1. $A=D_{1 b} D_{3}+M_{1}$,
2. $D_{3}=D_{1 b}^{\prime} B+M_{2}$,
3. $B=D_{1 b} D_{1 b}^{\prime}+M_{3}$,
4. $D_{1 b}^{\prime}(v \cdot w)=D_{1 b}^{\prime} v \cdot w+S_{0}^{\prime} v \cdot D_{1 b}^{\prime} w$, for every vectors $v, w \in \mathbb{R}^{N}$, where

$$
\begin{equation*}
S_{0}=\mathcal{I}-D_{1 b}, \tag{1}
\end{equation*}
$$

where \mathcal{I} denotes the identity matrix in $\mathcal{M}_{N}(\mathbb{R})$.

$$
M_{1}=\left(\begin{array}{rrrr}
4 & -1 & \ldots & 0 \\
0 & 0 & \ldots & 0 \\
\vdots & \ddots & \ddots & \vdots \\
0 & \ldots & 0 & 0
\end{array}\right), \quad M_{2}=\left(\begin{array}{ccc}
0 & \ldots & 0 \\
0 & \ldots & 0 \\
\vdots & \ddots & \vdots \\
0 & 0 & 2
\end{array}\right), \quad M_{3}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 0 \\
\vdots & \ddots & \vdots \\
0 & \ldots & 0
\end{array}\right) .
$$

Gap property and Ingham's inequality

Proposition

Let $T>0$. There exist $N_{0}, n_{T} \in \mathbb{N}^{*}$ such that, for any $N \geq N_{0}$, the eigenvalues λ_{n} of the matrix A verify

$$
\begin{equation*}
\sqrt{\lambda_{n+1}}-\sqrt{\lambda_{n}} \geq \frac{2 \pi}{T} h^{2} \quad\left(n_{T} \leq n \leq N-n_{T}\right) \tag{2}
\end{equation*}
$$

Conclusion of the proof follows by:

$$
-\binom{Y_{h}(t)}{\dot{Y}_{h}(t)}=\sum_{1 \leq|n| \leq \gamma N} a_{n} e^{-i \operatorname{sgn}(n) \frac{\sqrt{\lambda_{|n|}}}{h^{2}} t} \Phi^{n}
$$

- a Ingham's type inequality:

$$
\sum_{1 \leq|n| \leq \gamma N}\left|a_{n}\right|^{2}\left|\frac{\phi_{N}^{|n|}}{\sqrt{\lambda_{|n|}}}\right|^{2} \leq K^{\prime} \int_{0}^{T}\left|\sum_{1 \leq|n| \leq \gamma N} a_{n} e^{-i \operatorname{sgn}(n) \frac{\sqrt{\lambda_{|n|}}}{h^{2}}} t \frac{\phi_{N}^{|n|}}{\sqrt{\lambda_{|n|}}}\right|^{2} d t .
$$

Numerical simulations

- We approach the discrete controls v_{h} minimising the functional

$$
J(v)=\int_{0}^{T} r(t)|v(t)|^{2} d t
$$

where $r \in C^{\infty}(0, T)$ is given by

$$
r(t)= \begin{cases}0 & \left(t \in\left(0, \frac{\alpha}{2}\right) \cup\left(T-\frac{\alpha}{2}, T\right)\right) \\ 1 & (t \in(\alpha, T-\alpha)) .\end{cases}
$$

- A classical conjugate gradient algorithm is used to minimise the dual functional J^{\star}.
- Newmark method is employed for the time discretization with a discretization step Δt small enough.

Numerical simulations

A first example

$$
u_{0}(x)=\sin ^{2}(\pi x), \quad u_{1}(x)=0 \quad(x \in(0,1))
$$

Numerical simulations

A first example

$$
u_{0}(x)=\sin ^{2}(\pi x), \quad u_{1}(x)=0 \quad(x \in(0,1))
$$

Figure: Control $v_{h}(t)$

Numerical simulations

A first example

$$
u_{0}(x)=\sin ^{2}(\pi x), \quad u_{1}(x)=0 \quad(x \in(0,1))
$$

Figure: Control solution.

Numerical simulations

A more oscillating example

$$
u_{0}(x)=\sin ^{2}(2 \pi x), \quad u_{1}(x)=0 \quad(x \in(0,1))
$$

Numerical simulations

A more oscillating example

Numerical simulations

A highly oscillating example

$$
\begin{aligned}
& u_{0}(x)=\mathbb{1}_{\left(\frac{1}{4}, \frac{3}{4}\right)}(x), \quad u_{1}(x)=0 \quad(x \in(0,1)) . \\
& u_{0}^{\gamma}=\sum_{n=1}^{[\gamma N]}\left\langle u_{0}, \phi^{n}\right\rangle_{0} \phi^{n} \in \mathbb{C}^{N} .
\end{aligned}
$$

Numerical simulations

Number of iterations needed for the CG to converge

	$\gamma=0.1$	$\gamma=0.5$	$\gamma=0.9$	$\gamma=1$
$N=25$	4	6	12	29
$N=50$	4	6	15	52
$N=100$	4	6	17	87
$N=200$	4	6	20	168
$N=400$	4	6	19	321

Table: Number of iterations needed for the convergence of the conjugate gradient algorithm for initial data ($u_{0}^{\gamma}, 0$) and different values of N.

Figure: Controls obtained for $N=400$ and different values of γ.

Numerical simulations

Energy of controlled solutions

Figure: Energy of controlled solutions corresponding to u_{0}^{γ} for different values of γ and $N=400$.

Conclusion and perspectives

Conclusion:

- We proved that the observability inequality associated to a finite-differences semi-discretization of the clamped beam equation holds uniformly for filtered initial data;
- The filtration threshold is sharp.
- A precise analysis of the spectral properties of the discrete operator was needed.

Perspectives:

- two-dimensional case?
- other less academic numerical schemes?

Conclusion and perspectives

Conclusion:

- We proved that the observability inequality associated to a finite-differences semi-discretization of the clamped beam equation holds uniformly for filtered initial data;
- The filtration threshold is sharp.
- A precise analysis of the spectral properties of the discrete operator was needed.

Perspectives:

- two-dimensional case?
- other less academic numerical schemes?

Thank you for the attention!

