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Controllability of the Euler-Bernoulli beam equation
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We consider the following clamped beam equation :
ü(x, t) + ∂4xu(x, t) = 0, (0, 1)× (0, T )
u(0, t) = u(1, t) = 0, t ∈ (0, T )
∂xu(0, t) = 0, ∂xu(1, t) = v(t), t ∈ (0, T )
u(x, 0) = u0(x), u̇(x, 0) = u1(x), x ∈ (0, 1).

(CS)

I T > 0

I u0 ∈ L2(0, 1)

I u1 ∈ H−2(0, 1)
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Definition

We say that the beam equation (CS) is null controllable in time
T > 0, if for every initial data (u0, u1) ∈ L2(0, 1)×H−2(0, 1)
there exists a control v ∈ L2(0, T ) such that

u(·, T ) = u̇(·, T ) = 0.
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We consider the following hinged beam equation :
ü(x, t) + ∂4xu(x, t) = 0, (0, 1)× (0, T )
u(0, t) = u(1, t) = 0, t ∈ (0, T )
∂2xu(0, t) = 0, ∂2xu(1, t) = v(t), t ∈ (0, T )
u(x, 0) = u0(x), u̇(x, 0) = u1(x), x ∈ (0, 1).

(CS)

I T > 0

I u0 ∈ H1
0 (0, 1)

I u1 ∈ H−1(0, 1)

Definition

We say that the beam equation (CS) is null controllable in time
T > 0, if for every initial data (u0, u1) ∈ H1

0 (0, 1)×H−1(0, 1)
there exists a control v ∈ L2(0, T ) such that

u(·, T ) = u̇(·, T ) = 0.



Observability of the beam equation

In order to define the dual observability concept, we consider the
following homogeneous clamped beam equation :

ÿ(x, t) + ∂4xy(x, t) = 0, (0, 1)× (0, T )
y(0, t) = y(1, t) = 0, t ∈ (0, T )
∂xy(0, t) = ∂xy(1, t) = 0, t ∈ (0, T )
y(x, 0) = y0(x), ẏ(x, 0) = y1(x), x ∈ (0, 1).

(S)
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y(x, 0) = y0(x), ẏ(x, 0) = y1(x), x ∈ (0, 1).

(S)
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Definition

We say that the beam equation (S) is exactly observable in time
T > 0, if there exists a constant KT > 0 such that for every initial
data (y0, y1) ∈ H2

0 (0, 1)× L2(0, 1) the solution y satisfies

‖y0‖2H2
0 (0,1)

+ ‖y1‖2L2(0,1) ≤ KT

∫ T

0
|∂2xy(1, t)|2dt (OBS)
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y(x, 0) = y0(x), ẏ(x, 0) = y1(x), x ∈ (0, 1).

(S)
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Observability of the beam equation

In order to define the dual observability concept, we consider the
following homogeneous hinged beam equation :
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Definition

We say that the beam equation (S) is exactly observable in time
T > 0, if there exists a constant KT > 0 such that for every initial
data (y0, y1) ∈ H1

0 (0, 1)×H−1(0, 1) the solution y satisfies
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0
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x0 = 0 xN+1 = 1

xj = jhN discretization points in (0, 1)

h =
1

N + 1
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x0 = 0 xN+1 = 1

xj = jhN discretization points in (0, 1)

h =
1

N + 1

∂4xu(xj , t) ≈
u(xj−2, t)− 4u(xj−1, t) + 6u(xj , t)− 4u(xj+1, t) + u(xj+2, t)

h4
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A =



7 −4 1 0 . . . . . . . . . . . . 0
−4 6 −4 1 0 . . . . . . . . . 0

1 −4 6 −4 1 0 . . . . . . 0
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. . .
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The following semi-discrete finite-dimensional system is an
approximation of the clamped beam equation (CS)

Üh(t) +AhUh(t) = Fh(t), t ∈ (0, T )

Uh(0) = U0
h , U̇h(0) = U1

h ,

(CSh)

where Ah =
1

h4
A and

U ih =


ui1
ui2
...
uiN

, Uh(t) =


u1(t)
u2(t)

...
uN (t)

 Fh(t) = − 1
h3


0
0
...

vh(t)

.

Discrete controllability problem

For a given time T > 0 and for every initial data
(U0

h , U
1
h) ∈ CN × CN find a control vh ∈ L2(0, T ) such that

Uh(T ) = U̇h(T ) = 0.
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uiN

, Uh(t) =


u1(t)
u2(t)

...
uN (t)

 Fh(t) = − 1
h2


0
0
...

vh(t)

.

Discrete controllability problem

For a given time T > 0 and for every initial data
(U0

h , U
1
h) ∈ CN × CN find a control vh ∈ L2(0, T ) such that
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A uniform observability inequality?

Aim: to study the discrete observability property corresponding
to the controlled problem (CSh) which reads as follows: there
exists a constant Kh such that the following inequality holds

‖Y 0
h ‖22 + ‖Y 1

h ‖20 ≤ Kh

∫ T

0

∣∣∣∣YhN (t)

h2

∣∣∣∣2 dt, (OBSh)

for any

(
Y 0
h

Y 1
h

)
∈ C2N , where

(
Yh
Ẏh

)
is the solution of the following

semi-discretization of (S)
Ÿh(t) +AhYh(t) = 0, t ∈ (0, T )

Yh(0) = Y 0
h , Ẏh(0) = Y 1

h .

(Sh)
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Ẏh

)
is the solution of the following

semi-discretization of (S)
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hinged
beam

Question

The constant Kh is uniformly bounded w.r.t. h?



The case of the hinged beam equation

L. León, E. Zuazua, Boundary controllability of the
finite-difference space semi-discretizations of the beam equation.
ESAIM COCV, 2002, 8, 827-862.

I explicit form of the eigenvalues and eigenvectors of the
matrix A

I Ingham’s inequality
⇒ uniform observability

I filtering of the high-frequencies at the level γh−4 for γ ∈ (0, 1)
I adding an extra boundary control acting on 0.
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I.F. Bugariu, S. Micu,; I. Rovenţa, Approximation of the
controls for the beam equation with vanishing viscosity. Math.
Comp. 85 (2016), no. 301, 2259–2303.

I adding a viscous term of the form εAhẎh
with ε ∈ ( h

2

2T ln(h−1), h)

I moment method

⇒ uniform controllability



The case of the clamped beam equation

Theorem (NC, S. Micu, I.Rovenţa)

Let T > 0 and γ ∈ (0, 1). There exists N0 ∈ N such that for every
N ≥ N0 the observability inequality (OBSh) holds, with a positive
constant K independent of h, for every solution of (S) with initial
data in the space Ch(γ). Moreover,

lim
h→∞

sup


‖Y 0

h ‖22 + ‖Y 1
h ‖20∫ T

0

∣∣∣∣YhN (t)

h2

∣∣∣∣2 dt
∣∣∣∣∣∣∣∣∣
(
Y 0
h

Y 1
h

)
∈ C2Nand(

Yh
Ẏh

)
solution of (Sh)

 =∞.
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(
Y 0
h

Y 1
h

)
=

∑
1≤|n|≤γN

anΦn, (an)1≤|n|≤γN ⊂ C

 .
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Ch(γ) =


(
Y 0
h

Y 1
h

)
=

∑
1≤|n|≤γN

anΦn, (an)1≤|n|≤γN ⊂ C

 .

Φn =

(
h2√
λ|n|

−sgn(n) i

)
φ|n|Aφn = λnφ

n



Comments and references

I Case of the hinged beam equation
ü(x, t) + ∂4xu(x, t) = 0, (0, 1)× (0, T )
u(0, t) = u(1, t) = 0, t ∈ (0, T )
∂2xu(0, t) = 0, ∂2xu(1, t) = v(t), t ∈ (0, T )
u(x, 0) = u0(x), u̇(x, 0) = u1(x), x ∈ (0, 1).

L. León, E. Zuazua

I.F. Bugariu, S. Micu, I. Rovenţa

I Abstract systems case

S. Ervedoza, Spectral conditions for admissibility and
observability of wave systems: applications to finite element
schemes. Numer. Math., 2009, 113, 377-415
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I Abstract systems case

S. Ervedoza, Spectral conditions for admissibility and
observability of wave systems: applications to finite element
schemes. Numer. Math., 2009, 113, 377-415
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similar results for hinged and clamped beam

filtering at the range Ch−
4
3
+ε



Idea of the proof
Spectral properties of the matrix A

Proposition

The matrix A has only real eigenvalues (λn)1≤n≤N ⊂ (0, 16) and
there exists an orthonormal basis in CN (with respect to the
canonical inner product 〈·, ·〉0) consisting of eigenvectors
(φn)1≤n≤N of A.
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A =



7 −4 1 0 . . . . . . . . . . . . 0
−4 6 −4 1 0 . . . . . . . . . 0

1 −4 6 −4 1 0 . . . . . . 0
0 1 −4 6 −4 1 0 . . . 0
...

. . .
. . .

. . .
. . .

. . .
. . .

. . .
...

0 . . . 0 1 −4 6 −4 1 0
0 . . . . . . 0 1 −4 6 −4 1
0 . . . . . . . . . 0 1 −4 6 −4

0 . . . . . . . . . . . . 0 1 −4 7
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hinged beam

λn = 16 sin4

(
nπh

2

)
φnj = sin(jnπh)



Idea of the proof
Spectral properties of the matrix A
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Proposition

With the above notation, λ is a eigenvalue of the matrix A if and only if verifies one of the
following relations

cos ((N + 1) arg(X4)) =
8XN+1

1 −
√
λX

2(N+1)
1 −

√
λ

2
(
2X

2(N+1)
1 −

√
λXN+1

1 + 2
) , sin((N+1) arg(X4)) > 0,

or

cos ((N + 1) arg(X4)) =
8XN+1

1 +
√
λX

2(N+1)
1 +

√
λ

2
(
2X

2(N+1)
1 +

√
λXN+1

1 + 2
) , sin((N+1) arg(X4)) < 0,

where for each j ∈ {1, 2, 3, 4} the numbers Xj are given by

X1,2 =
2 +
√
λ±

√
(2 +

√
λ)2 − 4

2
, X3,4 =

2−
√
λ± i

√
4− (2−

√
λ)2

2
.



The proof of the proposition is somehow similar the same as for
the discrete Laplacian in the the book of Keller and Isaacson:

I n-th line of linear system Aφ = λφ

φn+2 − 4φn+1 + (6− λ)φn − 4φn−1 + φn−2 = 0

I Xi (i ∈ {1, 2, 3, 4}) are the solutions of

x4 − 4x3 + (6− λ)x2 − 4x+ 1 = 0.

I components of the eigenvector φ write as

φn = C1X
n
1 + C2X

n
2 + C3X

n
3 + C4X

n
4

I boundary conditions on φ

φ0 = φN+1 = 0

φ−1 = φ1, φN = φN+2
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C1 + C2 + C3 + C4 = 0

R+C1 − R+C2 + iR−C3 − iR−C4 = 0

XN+1
1 C1 + XN+1

2 C2 + XN+1
3 C3 + XN+1

4 C4 = 0

XN+1
1 R+C1 − XN+1

2 R+C2 + iXN+1
3 R−C3 − iXN+1

4 R−C4 = 0.

From the first two equations we extract

C3 = −1

2

(
1− iR+

R−

)
C1 −

1

2

(
1 + i

R+

R−

)
C2,

C4 = −1

2

(
1 + i

R+

R−

)
C1 −

1

2

(
1− iR+

R−

)
C2,

and from the last two equations

C3 = −1

2

(
1− iR+

R−

)
XN+1

1

XN+1
3

C1 −
1

2

(
1 + i

R+

R−

)
XN+1

2

XN+1
3

C2,

C4 = −1

2

(
1 + i

R+

R−

)
XN+1

1

XN+1
4

C1 −
1

2

(
1− iR+

R−

)
XN+1

2

XN+1
4

C2,
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Idea of the proof
Spectral properties of the matrix A

I any number λ ∈ (0, 16) can be written as

λ = 16 sin4

(
hz

2

)
for some z ∈

(
0, πh

)
and, hence, arg(X4) = 2π − zh.

I the new variable z satisfies the equations

f±(z) :=g±(z)− 2
(
1− sin4

(
hz
2

))
rN+1(z)

r2(N+1)(z)∓ 2 sin2
(
hz
2

)
rN+1(z) + 1

= 0,

where

g±(z) = cos(z)± sin2(
zh

2
).

r(z) = 1 + 2 sin2

(
zh

2

)
+ 2

√
sin2

(
zh

2

)(
1 + sin2

(
zh

2

))
.
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Characterization of the high-frequencies

0 2010 305 15 25 35
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Figure: Solutions zn of equations g±(z) = 0 for N = 10.

g±(z) = cos(z)± sin2(
zh

2
).
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N. Ĉındea Numerical approximation of boundary controls for beam equations 16/31

zn zn+1 zN

|g±(z)| > C1hδ
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zn zn+1 zN

|g±(z)| > C1hδ

|f±(z)− g±(z)| ≤ C1hδ

2
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zn zn+1 zN

|g±(z)| > C1hδ

|f±(z)− g±(z)| ≤ C1hδ

2

By Rouché’s Theorem, if N and n are large enough,
the zeros y±n of f± are close to zeros z±n of g±.



Proposition (NC, S. Micu, I. Rovenţa)

Let % > 1. There exists δ0 > 0 such that, for each δ ∈ (0, δ0),
there exists N0(δ) ∈ N∗ with the property that the eigenvalues
(λn)% lnN≤n≤N of the matrix A ∈MN (R) with N ≥ N0(δ) are
given by

λn =

 16 sin4
(
y+k h

2

)
if n = 2k + 2,

16 sin4
(
y−k h
2

)
if n = 2k + 1,

where y+k and y−k are zeros of the functions f+ and f−.
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Observability of the high-order eigenvectors

Theorem (N.C., S. Micu, I. Rovenţa)

Let σ ∈ (0, 1). There exist K > 0 and N0 ∈ N∗ such that, for each
N ≥ N0 and each λ eigenvalue of the matrix A with the property
that λ ∈ (σ, 16− σ), the corresponding normalized eigenvector
φ = (φk)1≤k≤N ∈ RN has the following property

|φN | > K
√
λ.

Moreover, if φN ∈ RN is the eigenvector corresponding to the last
eigenvalue λN , we have that

|φNN |√
λN

= O(h).
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Observability of the high-order eigenvectors
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φk = C1X
k
1 + C2X

k
2 + C3X

k
3 + C4X

k
4

C1 =
C

XN+1
1 r1N

, C2 = − C
XN+1

2 r2N

C3 = −αC1

(
X1

X3

)N+1

− β C2

(
X2

X3

)N+1

C4 = −β C1

(
X1

X4

)N+1

− αC2

(
X2

X4

)N+1

α =
1

2

1− i

√
(2 +

√
λ)2 − 4√

4− (2−
√
λ)2

 , β =
1

2

1 + i

√
(2 +

√
λ)2 − 4√

4− (2−
√
λ)2


rjN =

√√√√((X4

Xj

)N+1

− 1

)((
X3

Xj

)N+1

− 1

)
(j ∈ {1, 2})



Observability of the high-order eigenvectors
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Lemma

There exists N0 ∈ N∗ such that for each N > N0 and any
eigenvalue λ of the matrix A with the property that
λ ≥ (3h lnN)4 the following estimates hold:

1

XN+1
1

= o(1)
√
λ,

|1− r1N | ≤
(

1

X1

)N+1

,

r2N ≥ XN+1
1 − 1.



Observability of the high-order eigenvectors

Figure: Evolution of the quantity
(φNN )2

λN
as a function of h.
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Characterisation of low eigenvalues and eigenvectors

Proposition

Let ε ∈ (0, 2). There exist N0 > 0 and d > 0 such that, for each
N ≥ N0, the following estimate holds:

1

h2

∣∣∣√λn+1 −
√
λn

∣∣∣ ≥ dn (
1 ≤ n ≤ N 1

6
(2−ε)

)
.

Proposition

Let N ∈ N∗, σ ∈ (0, 1) and φ = (φk)1≤k≤N be the normalized
eigenvector of A corresponding to the eigenvalue λ ∈ (0, 16− σ).
Then there exists a constant K > 0, independent of N and λ,
such that the following estimate holds

|φN | ≥ K
√
λ.
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Low eigenvalues distribution

I Let (Ã,D(Ã)) be the operator in L2(0, 1) associated to the
clamped beam equation

Ã u = ∂4xu (u ∈ D(Ã)), D(Ã) = H4(0, 1) ∩H2
0 (0, 1).

I Ã has a sequence of simple eigenvalues (λ̃n)n≥1:

λ̃n =

(
n+

1

2

)4

π4 + υn (n ≥ 1),

where (υn)n≥1 is a sequence converging exponentially to zero.

I Let ε ∈ (0, 2). There exist N0 > 0 and C > 0 such that, for
each N ≥ N0, the following estimate holds:∣∣∣∣λ̃n − λn

h4

∣∣∣∣ ≤ Chε (
1 ≤ n ≤ N 1

6
(2−ε)

)
.
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I Let (Ã,D(Ã)) be the operator in L2(0, 1) associated to the
clamped beam equation
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Low eigenvectors observability

I We employ a discrete multiplier method:

Aφ = λφ | · J.D1cφ,

where

D1c =



0 1 0 . . . . . . . . . 0
−1 0 1 0 . . . . . . 0

0 −1 0 1 0 . . . 0
...

. . .
. . .

. . .
. . .

. . .
...

0 . . . 0 −1 0 1 0
0 . . . . . . 0 −1 0 1
0 . . . . . . . . . 0 −1 0


J =



1
2
3
...

N − 2
N − 1
N


.

I One deduce the following expression for φN :

φ2N = 〈Aφ, φ〉−λ
4
〈Bφ, φ〉−h

4

(
4φ21 + 4φ2N − φ1φ2 − φN−1φN

)
.
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Low eigenvectors observability
Some discrete ”derivation” formula

Lemma

With the above notation we have that

1. A = D1bD3 +M1,

2. D3 = D′1bB +M2,

3. B = D1bD
′
1b +M3,

4. D′1b(v.w) = D′1bv.w + S′0v.D
′
1bw, for every vectors

v, w ∈ RN , where
S0 = I −D1b, (1)

where I denotes the identity matrix in MN (R).

M1 =


4 −1 . . . 0
0 0 . . . 0
...

. . .
. . .

...
0 . . . 0 0

 , M2 =


0 . . . 0
0 . . . 0
...

. . .
...

0 0 2

 , M3 =


1 0 0
0 0 0
...

. . .
...

0 . . . 0

 .
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Gap property and Ingham’s inequality

Proposition

Let T > 0. There exist N0, nT ∈ N∗ such that, for any N ≥ N0,
the eigenvalues λn of the matrix A verify√

λn+1 −
√
λn ≥

2π

T
h2 (nT ≤ n ≤ N − nT ) . (2)

Conclusion of the proof follows by:

I

(
Yh(t)

Ẏh(t)

)
=

∑
1≤|n|≤γN

ane
−i sgn(n)

√
λ|n|
h2

tΦn.

I a Ingham’s type inequality:

∑
1≤|n|≤γN

|an|2
∣∣∣∣∣ φ|n|N√λ|n|

∣∣∣∣∣
2

≤ K ′
∫ T

0

∣∣∣∣∣∣
∑

1≤|n|≤γN

ane
−i sgn(n)

√
λ|n|
h2

t φ
|n|
N√
λ|n|

∣∣∣∣∣∣
2

dt.
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Numerical simulations

I We approach the discrete controls vh minimising the
functional

J(v) =

∫ T

0
r(t)|v(t)|2dt

where r ∈ C∞(0, T ) is given by

r(t) =

{
0 (t ∈ (0, α2 ) ∪ (T − α

2 , T ))
1 (t ∈ (α, T − α)).

I A classical conjugate gradient algorithm is used to minimise
the dual functional J?.

I Newmark method is employed for the time discretization with
a discretization step ∆t small enough.
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Numerical simulations
A first example
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u0(x) = sin2(πx), u1(x) = 0 (x ∈ (0, 1))

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

Time (t)

C
on
tr
ol

(v
h
(t
))

Figure: Control vh(t)
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A first example
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u0(x) = sin2(πx), u1(x) = 0 (x ∈ (0, 1))
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Numerical simulations
A more oscillating example
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Numerical simulations
A highly oscillating example

u0(x) = 1( 1
4
, 3
4)(x), u1(x) = 0 (x ∈ (0, 1)).

uγ0 =

[γN ]∑
n=1

〈u0, φn〉0φn ∈ CN .

0 0.2 0.4 0.6 0.8 1
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0
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0.8

1

1.2

x

u
0γ
(x

)

 

 

γ=0.1

γ=0.5

γ=0.9

γ=1
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Numerical simulations
Number of iterations needed for the CG to converge

γ = 0.1 γ = 0.5 γ = 0.9 γ = 1

N = 25 4 6 12 29
N = 50 4 6 15 52
N = 100 4 6 17 87
N = 200 4 6 20 168
N = 400 4 6 19 321

Table: Number of iterations needed for the convergence of the conjugate
gradient algorithm for initial data (uγ0 , 0) and different values of N .
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Figure: Controls obtained for N = 400 and different values of γ.
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Numerical simulations
Energy of controlled solutions
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Figure: Energy of controlled solutions corresponding to uγ0 for different
values of γ and N = 400.
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Conclusion and perspectives

Conclusion:

I We proved that the observability inequality associated to a
finite-differences semi-discretization of the clamped beam
equation holds uniformly for filtered initial data;

I The filtration threshold is sharp.

I A precise analysis of the spectral properties of the discrete
operator was needed.

Perspectives:

I two-dimensional case?

I other less academic numerical schemes?

N. Ĉındea Numerical approximation of boundary controls for beam equations 31/31



Conclusion and perspectives

Conclusion:

I We proved that the observability inequality associated to a
finite-differences semi-discretization of the clamped beam
equation holds uniformly for filtered initial data;

I The filtration threshold is sharp.

I A precise analysis of the spectral properties of the discrete
operator was needed.

Perspectives:

I two-dimensional case?

I other less academic numerical schemes?
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Thank you for the attention!
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