On the stabilization of the incompressible Navier-Stokes equations in a 2d channel with a normal control

#### Sylvain Ervedoza Joint Work with Shirshendu Chowdhury and Jean-Pierre Raymond

Institut de Mathématiques de Toulouse & CNRS

Valenciennes July 7, 2016

## Outline







Sylvain Ervedoza

July 2016 Stabilization in a channel

#### Outline



#### 2 Strategy



Incompressible Navier-Stokes equations in a 2-d channel:

$$\Omega = \mathbb{T} imes (0, 1)$$
, where  $\mathbb{T} = \mathbb{R}/2\pi\mathbb{Z}$ .

$$\begin{cases} \partial_t u + (u \cdot \nabla)u - \Delta u + \nabla p = 0, & \text{in } (0, \infty) \times \Omega, \\ \text{div } u = 0, & \text{in } (0, \infty) \times \Omega, \\ u(t, x_1, 0) = (0, 0), & \text{on } (0, \infty) \times \mathbb{T}, \\ u(t, x_1, 1) = (0, \mathbf{v}(t, x_1)), & \text{on } (0, \infty) \times \mathbb{T}, \\ u(0, x_1, x_2) = u^0(x_1, x_2), & \text{in } \Omega. \end{cases}$$

• 
$$u = u(t, x_1, x_2) \in \mathbb{R}^2$$
 is the velocity.

- $p = p(t, x_1, x_2)$  is the pressure.
- v = v(t, x<sub>1</sub>) is the control function, acting on the normal component only.

Choose v to stabilize the state u.

Setting Result

#### Motivation and related topics

Motivation: Controllability/Stabilization of fluid-structure models with controls acting on the structure. See Lions Zuazua '95, Osses Puel '99, '09, Lequeurre '13, ...

Related topics:

- Controllability of incompressible Navier-Stokes equations.... Fursikov Imanuvilov '96, Fernandez-Cara Guerrero Imanuvilov Puel '04, ...
- ... with controls having zero components: Coron Guerrero '09, Carreno Guerrero '13, Coron Lissy '15,...
- Coupled parabolic systems with one boundary control: Ammar-Khodja Benabdallah Gonzalez-Burgos de Teresa '11, Duprez Lissy '15...
- Stabilization for incompressible Navier-Stokes equations: Krstic et al '01, Raymond '06, Barbu '07, Triggiani '07, Vazquez Coron Trélat '08, Munteanu '12,...

#### To be more precise....

Our goal

Get a local stabilization result around the state (u, p) = (0, 0).

#### Linearized equations:

$$\left\{ \begin{array}{ll} \partial_t u - \Delta u + \nabla p = 0, & \text{ in } (0, \infty) \times \Omega, \\ \operatorname{div} u = 0, & \operatorname{in } (0, \infty) \times \Omega, \\ u(t, x_1, 0) = (0, 0), & \text{ on } (0, \infty) \times \mathbb{T}, \\ u(t, x_1, 1) = (0, v(t, x_1)), & \text{ on } (0, \infty) \times \mathbb{T}, \\ u(0, x_1, x_2) = u^0(x_1, x_2), & \text{ in } \Omega, \end{array} \right.$$

???  $\rightsquigarrow$  The linearized equations are already stable! Taking v = 0,

$$rac{d}{dt}\left(rac{1}{2}\int_{\Omega}|u(t,x)|^2\,dx
ight)+\int_{\Omega}|
abla u(t,x)|^2\,dx=0.$$

→ Exponential decay like  $t \mapsto \exp(-\pi^2 t)$  ! (also true for the non-linear model).

Sylvain Ervedoza

Part 2

#### To be more precise....

Get a local stabilization result around the state (u, p) = (0, 0)At an exponential rate larger than  $\pi^2$ .

Linearized equations:

$$\left\{ \begin{array}{ll} \partial_t u - \Delta u + \nabla p = 0, & \text{ in } (0, \infty) \times \Omega, \\ \operatorname{div} u = 0, & \operatorname{in } (0, \infty) \times \Omega, \\ u(t, x_1, 0) = (0, 0), & \text{ on } (0, \infty) \times \mathbb{T}, \\ u(t, x_1, 1) = (0, v(t, x_1)), & \text{ on } (0, \infty) \times \mathbb{T}, \\ u(0, x_1, x_2) = u^0(x_1, x_2), & \text{ in } \Omega, \end{array} \right.$$

Difficulty:

div 
$$u = 0$$
 in  $(0,\infty) \times \Omega \Rightarrow \int_{\mathbb{T}} v(t,x_1) dx_1 = 0$  for all  $t > 0$ .

Setting Result

## To be more precise....

The 0-mode:

$$u_0(t,x_2) = \int_{\mathbb{T}} u(t,x_1,x_2) \, dx_1$$

satisfies the uncontrolled heat equation

$$\begin{cases} \partial_t u_{0,1} - \partial_{22} u_{0,1} = 0, & \text{in } (0,\infty) \times (0,1), \\ u_{0,1}(t,0) = u_{0,1}(t,1) = 0, & \text{on } (0,\infty), \\ u_{0,2}(t,x_2) = 0, & \text{in } (0,\infty) \times (0,1). \end{cases}$$

#### Consequence

The solutions of the linearized equations decay like  $\exp(-\pi^2 t)$  and, considering

$$u(t,x) = e^{-\pi^2 t} \Psi_0(x_2)$$
 with  $\Psi_0 = \Psi_0(x_2) = \sqrt{\frac{2}{\pi}} \begin{pmatrix} \sin(\pi x_2) \\ 0 \end{pmatrix}$ ,

this decay estimate is sharp whatever the control v is.

Sylvain Ervedoza

Part 3

#### Main result

#### Theorem (S. Chowdhury, S.E., J.-P. Raymond 2016)

Let  $\omega_0 > 0$  be such that  $0 < \omega_0 < 4\pi^2$ . There exists  $\gamma > 0$  such that for all  $u_0 \in \mathbf{V}_0^1(\Omega)$  with  $\|u_0\|_{\mathbf{V}_0^1(\Omega)} \le \gamma$ , there exists  $v \in L^2((0,\infty) \times \mathbb{T})$  satisfying  $\int_{\mathbb{T}} v(t, x_1) dx_1 = 0$  for all t > 0 such that the solution (u, p) of the incompressible Navier-Stokes equation satisfies, for some constant C > 0 independent of t,

$$orall t \geq 0, \quad \|u(t)\|_{\mathbf{V}^1(\Omega)} \leq C e^{-\omega_0 t}.$$

$$\begin{aligned} \mathbf{V}^{1}(\Omega) &= \left\{ u = (u_{1}, u_{2}) \in H^{1}(\Omega) \times H^{1}(\Omega) \mid \text{div } u = 0 \right\}, \\ \mathbf{V}^{1}_{0}(\Omega) &= \left\{ u \in \mathbf{V}^{1}(\Omega) \mid u(x_{1}, 0) = u(x_{1}, 1) = 0 \text{ for } x_{1} \in \mathbb{T} \right\}. \end{aligned}$$

## Comments

- Straightforward when ω < π<sup>2</sup>
   → Interesting case ω ∈ (π<sup>2</sup>, 4π<sup>2</sup>).
- $4\pi^2$  is the second eigenvalue of the elliptic operator generating the heat equation satisfied by the 0-mode:

$$\begin{cases} \partial_t u_{0,1} - \partial_{22} u_{0,1} = 0, & \text{in } (0, \infty) \times (0, 1), \\ u_{0,1}(t, 0) = u_{0,1}(t, 1) = 0, & \text{on } (0, \infty), \\ u_{0,2}(t, x_2) = 0, & \text{in } (0, \infty) \times (0, 1). \end{cases}$$

The stabilization result cannot be true for the linearized model
 ⇒ We have to use the non-linearity to improve the
 exponential decay.
 Strategy based on the so-called Power Series Expansion:
 see Coron Crépeau '04, Cerpa '07, Cerpa Crépeau '09, Coron
 Rivas '15.

#### Outline







Sylvain Ervedoza

< □ > < □ > < □ > < □</p>

# Strategy

문 🛌 문

Write 
$$u = \varepsilon \alpha + \varepsilon^2 \beta$$
,  $v = \varepsilon v_1 + \varepsilon^2 v_2$ , with

$$\begin{cases} \partial_t \alpha - \Delta \alpha + \nabla p_1 = 0, & \text{in } (0, \infty) \times \Omega, \\ \operatorname{div} \alpha = 0, & \operatorname{in } (0, \infty) \times \Omega, \\ \alpha(t, x_1, 0) = (0, 0), & \text{on } (0, \infty) \times \mathbb{T}, \\ \alpha(t, x_1, 1) = (0, v_1(t, x_1)), & \text{on } (0, \infty) \times \mathbb{T}, \\ \alpha(0, x_1, x_2) = \alpha^0(x_1, x_2), & \text{in } \Omega, \end{cases}$$

$$\begin{array}{ll} \partial_t \beta - \Delta \beta + \nabla p_2 = -(\alpha + \varepsilon \beta) \cdot \nabla(\alpha + \varepsilon \beta), & \text{ in } (0, \infty) \times \Omega, \\ \text{div } \beta = 0, & \text{ in } (0, \infty) \times \Omega, \\ \beta(t, x_1, 0) = (0, 0), & \text{ on } (0, \infty) \times \mathbb{T}, \\ \beta(t, x_1, 1) = (0, v_2(t, x_1)), & \text{ on } (0, \infty) \times \mathbb{T}, \\ \beta(0, x_1, x_2) = \beta^0(x_1, x_2), & \text{ in } \Omega, \end{array}$$

・ロット (日) ・ (日) ・

# Strategy

문 🛌 문

Write 
$$u = \varepsilon \alpha + \varepsilon^2 \beta$$
,  $v = \varepsilon v_1 + \varepsilon^2 v_2$ , with

$$\begin{cases} \partial_t \alpha - \Delta \alpha + \nabla p_1 = 0, & \text{in } (0, \infty) \times \Omega, \\ \text{div } \alpha = 0, & \text{in } (0, \infty) \times \Omega, \\ \alpha(t, x_1, 0) = (0, 0), & \text{on } (0, \infty) \times \mathbb{T}, \\ \alpha(t, x_1, 1) = (0, v_1(t, x_1)), & \text{on } (0, \infty) \times \mathbb{T}, \\ \alpha(0, x_1, x_2) = \alpha^0(x_1, x_2), & \text{in } \Omega, \end{cases}$$

$$\begin{cases} \partial_t \beta - \Delta \beta + \nabla p_2 = -\alpha \cdot \nabla \alpha, & \text{ in } (0, \infty) \times \Omega, \\ \operatorname{div} \beta = 0, & \operatorname{in } (0, \infty) \times \Omega, \\ \beta(t, x_1, 0) = (0, 0), & \text{ on } (0, \infty) \times \mathbb{T}, \\ \beta(t, x_1, 1) = (0, v_2(t, x_1)), & \text{ on } (0, \infty) \times \mathbb{T}, \\ \beta(0, x_1, x_2) = \beta^0(x_1, x_2), & \text{ in } \Omega, \end{cases}$$

Part 2

# Strategy

- $\alpha$  satisfies the linearized incompressible Navier-Stokes equations.
- ⇒ If  $\alpha$  contains 0-modes decaying slower than exp $(-\omega_0 t)$ , one cannot achieve an exponential decay rate  $\omega_0$ .
- ⇒ The component of the solution *u* on the eigenfunction  $\Psi_0 = \Psi_0(x_2) = \sqrt{\frac{2}{\pi}} \begin{pmatrix} \sin(\pi x_2) \\ 0 \end{pmatrix}$ • Is in  $\beta$ .
  - Should be handled by constructing a suitable  $\alpha$ .

## Preliminaries

• The Stokes operator A is self-adjoint, positive definite, with compact resolvent on the space  $\mathbf{V}_n^0(\Omega) = \left\{ u \in (L^2(\Omega))^2 \mid \text{div}(u) = 0 \text{ on } \Omega \text{ and } u \cdot n = 0 \text{ on } \Gamma \right\}$  $\Rightarrow$  Sequences of positive eigenvalues  $\lambda_1 \leq \lambda_2 \leq \cdots \rightarrow \infty$  and corresponding orthonormal basis of eigenvectors  $(\Psi_j)$ .

$$A\Psi = \lambda \Psi \Leftrightarrow \begin{cases} -\Delta \Psi + \nabla q = \lambda \Psi, & \text{in } \Omega, \\ \text{div } \Psi = 0, & \text{in } \Omega, \\ \Psi = 0, & \text{on } \Gamma, \end{cases}$$

Adjoint of the control operator:  $B^*\Psi = q(x_1, 1) - \frac{1}{2\pi} \int_{\mathbb{T}} q(x_1, 1) dx_1.$ 

# Lemma $A\Psi = \lambda \Psi$ and $B^*\Psi = 0$ imply $\Psi(x) = \Psi(x_2)$ .

Decomposition of the space  $\mathbf{V}_{n}^{0}(\Omega)$ :

- A stable space:  $\mathbf{Z}_s = \text{Span} \{ \Phi \mid A\Phi = \lambda \Phi, \text{ with } \lambda > \omega \}.$
- An unstable space:  $\mathbf{Z}_u = \mathbf{Z}_s^{\perp}$ , itself decomposed as
  - An unstable uncontrollable space  $\mathbf{Z}_{uu} = \operatorname{Span} \Psi_0$ .
  - An unstable detectable space  $\mathbf{Z}_{ud} = \mathbf{Z}_{uu}^{\perp} \cap \mathbf{Z}_{u}$ .

Corresponding (orthogonal) projections:  $\mathbb{P}_s$ ,  $\mathbb{P}_u$ ,  $\mathbb{P}_{ud}$  and  $\mathbb{P}_{uu}$ .

Part 3

## Strategy

Iterative strategy:  $(0, \infty) = \bigcup_{n \in \mathbb{N}} [nT, (n+1)T]$  for some T > 0. (T = 1).

Starting point:  $u^0 = \varepsilon \alpha^0 + \varepsilon^2 \beta^0$  with

$$\left\|\alpha^0\right\|_{\mathbf{V}_0^1(\Omega)}^2+\left\|\beta^0\right\|_{\mathbf{V}_0^1(\Omega)}\leq 1,\quad \text{ and }\quad \mathbb{P}_{uu}\alpha^0=0.$$

#### Initialization Step: On [0, T], choose

- $v_1$  such that  $\mathbb{P}_u \alpha(T) = 0$ .
- $v_2 = 0$ .

同 ト イ ヨ ト イ ヨ ト

## Strategy

Iteration step: In each time interval [nT, (n+1)T], we design controls  $v_1$  and  $v_2$  such that

 $\mathbb{P}_{u}\alpha((n+1)T) = 0$ , and  $\mathbb{P}_{u}\beta((n+1)T) = 0$ ,

where  $\beta$  is the solution of

$$\begin{cases} \partial_t \beta - \Delta \beta + \nabla p = -\alpha \cdot \nabla \alpha, & \text{in } (n) \\ \text{div } \beta = 0, & \text{in } (n) \\ \beta(t, x_1, 0) = (0, 0), & \text{on } (n) \\ \beta(t, x_1, 1) = (0, v_2(t, x_1)), & \text{on } (n) \\ \beta(nT^+, x) = \beta(nT^-, x), & \text{in } \Omega. \end{cases}$$

in 
$$(nT, (n+1)T) \times \Omega$$
,  
in  $(nT, (n+1)T) \times \Omega$ ,  
on  $(nT, (n+1)T) \times \mathbb{T}$ ,  
on  $(nT, (n+1)T) \times \mathbb{T}$ ,  
in  $\Omega$ .

Part 4

#### Key Lemma

There exist control functions  $v^a$ ,  $v^b \in H^1_0(0, T; H^2(\mathbb{T}) \cap L^2_0(\mathbb{T}))$ such that, for all  $a, b \in \mathbb{R}$ , the solution  $\alpha$  of

$$\begin{array}{ll} & (\partial_t \alpha - \Delta \alpha + \nabla p_1 = 0, & \text{in } (0, T) \times \Omega, \\ & \text{div } \alpha = 0, & \text{in } (0, T) \times \Omega, \\ & \alpha(t, x_1, 0) = (0, 0), & \text{on } (0, T) \times \mathbb{T} \\ & \alpha(t, x_1, 1) = (0, (av^a + bv^b)(t, x_1)), & \text{on } (0, T) \times \mathbb{T} \\ & \alpha(0, x) = 0, & \text{in } \Omega, \end{array}$$

satisfies  $\alpha(T) = 0$  in  $\Omega$ , and such that the solution  $\beta$  of

$$\begin{cases} \partial_t \beta - \Delta \beta + \nabla p_2 = -\alpha \cdot \nabla \alpha, & \text{in } (0, T) \times \Omega, \\ \text{div } \beta = 0, & \text{in } (0, T) \times \Omega, \\ \beta(t, x_1, 0) = \beta(t, x_1, 1) = (0, 0), & \text{on } (0, \infty) \times \mathbb{T}, \\ \beta(0, x) = 0, & \text{in } \Omega, \end{cases}$$

satisfies  $\mathbb{P}_{uu}\beta(T) = ab\Psi_0$ .

< ∃ >

## Difficulties

• Generating many trajectories for  $\alpha$  starting from 0 and ending at 0.

 $\rightsquigarrow$  Null-controllability results on the Eq. of the 1st mode.

- Generate trajectories such that  $\alpha \cdot \nabla \alpha$  allows for  $\beta$  to enter in the missing direction.
  - Specific solutions with separated variables
  - Contradiction argument.

#### Ideas of the proof: Generation of trajectories

Take

$$v^{a}(t, x_{1}) = v^{c}(t)\cos(x_{1}), \quad v^{b}(t, x_{1}) = v^{s}(t)\sin(x_{1}).$$

 $\rightsquigarrow \alpha^{\textit{a}}$  and  $\alpha^{\textit{b}}$  are supported on the first mode of the equations:

$$\alpha^{a}(t, x_1, x_2) = \begin{pmatrix} \sin(x_1)\alpha_1^{c}(t, x_2) \\ \cos(x_1)\alpha_2^{c}(t, x_2) \end{pmatrix}$$

• The equation satisfied by the first modes of the linear incompressible Stokes equations is null-controllable. ~> Proof by spectral estimates.

 $\longrightarrow$  We can generate many trajectories  $\alpha$  going from 0 to 0.

# The projection on $\Psi_0$ of the corresponding $\beta(T)$

$$e^{
u\pi^2 T}\langleeta(T),\Psi_0
angle=\pi^{5/2}\int_0^T v^s(t)q(t,1)\,dt,$$

where q is obtained by solving

$$\begin{cases} -\partial_t Z + Z - \partial_{22} Z + \begin{pmatrix} q \\ \partial_2 q \end{pmatrix} = F(t, x_2), & \text{ in } (0, T) \times (0, 1), \\ -Z_1 + \partial_2 Z_2 = 0, & \text{ in } (0, T) \times (0, 1), \\ Z(t, 0) = Z(t, 1) = (0, 0), & \text{ in } (0, T), \\ Z(T, x_2) = 0, & \text{ in } (0, 1). \end{cases}$$

with 
$$F(t, x_2) = \cos(\pi x_2)e^{\pi^2 t} \begin{pmatrix} \alpha_2^c(t, x_2) \\ \alpha_1^s(t, x_2) \end{pmatrix}$$
, depending only on  $v^a(t, x_1) = v^c(t)\cos(x_1)$ .

 $\rightsquigarrow$  Show the existence of  $v^a/v^c$  such that  $\|q(t,1)\|_{L^2(0,T)} \neq 0$ .

# Construction of $v^c$ , generation of a suitable trajectory

Roughly Notations Precise Main lemma Proof

For  $\mu \in \mathbb{R}$ , introduce  $(\alpha^*(x_2), p^*(x_2))$  solving

Introduction Strategy Further

$$\begin{cases} \mu \alpha_1^* + \alpha_1^* - \partial_{22} \alpha_1^* - p^* = 0, & \text{in } (0, 1), \\ \mu \alpha_2^* + \alpha_2^* - \partial_{22} \alpha_2^* + \partial_2 p^* = 0, & \text{in } (0, 1), \\ \alpha_1^* + \partial_2 \alpha_2^* = 0, & \text{in } (0, 1), \\ \alpha_1^* (0) = \alpha_1^* (1) = \alpha_2^* (0) = 0, & \alpha_2^* (1) = 1. \end{cases}$$

Then  $\overline{\alpha}(t, x_1, x_2) = e^{\mu t}(\sin(x_1)\alpha_1^*(x_2), \cos(x_1)\alpha_2^*(x_2)), \overline{\nu}(t) = e^{\mu t}$ , solves the linear Stokes equations.

#### Lemma

There exists a suitable  $\mu \in \mathbb{R}$  such that if  $\alpha(t) = \overline{\alpha}(t)$  on some time interval then the boundary pressure q(t, 1) given by the aforementioned process cannot be identically 0 on that time interval.

Reduction to the stationary case and numerically checked.

Sylvain Ervedoza

Construction of  $v^a/v^c$  and  $v^b/v^s$ 

Construction of  $v^a/v^c$  in 4 steps:

- On (0, T/4), control  $\alpha^a$  to go from 0 to  $\overline{\alpha}(T/4)$ .
- On (T/4, T/2), take  $v^a(t) = e^{\mu t}$  and  $\alpha^a(t) = \overline{\alpha}(t)$ . hence  $\|q(t)\|_{L^2(T/4, T/2)} \neq 0$ .
- On (T/2, 3T/4), control α<sup>a</sup> goes from α(T/2) to 0.
- On (3T/4, T), take  $v^a(t) = 0$ , and  $\alpha^a(t) = 0$ , hence q(t) = 0 on (3T/4, T).

**Construction of**  $v^b/v^s$ :

• On 
$$(0, 3T/4)$$
, take  $v^s$  such that  $\int_0^{3T/4} v^s(t)q(t, 1) dt = 1$ .  
• On  $(3T/4, T)$ , control  $\alpha^b$  to go from  $\alpha^b(3T/4)$  to 0.

🗇 🕨 🖉 🕨 🖉 💌 🖻

## Outline

#### 1 Introduction

#### 2 Strategy



Sylvain Ervedoza

## **Open Question**

• Exponential stabilization result at a rate higher than  $4\pi^2$ ?

**Difficulty:** One has to guarantee that we can enter the space of missing directions

Span 
$$\left\{ \begin{pmatrix} \sin(\pi x_2) \\ 0 \end{pmatrix}, \begin{pmatrix} \sin(2\pi x_2) \\ 0 \end{pmatrix} \right\}$$

in both directions independently.

#### This is OK !

But exponential stabilization at any given rate is open (even if probably true with our techniques...), so is the controllability of the system.

# Thank you for your attention!

# **Comments Welcome**

#### Reference:

Open loop stabilization of incompressible Navier-Stokes equations in a 2d channel using power series expansion.

S. Chowdhury, S. Ervedoza, and J.-P. Raymond, in preparation.