On the stabilization of the incompressible Navier-Stokes equations in a 2d channel with a normal control

Sylvain Ervedoza
Joint Work with
Shirshendu Chowdhury and Jean-Pierre Raymond

Institut de Mathématiques de Toulouse \& CNRS
Valenciennes
July 7, 2016

Outline

(1) Introduction
(2) Strategy
(3) Further comments

Outline

(1) Introduction
(2) Strategy
(3) Further comments

Incompressible Navier-Stokes equations in a 2-d channel:

$$
\begin{gathered}
\Omega=\mathbb{T} \times(0,1), \text { where } \mathbb{T}=\mathbb{R} / 2 \pi \mathbb{Z} . \\
\begin{cases}\partial_{t} u+(u \cdot \nabla) u-\Delta u+\nabla p=0, & \text { in }(0, \infty) \times \Omega, \\
\operatorname{div} u=0, & \text { in }(0, \infty) \times \Omega, \\
u\left(t, x_{1}, 0\right)=(0,0), & \text { on }(0, \infty) \times \mathbb{T}, \\
u\left(t, x_{1}, 1\right)=\left(0, v\left(t, x_{1}\right)\right), & \text { on }(0, \infty) \times \mathbb{T}, \\
u\left(0, x_{1}, x_{2}\right)=u^{0}\left(x_{1}, x_{2}\right), & \text { in } \Omega .\end{cases}
\end{gathered}
$$

- $u=u\left(t, x_{1}, x_{2}\right) \in \mathbb{R}^{2}$ is the velocity.
- $p=p\left(t, x_{1}, x_{2}\right)$ is the pressure.
- $v=v\left(t, x_{1}\right)$ is the control function, acting on the normal component only.

Choose v to stabilize the state u.

Motivation and related topics

Motivation: Controllability/Stabilization of fluid-structure models with controls acting on the structure. See Lions Zuazua '95, Osses Puel '99, '09, Lequeurre '13, ... Related topics:

- Controllability of incompressible Navier-Stokes equations.... Fursikov Imanuvilov '96, Fernandez-Cara Guerrero Imanuvilov Puel '04, ...
- ... with controls having zero components: Coron Guerrero '09, Carreno Guerrero '13, Coron Lissy '15, ...
- Coupled parabolic systems with one boundary control: Ammar-Khodja Benabdallah Gonzalez-Burgos de Teresa '11, Duprez Lissy '15...
- Stabilization for incompressible Navier-Stokes equations: Krstic et al '01, Raymond '06, Barbu '07, Triggiani '07, Vazquez Coron Trélat '08, Munteanu '12,...

To be more precise....

Our goal

Get a local stabilization result around the state $(u, p)=(0,0)$.
Linearized equations:

$$
\begin{cases}\partial_{t} u-\Delta u+\nabla p=0, & \text { in }(0, \infty) \times \Omega, \\ \operatorname{div} u=0, & \text { in }(0, \infty) \times \Omega, \\ u\left(t, x_{1}, 0\right)=(0,0), & \text { on }(0, \infty) \times \mathbb{T}, \\ u\left(t, x_{1}, 1\right)=\left(0, v\left(t, x_{1}\right)\right), & \text { on }(0, \infty) \times \mathbb{T}, \\ u\left(0, x_{1}, x_{2}\right)=u^{0}\left(x_{1}, x_{2}\right), & \text { in } \Omega,\end{cases}
$$

??? \rightsquigarrow The linearized equations are already stable! Taking $v=0$,

$$
\frac{d}{d t}\left(\frac{1}{2} \int_{\Omega}|u(t, x)|^{2} d x\right)+\int_{\Omega}|\nabla u(t, x)|^{2} d x=0
$$

\rightsquigarrow Exponential decay like $t \mapsto \exp \left(-\pi^{2} t\right)$!
(also true for the non-linear model).

To be more precise....

Get a local stabilization result around the state $(u, p)=(0,0)$ At an exponential rate larger than π^{2}.

Linearized equations:

$$
\begin{cases}\partial_{t} u-\Delta u+\nabla p=0, & \text { in }(0, \infty) \times \Omega, \\ \operatorname{div} u=0, & \text { in }(0, \infty) \times \Omega, \\ u\left(t, x_{1}, 0\right)=(0,0), & \text { on }(0, \infty) \times \mathbb{T}, \\ u\left(t, x_{1}, 1\right)=\left(0, v\left(t, x_{1}\right)\right), & \text { on }(0, \infty) \times \mathbb{T}, \\ u\left(0, x_{1}, x_{2}\right)=u^{0}\left(x_{1}, x_{2}\right), & \text { in } \Omega,\end{cases}
$$

Difficulty:
$\operatorname{div} u=0$ in $(0, \infty) \times \Omega \Rightarrow \int_{\mathbb{T}} v\left(t, x_{1}\right) d x_{1}=0$ for all $t>0$.

To be more precise....

The 0 -mode:

$$
u_{0}\left(t, x_{2}\right)=\int_{\mathbb{T}} u\left(t, x_{1}, x_{2}\right) d x_{1}
$$

satisfies the uncontrolled heat equation

$$
\begin{cases}\partial_{t} u_{0,1}-\partial_{22} u_{0,1}=0, & \text { in }(0, \infty) \times(0,1), \\ u_{0,1}(t, 0)=u_{0,1}(t, 1)=0, & \text { on }(0, \infty), \\ u_{0,2}\left(t, x_{2}\right)=0, & \text { in }(0, \infty) \times(0,1)\end{cases}
$$

Consequence

The solutions of the linearized equations decay like $\exp \left(-\pi^{2} t\right)$ and, considering

$$
u(t, x)=e^{-\pi^{2} t} \Psi_{0}\left(x_{2}\right) \text { with } \Psi_{0}=\Psi_{0}\left(x_{2}\right)=\sqrt{\frac{2}{\pi}}\binom{\sin \left(\pi x_{2}\right)}{0}
$$

this decay estimate is sharp whatever the control v is.

Main result

Theorem (S. Chowdhury, S.E., J.-P. Raymond 2016)

Let $\omega_{0}>0$ be such that $0<\omega_{0}<4 \pi^{2}$.
There exists $\gamma>0$ such that for all $u_{0} \in \mathbf{V}_{0}^{1}(\Omega)$ with $\left\|u_{0}\right\|_{\mathbf{V}_{0}^{1}(\Omega)} \leq \gamma$, there exists $v \in L^{2}((0, \infty) \times \mathbb{T})$ satisfying
$\int_{\mathbb{T}} v\left(t, x_{1}\right) d x_{1}=0$ for all $t>0$ such that the solution (u, p) of the incompressible Navier-Stokes equation satisfies, for some constant $C>0$ independent of t,

$$
\forall t \geq 0, \quad\|u(t)\|_{\mathbf{V}^{1}(\Omega)} \leq C e^{-\omega_{0} t}
$$

$$
\begin{aligned}
& \mathbf{V}^{1}(\Omega)=\left\{u=\left(u_{1}, u_{2}\right) \in H^{1}(\Omega) \times H^{1}(\Omega) \mid \operatorname{div} u=0\right\} \\
& \mathbf{V}_{0}^{1}(\Omega)=\left\{u \in \mathbf{V}^{1}(\Omega) \mid u\left(x_{1}, 0\right)=u\left(x_{1}, 1\right)=0 \text { for } x_{1} \in \mathbb{T}\right\}
\end{aligned}
$$

Comments

- Straightforward when $\omega<\pi^{2}$
\rightsquigarrow Interesting case $\omega \in\left(\pi^{2}, 4 \pi^{2}\right)$.
- $4 \pi^{2}$ is the second eigenvalue of the elliptic operator generating the heat equation satisfied by the 0 -mode:

$$
\begin{cases}\partial_{t} u_{0,1}-\partial_{22} u_{0,1}=0, & \text { in }(0, \infty) \times(0,1), \\ u_{0,1}(t, 0)=u_{0,1}(t, 1)=0, & \text { on }(0, \infty), \\ u_{0,2}\left(t, x_{2}\right)=0, & \text { in }(0, \infty) \times(0,1)\end{cases}
$$

- The stabilization result cannot be true for the linearized model \Rightarrow We have to use the non-linearity to improve the exponential decay.
Strategy based on the so-called Power Series Expansion: see Coron Crépeau '04, Cerpa '07, Cerpa Crépeau '09, Coron Rivas '15.

Outline

(1) Introduction

(2) Strategy

3 Further comments

Strategy

Write $u=\varepsilon \alpha+\varepsilon^{2} \beta, v=\varepsilon v_{1}+\varepsilon^{2} v_{2}$, with

$$
\begin{gathered}
\begin{cases}\partial_{t} \alpha-\Delta \alpha+\nabla p_{1}=0, & \text { in }(0, \infty) \times \Omega, \\
\operatorname{div} \alpha=0, & \text { in }(0, \infty) \times \Omega, \\
\alpha\left(t, x_{1}, 0\right)=(0,0), & \text { on }(0, \infty) \times \mathbb{T}, \\
\alpha\left(t, x_{1}, 1\right)=\left(0, v_{1}\left(t, x_{1}\right)\right), & \text { on }(0, \infty) \times \mathbb{T}, \\
\alpha\left(0, x_{1}, x_{2}\right)=\alpha^{0}\left(x_{1}, x_{2}\right), & \text { in } \Omega,\end{cases} \\
\begin{cases}\partial_{t} \beta-\Delta \beta+\nabla p_{2}=-(\alpha+\varepsilon \beta) \cdot \nabla(\alpha+\varepsilon \beta), & \text { in }(0, \infty) \times \Omega, \\
\operatorname{div} \beta=0, & \text { in }(0, \infty) \times \Omega, \\
\beta\left(t, x_{1}, 0\right)=(0,0), & \text { on }(0, \infty) \times \mathbb{T}, \\
\beta\left(t, x_{1}, 1\right)=\left(0, v_{2}\left(t, x_{1}\right)\right), & \text { on }(0, \infty) \times \mathbb{T}, \\
\beta\left(0, x_{1}, x_{2}\right)=\beta^{0}\left(x_{1}, x_{2}\right), & \text { in } \Omega,\end{cases}
\end{gathered}
$$

Strategy

Write $u=\varepsilon \alpha+\varepsilon^{2} \beta, v=\varepsilon v_{1}+\varepsilon^{2} v_{2}$, with

$$
\begin{aligned}
& \begin{cases}\partial_{t} \alpha-\Delta \alpha+\nabla p_{1}=0, & \text { in }(0, \infty) \times \Omega, \\
\operatorname{div} \alpha=0, & \text { in }(0, \infty) \times \Omega, \\
\alpha\left(t, x_{1}, 0\right)=(0,0), & \text { on }(0, \infty) \times \mathbb{T}, \\
\alpha\left(t, x_{1}, 1\right)=\left(0, v_{1}\left(t, x_{1}\right)\right), & \text { on }(0, \infty) \times \mathbb{T}, \\
\alpha\left(0, x_{1}, x_{2}\right)=\alpha^{0}\left(x_{1}, x_{2}\right), & \text { in } \Omega,\end{cases} \\
& \begin{cases}\partial_{t} \beta-\Delta \beta+\nabla p_{2}=-\alpha \cdot \nabla \alpha, & \text { in }(0, \infty) \times \Omega, \\
\operatorname{div} \beta=0, & \text { in }(0, \infty) \times \Omega, \\
\beta\left(t, x_{1}, 0\right)=(0,0), & \text { on }(0, \infty) \times \mathbb{T}, \\
\beta\left(t, x_{1}, 1\right)=\left(0, v_{2}\left(t, x_{1}\right)\right), & \text { on }(0, \infty) \times \mathbb{T}, \\
\beta\left(0, x_{1}, x_{2}\right)=\beta^{0}\left(x_{1}, x_{2}\right), & \text { in } \Omega,\end{cases}
\end{aligned}
$$

Strategy

Part 2

- α satisfies the linearized incompressible Navier-Stokes equations.
\Rightarrow If α contains 0 -modes decaying slower than $\exp \left(-\omega_{0} t\right)$, one cannot achieve an exponential decay rate ω_{0}.
\Rightarrow The component of the solution u on the eigenfunction

$$
\Psi_{0}=\Psi_{0}\left(x_{2}\right)=\sqrt{\frac{2}{\pi}}\binom{\sin \left(\pi x_{2}\right)}{0}
$$

- Is in β.
- Should be handled by constructing a suitable α.

Preliminaries

- The Stokes operator A is self-adjoint, positive definite, with compact resolvent on the space
$\mathbf{V}_{n}^{0}(\Omega)=\left\{u \in\left(L^{2}(\Omega)\right)^{2} \mid \operatorname{div}(u)=0\right.$ on Ω and $u \cdot n=0$ on $\left.\Gamma\right\}$
\Rightarrow Sequences of positive eigenvalues $\lambda_{1} \leq \lambda_{2} \leq \cdots \rightarrow \infty$ and corresponding orthonormal basis of eigenvectors $\left(\Psi_{j}\right)$.

$$
A \Psi=\lambda \Psi \Leftrightarrow \begin{cases}-\Delta \psi+\nabla q=\lambda \Psi, & \text { in } \Omega \\ \operatorname{div} \psi=0, & \text { in } \Omega \\ \psi=0, & \text { on } \Gamma\end{cases}
$$

Adjoint of the control operator: $B^{*} \Psi=q\left(x_{1}, 1\right)-\frac{1}{2 \pi} \int_{\mathbb{T}} q\left(x_{1}, 1\right) d x_{1}$.

Lemma

$A \Psi=\lambda \Psi$ and $B^{*} \Psi=0$ imply $\Psi(x)=\Psi\left(x_{2}\right)$.

Decomposition of the space $\mathbf{V}_{n}^{0}(\Omega)$:

- A stable space: $\mathbf{Z}_{s}=\operatorname{Span}\{\Phi \mid A \Phi=\lambda \Phi$, with $\lambda>\omega\}$.
- An unstable space: $\mathbf{Z}_{u}=\mathbf{Z}_{s}^{\perp}$, itself decomposed as
- An unstable uncontrollable space $\mathbf{Z}_{u u}=\operatorname{Span} \Psi_{0}$.
- An unstable detectable space $\mathbf{Z}_{u d}=\mathbf{Z}_{u \mu}^{\perp} \cap \mathbf{Z}_{u}$.

Corresponding (orthogonal) projections: $\mathbb{P}_{s}, \mathbb{P}_{u}, \mathbb{P}_{u d}$ and $\mathbb{P}_{u u}$.

Strategy

Iterative strategy: $(0, \infty)=\cup_{n \in \mathbb{N}}[n T,(n+1) T]$ for some $T>0$. ($T=1$).

Starting point: $u^{0}=\varepsilon \alpha^{0}+\varepsilon^{2} \beta^{0}$ with

$$
\left\|\alpha^{0}\right\|_{\mathbf{V}_{0}^{1}(\Omega)}^{2}+\left\|\beta^{0}\right\|_{\mathbf{V}_{0}^{1}(\Omega)} \leq 1, \quad \text { and } \quad \mathbb{P}_{u u} \alpha^{0}=0
$$

Initialization Step: On $[0, T]$, choose

- v_{1} such that $\mathbb{P}_{u} \alpha(T)=0$.
- $v_{2}=0$.

Strategy

Iteration step: In each time interval $[n T,(n+1) T]$, we design controls v_{1} and v_{2} such that

$$
\mathbb{P}_{u} \alpha((n+1) T)=0, \quad \text { and } \quad \mathbb{P}_{u} \beta((n+1) T)=0
$$

where β is the solution of

$$
\begin{cases}\partial_{t} \beta-\Delta \beta+\nabla p=-\alpha \cdot \nabla \alpha, & \text { in }(n T,(n+1) T) \times \Omega, \\ \operatorname{div} \beta=0, & \text { in }(n T,(n+1) T) \times \Omega, \\ \beta\left(t, x_{1}, 0\right)=(0,0), & \text { on }(n T,(n+1) T) \times \mathbb{T}, \\ \beta\left(t, x_{1}, 1\right)=\left(0, v_{2}\left(t, x_{1}\right)\right), & \text { on }(n T,(n+1) T) \times \mathbb{T}, \\ \beta\left(n T^{+}, x\right)=\beta\left(n T^{-}, x\right), & \text { in } \Omega .\end{cases}
$$

Key Lemma

There exist control functions $v^{a}, v^{b} \in H_{0}^{1}\left(0, T ; H^{2}(\mathbb{T}) \cap L_{0}^{2}(\mathbb{T})\right)$ such that, for all $a, b \in \mathbb{R}$, the solution α of

$$
\begin{cases}\partial_{t} \alpha-\Delta \alpha+\nabla p_{1}=0, & \text { in }(0, T) \times \Omega, \\ \operatorname{div} \alpha=0, & \text { in }(0, T) \times \Omega, \\ \alpha\left(t, x_{1}, 0\right)=(0,0), & \text { on }(0, T) \times \mathbb{T}, \\ \alpha\left(t, x_{1}, 1\right)=\left(0,\left(a v^{a}+b v^{b}\right)\left(t, x_{1}\right)\right), & \text { on }(0, T) \times \mathbb{T}, \\ \alpha(0, x)=0, & \text { in } \Omega,\end{cases}
$$

satisfies $\alpha(T)=0$ in Ω, and such that the solution β of

$$
\begin{cases}\partial_{t} \beta-\Delta \beta+\nabla p_{2}=-\alpha \cdot \nabla \alpha, & \text { in }(0, T) \times \Omega, \\ \operatorname{div} \beta=0, & \text { in }(0, T) \times \Omega, \\ \beta\left(t, x_{1}, 0\right)=\beta\left(t, x_{1}, 1\right)=(0,0), & \text { on }(0, \infty) \times \mathbb{T}, \\ \beta(0, x)=0, & \text { in } \Omega,\end{cases}
$$

satisfies $\mathbb{P}_{u u} \beta(T)=a b \Psi_{0}$.

Difficulties

- Generating many trajectories for α starting from 0 and ending at 0 .
\rightsquigarrow Null-controllability results on the Eq. of the 1st mode.
- Generate trajectories such that $\alpha \cdot \nabla \alpha$ allows for β to enter in the missing direction.
- Specific solutions with separated variables
- Contradiction argument.

Ideas of the proof: Generation of trajectories

- Take

$$
v^{a}\left(t, x_{1}\right)=v^{c}(t) \cos \left(x_{1}\right), \quad v^{b}\left(t, x_{1}\right)=v^{s}(t) \sin \left(x_{1}\right) .
$$

$\rightsquigarrow \alpha^{a}$ and α^{b} are supported on the first mode of the equations:

$$
\alpha^{a}\left(t, x_{1}, x_{2}\right)=\binom{\sin \left(x_{1}\right) \alpha_{1}^{c}\left(t, x_{2}\right)}{\cos \left(x_{1}\right) \alpha_{2}^{c}\left(t, x_{2}\right)}
$$

- The equation satisfied by the first modes of the linear incompressible Stokes equations is null-controllable.
\rightsquigarrow Proof by spectral estimates.
\longrightarrow We can generate many trajectories α going from 0 to 0 .

The projection on Ψ_{0} of the corresponding $\beta(T)$

$$
e^{\nu \pi^{2} T}\left\langle\beta(T), \Psi_{0}\right\rangle=\pi^{5 / 2} \int_{0}^{T} v^{s}(t) q(t, 1) d t,
$$

where q is obtained by solving

$$
\begin{cases}-\partial_{t} Z+Z-\partial_{22} Z+\binom{q}{\partial_{2} q}=F\left(t, x_{2}\right), & \text { in }(0, T) \times(0,1), \\ -Z_{1}+\partial_{2} Z_{2}=0, & \text { in }(0, T) \times(0,1), \\ Z(t, 0)=Z(t, 1)=(0,0), & \text { in }(0, T), \\ Z\left(T, x_{2}\right)=0, & \text { in }(0,1) .\end{cases}
$$

with $F\left(t, x_{2}\right)=\cos \left(\pi x_{2}\right) e^{\pi^{2} t}\binom{\alpha_{2}^{c}\left(t, x_{2}\right)}{\alpha_{1}^{s}\left(t, x_{2}\right)}$, depending only on $v^{a}\left(t, x_{1}\right)=v^{c}(t) \cos \left(x_{1}\right)$.
\rightsquigarrow Show the existence of v^{a} / v^{c} such that $\|q(t, 1)\|_{L^{2}(0, T)} \neq 0$.

Construction of v^{c}, generation of a suitable trajectory

For $\mu \in \mathbb{R}$, introduce ($\left.\alpha^{*}\left(x_{2}\right), p^{*}\left(x_{2}\right)\right)$ solving

$$
\begin{cases}\mu \alpha_{1}^{*}+\alpha_{1}^{*}-\partial_{22} \alpha_{1}^{*}-p^{*}=0, & \text { in }(0,1), \\ \mu \alpha_{2}^{*}+\alpha_{2}^{*}-\partial_{22} \alpha_{2}^{*}+\partial_{2} p^{*}=0, & \text { in }(0,1), \\ \alpha_{1}^{*}+\partial_{2} \alpha_{2}^{*}=0, & \text { in }(0,1), \\ \alpha_{1}^{*}(0)=\alpha_{1}^{*}(1)=\alpha_{2}^{*}(0)=0, \quad \alpha_{2}^{*}(1)=1 . & \end{cases}
$$

Then $\bar{\alpha}\left(t, x_{1}, x_{2}\right)=e^{\mu t}\left(\sin \left(x_{1}\right) \alpha_{1}^{*}\left(x_{2}\right), \cos \left(x_{1}\right) \alpha_{2}^{*}\left(x_{2}\right)\right), \bar{v}(t)=e^{\mu t}$, solves the linear Stokes equations.

Lemma

There exists a suitable $\mu \in \mathbb{R}$ such that if $\alpha(t)=\bar{\alpha}(t)$ on some time interval then the boundary pressure $q(t, 1)$ given by the aforementioned process cannot be identically 0 on that time interval.

Reduction to the stationary case and numerically checked.

Construction of v^{a} / v^{c} and v^{b} / v^{s}

Construction of v^{a} / v^{c} in 4 steps:

- On ($0, T / 4$), control α^{a} to go from 0 to $\bar{\alpha}(T / 4)$.
- On $(T / 4, T / 2)$, take $v^{a}(t)=e^{\mu t}$ and $\alpha^{a}(t)=\bar{\alpha}(t)$. hence $\|q(t)\|_{L^{2}(T / 4, T / 2)} \neq 0$.
- On ($T / 2,3 T / 4)$, control α^{a} goes from $\bar{\alpha}(T / 2)$ to 0 .
- On $(3 T / 4, T)$, take $v^{a}(t)=0$, and $\alpha^{a}(t)=0$, hence $q(t)=0$ on $(3 T / 4, T)$.

Construction of v^{b} / v^{s} :

- On $(0,3 T / 4)$, take v^{s} such that $\int_{0}^{3 T / 4} v^{s}(t) q(t, 1) d t=1$.
- On $(3 T / 4, T)$, control α^{b} to go from $\alpha^{b}(3 T / 4)$ to 0 .

Outline

(1) Introduction

(2) Strategy
(3) Further comments

Open Question

- Exponential stabilization result at a rate higher than $4 \pi^{2}$?

Difficulty: One has to guarantee that we can enter the space of missing directions

$$
\text { Span }\left\{\binom{\sin \left(\pi x_{2}\right)}{0},\binom{\sin \left(2 \pi x_{2}\right)}{0}\right\}
$$

in both directions independently.
This is OK!

But exponential stabilization at any given rate is open (even if probably true with our techniques...), so is the controllability of the system.

Thank you for your attention!

Comments Welcome

Reference:

Open loop stabilization of incompressible Navier-Stokes equations in a 2d channel using power series expansion.
S. Chowdhury, S. Ervedoza, and J.-P. Raymond, in preparation.

