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Introduction Setting Result

Incompressible Navier-Stokes equations in a 2-d channel:
Q=T x(0,1), where T = R/27Z.

Otu+(u-V)u—Au+Vp=0, in(0,00)xQ,

divu =0, in (0,00) x Q,
u(t,x1,0) = (0,0), on (0,00) x T,
u(t, x1,1) = (0, v(t, x1)), on (0,00) x T,
u(0, x1, x0) = u®(x1, x0), in Q.

o u=u(t,x1,x) € R? is the velocity.
e p = p(t,xi,xz) is the pressure.

e v = v(t,x1) is the control function, acting on the normal
component only.

Choose v to stabilize the state u. J
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Introduction Setting Result

Motivation and related topics

Motivation: Controllability/Stabilization of fluid-structure models

with controls acting on the structure.
See Lions Zuazua '95, Osses Puel '99, '09, Lequeurre '13, ...

Related topics:

@ Controllability of incompressible Navier-Stokes equations....
Fursikov Imanuvilov '96, Fernandez-Cara Guerrero Imanuvilov
Puel '04, ...

@ ... with controls having zero components:

Coron Guerrero '09, Carreno Guerrero '13, Coron Lissy '15,...

@ Coupled parabolic systems with one boundary control:
Ammar-Khodja Benabdallah Gonzalez-Burgos de Teresa '11,
Duprez Lissy '15...

@ Stabilization for incompressible Navier-Stokes equations:
Krstic et al '01, Raymond '06, Barbu '07, Triggiani '07,
Vazquez Coron Trélat '08, Munteanu '12,...

Sylvain Ervedoza July 2016 Stabilization in a channel



Introduction

To be more precise....

Setting Result

Our goal

Get a local stabilization result around the state (u, p) = (0, 0).

Linearized equations:

Oiu— Au+Vp =0, in (0,00) x Q,
div u=0, in (0,00) x Q,
u(t, x1,0) = (0,0), on (0,00) x T,
u(t,x1,1) = (0,v(t,x1)), on (0,00) x T,
u(0,x1,x2) = u%(x1,x2), inQ,

7?7 ~» The linearized equations are already stable! Taking v =0,

jt<;/9|u(t,x)2 dx) —l—/Q\Vu(t,x)|2 dx = 0.

~~ Exponential decay like t +— exp(—n2t) !
(also true for the non-linear model).
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Introduction Setting Result

To be more precise....

2

Get a local stabilization result around the state (u, p) = (0, 0)
At an exponential rate larger than 7-.

Linearized equations:

Oru— Au+Vp =0, in (0,00) x Q,
div u =0, in (0,00) x Q,
u(t, x1,0) = (0,0), on (0,00) x T,

u(t,x1,1) = (0,v(t,x1)), on (0,00) x T,
U(O,X]_,X2) = uO(Xl,X2), in Q,

Difficulty: i
divu=0in (0,00) x Q = / v(t,x1)dx; =0 for all t > 0.
Jr
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Introduction Setting Result

To be more precise....

The 0-mode:
UO(t,X2) = / u(t,Xl,Xg) dxq
T

satisfies the uncontrolled heat equation

atuO,l — 322U071 = 0, in (07 OO) X (0, 1),
Uo,l(t, 0) = UO,1(t, 1) =0, on (0,00),
UO72(t,X2) =0, in (07 OO) X (0, 1).

Consequence

The solutions of the linearized equations decay like exp(—72t) and,
considering

u(t,x) = e ™ TWo(xz) with Wo = Wo(xp) = \/§< Si”(gXZ) ) ,

this decay estimate is sharp whatever the control v is.
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Main result

Theorem (S. Chowdhury, S.E., J.-P. Raymond 2016)

Let wgp > 0 be such that 0 < wy < 47°.
There exists v > 0 such that for all up € V§(Q) with
||“0||vé(Q) < v, there exists v € L?((0,00) x T) satisfying

/ v(t,x1) dx; = 0 for all t > 0 such that the solution (u, p) of the

T
incompressible Navier-Stokes equation satisfies, for some constant
C > 0 independent of t,

Ve 20, [lu(t)lhagy < Cem .

VHQ) = {u = (u1, ) € HY(Q) x HY(Q)| div u=0},
Vi(Q) = {u e VY(Q) | u(x1,0) = u(x1,1) = 0 for x; € T}.

Sylvain Ervedoza July 2016 Stabilization in a channel



Introduction Setting Result

Comments

o Straightforward when w < 72
~~ Interesting case w € (72, 472).

@ 47 is the second eigenvalue of the elliptic operator
generating the heat equation satisfied by the 0-mode:

Otug1 — Oxug1 =0, in (0,00) x (0,1),
uoyl(t, 0) = U07]_(t, 1) = 0, on (0, OO),
U072(t,X2) =0, in (0, OO) X (O7 1).

@ The stabilization result cannot be true for the linearized model
= We have to use the non-linearity to improve the
exponential decay.

Strategy based on the so-called Power Series Expansion:
see Coron Crépeau '04, Cerpa '07, Cerpa Crépeau '09, Coron
Rivas '15.
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Precise Main lemma Proof

Part 1

Strategy Roughly Notations

Strategy

Write u = ca + €23, v = £vq + £2vs, with

Ot — Ao+ Vp =0, in (0,00) x Q,
div a =0, in (0,00) x Q,
a(t,x1,0) = (0,0), on (0,00) x T,
a(t,x1,1) = (0,vi(t,x1)), on (0,00) x T,
(0, x1, x0) = a®(x1, x2), in Q,

0B — DB+ Vpr=—(a+ef) V(a+eB), in(0,00)xQ,
div 3 =0, i

B(t, x1,0) = (0,0), on (0,00) x T,
/B(t,Xl, 1) = (0, Vz(t,Xl)),
5(0aX17X2) = ﬁO(X17X2)a
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Strategy Part 1

Write u = ca + €23, v = £vq + £2vs, with

Ot — Ao+ Vp =0, in (0,00) x Q,
div a =0, in (0,00) x Q,
a(t,x1,0) = (0,0), on (0,00) x T,
a(t,x1,1) = (0,vi(t,x1)), on (0,00) x T,
(0, x1, x0) = a®(x1, x2), in Q,

O —AB+Vpy=—a-Va, in(0,00) x Q,

div 5 =0, in (0,00) x Q,
B(t, x1,0) = (0,0), on (0,00) x T,
B(t,x1,1) = (0, va(t, x1)), on (0,00) x T,
B(0, x1,x0) = B°%(x1, Xx2), in Q,
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Strategy Part 2

@ « satisfies the linearized incompressible Navier-Stokes
equations.

= If & contains 0-modes decaying slower than exp(—wot), one
cannot achieve an exponential decay rate wy.

= The component of the solution u on the eigenfunction

Wo = Vo) = \/3( Sin((7)rX2) )

e Isin 5.
e Should be handled by constructing a suitable .
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Strategy g i n lemma Proof

Preliminaries

e The Stokes operator A is self-adjoint, positive definite, with
compact resolvent on the space

V2(Q) = {u e (L3(Q))?| div(u)=0on Qand u-n=0onT}
=- Sequences of positive eigenvalues \; < Ao <.+ — 00 and
corresponding orthonormal basis of eigenvectors (V;).

—AV +Vg=AV, inQ,
AV = )\V & div ¥ =0, in Q,
v =0, onl,

1
Adjoint of the control operator: B*W = q(xq, 1)_27r/ q(x1,1)dx.
T

AV = AV and B*W = 0 imply W(x) = W(xy).
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Decomposition of the space VI(Q):

@ A stable space: Z; = Span {® | A® = \d, with A > w}.

@ An unstable space: Z, = ZSL, itself decomposed as

e An unstable uncontrollable space Z,,, = Span V.
o An unstable detectable space Z,y = Z}, N Z,.

Corresponding (orthogonal) projections: Ps, Py, P, and Py,.
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Strategy Part 3

lterative strategy: (0,00) = Upen[nT,(n+ 1)T] for some T > 0.
(T =1).

Starting point: u° = ea® 4 €249 with
0[2 0 0 _
0 gy + 120y <1 and Bua® =0
Initialization Step: On [0, T], choose

@ v; such that P,a(T) =0.

o V2:0.
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Strategy Part 4

lteration step: In each time interval [nT,(n+ 1) T], we design
controls v; and v, such that

P,a((n+1)T)=0, and P,B((n+1)T)=0,

where 3 is the solution of

B —AB+Vp=—a-Va, in(nT,(n+1)T)xQ

div 8 =0, (nT,(n—i—l)T)xQ,
B(t,x1,0) = (0,0), on (nT,(n+1)T) x T,
B(t, x1,1) = (0, va(t, x1)), on (nT,(n+1)T) x T,
B(nTt,x)=B(nT ", x), in €.
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There exist control functions v2, v? € H}(0, T; H?(T) N L3(T))
such that, for all a, b € R, the solution « of
Ot — Aa+ Vpy =0, in (0, 7) x Q,
diva =0, in (0, T) x Q,
Oé(t,Xl,O) = (070)7 on (07 T) x T,
a(t,x1,1) = (0, (av? + bv®)(t,x1)), on (0,T)x T,
a(0,x) =0, in Q,
satisfies a(T) = 0 in €, and such that the solution 3 of
08— AB+Vp, =—a- Va, in (0, T) x Q,
div 8 =0, in (0, T) x Q,
B(t,x1,0) = B(t,x1,1) = (0,0), on (0,00) x T,
,B(O,X) — 07 in Q7
satisfies P, 5(T) = ab V.
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Difficulties

@ Generating many trajectories for « starting from 0 and ending

at 0.
~> Null-controllability results on the Eq. of the 1st mode.

@ Generate trajectories such that a - Vo allows for 3 to enter in
the missing direction.
e Specific solutions with separated variables
o Contradiction argument.
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Ideas of the proof: Generation of trajectories

e Take
va(t,x1) = ve(t) cos(x1), VvP(t,x1) = v(t)sin(x).

~ a? and o are supported on the first mode of the equations:

A?(t, x1, %) = ( sin(x1)as(t, x2) )

cos(xy)as(t, x2)

e The equation satisfied by the first modes of the linear
incompressible Stokes equations is null-controllable.
~ Proof by spectral estimates.

— We can generate many trajectories o going from 0 to 0.
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The projection on Wy of the corresponding 5(T)

. T
e TUB(T). Vo) =2 [ v(Da(t. 1) k.
0

where g is obtained by solving

-0 Z+Z— 0nZ + ( 8qq > = F(t,Xg), in (0, T) X (0, 1),
2
—Z1+ 0x2, =0, in (0, T) X (0, 1),
Z(t,0) = Z(t,1) = (0,0), in (0, T),
Z(T,x) =0, in (0,1).
C
with F(t, x2) = COS(7TX2)e7r2t ( Z%éizzi > , depending only on

va(t,x1) = vE(t) cos(x1).

~ Show the existence of v?/v* such that [|q(t, 1)|[,20 1) # O
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Construction of v¢, generation of a suitable trajectory

For 1 € R, introduce (a*(x2), p*(x2)) solving

poi 4+ of — Onaj — p* =0, in (0,1),
poy + ai — Onas + Op* =0, in (0,1),
aj + O =0, in (0,1),

ai(0) = aj(1) = a5(0) = 0, a3(1) = L.

Then a(t, x1, x2) = e”(sin(x1)aj(x2), cos(x1)as(x2)), V(t) = ett,
solves the linear Stokes equations.

There exists a suitable © € R such that if a(t) = a@(t) on some
time interval then the boundary pressure q(t,1) given by the
aforementioned process cannot be identically 0 on that time
interval.

Reduction to the stationary case and numerically checked.
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Construction of v/v¢ and v®/v*

Construction of v?/v° in 4 steps:
e On (0, T/4), control a? to go from 0 to @( T /4).
e On (T/4,T/2), take v3(t) = e and o?(t) = @(t).
hence [|q(t)||2(7/4,7/2) # O-
e On (T/2,3T/4), control a? goes from a(T/2) to 0.

@ On (3T7/4,T), take v3(t) =0, and a?(t) =0,
hence g(t) =0on (3T /4, T).

Construction of v?/v*:
37/
e On (0,37 /4), take v* such that / ve(t)q(t,1) dt = 1.
0

@ On (3T /4, T), control a® to go from (3T /4) to 0.
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Further
Open Question

e Exponential stabilization result at a rate higher than 4727

Difficulty: One has to guarantee that we can enter the space of
missing directions

Span {( Si”(g’Q) ) ,< Si"(2O7TX2) >}

in both directions independently.
This is OK !
But exponential stabilization at any given rate is open (even if

probably true with our techniques...), so is the controllability of the
system.

Sylvain Ervedoza July 2016 Stabilization in a channel



Thank you for your attention!

Comments Welcome

Reference:
Open loop stabilization of incompressible Navier-Stokes equations

in a 2d channel using power series expansion.
S. Chowdhury, S. Ervedoza, and J.-P. Raymond, in preparation.
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