A result on the boundary stabilization of systems of conservation laws in the context of weak entropy solutions

Olivier Glass
(based on a paper with J.-M. Coron, S. Ervedoza, S. Goshal and V. Perrollaz)

Ceremade, Université Paris-Dauphine

Stability of non-conservative systems, Valenciennes, July 2016

Introduction

- We discuss control problems of one-dimensional hyperbolic systems of conservation laws:

$$
\begin{equation*}
u_{t}+f(u)_{x}=0, \quad f: \Omega \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}, \tag{SCL}
\end{equation*}
$$

satisfying the (strict) hyperbolicity condition that at each point $d f$ has n distinct real eigenvalues $\lambda_{1}<\cdots<\lambda_{n}$.

- Typically: compressible fluid flows, fluid through a canal, traffic flow, etc.

Characteristic fields

- Corresponding to the characteristic speeds $\lambda_{1}<\cdots<\lambda_{n}$, the Jacobian $A(u):=d f(u)$ has n right eigenvectors $r_{i}(u)$.
- We denote $\left(\ell_{i}\right)_{i=1, \ldots, n}$ the left eigenvectors of $d f(u)$ satisfying $\ell_{i} \cdot r_{j}=\delta_{i j}$.
- The characteristic families will be supposed to be genuinely non-linear (GNL), that is:

$$
\nabla \lambda_{i} \cdot r_{i} \neq 0 \text { for all } u \text { in } \Omega .
$$

\Rightarrow we normalize GNL fields as to satisfy $\nabla \lambda_{i} \cdot r_{i}=1$.

Controllability problem

- Domain: $[0, T] \times[0, L]$.
- State of the system $u(t, \cdot) \in B V(0, L)$
- Control: the "boundary data" on one or both sides. When one controls on one side only, the boundary condition on the other side is fixed.
- Exact controllability: given u_{0} and u_{1}, can we find a boundary control for the system driving u_{0} to u_{1} ?
- Controllability to constant states: given u_{0} and given \bar{u}_{1} a constant state, can we find a boundary control for the system driving u_{0} to \bar{u}_{1} ?

Reformulation of the controllability problem

One can reformulate the controllability problem as follows.

- Exact controllability: given u_{0} and u_{1}, can we find a solution of the system driving u_{0} to u_{1} ?
- Controllability to constant states: given u_{0} and given \bar{u}_{1} a constant state, can we find a solution of the system driving u_{0} to \bar{u}_{1} ?

Stabilization problem

- For this problem, we will suppose moreover that the characteristic speeds are stricly separated from 0 :

$$
\lambda_{1}<\cdots<\lambda_{m}<0<\lambda_{m+1}<\cdots<\lambda_{n} .
$$

- We will be interested in boundary conditions put in the following form:

$$
\binom{u_{+}(t, 0)}{u_{-}(t, L)}=G\binom{u_{+}(t, L)}{u_{-}(t, 0)}
$$

with

$$
u_{+}:=\left(u_{m+1}, \ldots, u_{n}\right) \text { and } u_{-}:=\left(u_{1}, \ldots, u_{m}\right) .
$$

- We consider an equilibrium point \bar{u} of the system. To simplify, we fix $\bar{u}=0$.
- The question is to design G so that \bar{u} becomes an asymptotically stable point for the resulting closed-loop system.

Stabilization problem

- We recall that a point \bar{u} is called stable when for any neighborhood \mathcal{V} of \bar{u}, there exists a neighborhood \mathcal{U} of \bar{u} such that any trajectory of the system starting from \bar{u} stays in \mathcal{V} for all $t \geq 0$.
- It is called asymptotically stable when moreover any trajectory starting from \mathcal{U} satisfies $u(t, \cdot) \rightarrow \bar{u}$ as $t \rightarrow+\infty$.
- It is called exponentially stable when any trajectory starting from some neighborhood \mathcal{U} of \bar{u} satisfies

$$
\|u(t, \cdot)\| \leq C \exp (-\gamma t)\|u(0, \cdot)\| \quad \text { for all } t \geq 0
$$

for some fixed $\gamma>0$ and $C>0$.

Systems of conservation laws and gradient catastrophe

- Nonlinear hyperbolic systems of conservation laws

$$
U_{t}+f(U)_{x}=0, \quad f: \Omega \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}
$$

develop in general singularities in finite time.

- This easy to see for instance for the Burgers equation:

$$
u_{t}+\left(u^{2}\right)_{x}=0 .
$$

Two types of solutions

- One can either work with regular solutions with small C^{1}-norm (for some time - semi-global solutions), or with discontinuous (weak) solutions.
- Weak solutions can account for shock waves.
- When working with weak solutions it is natural for the sake of uniqueness to consider weak solutions which satisfy entropy conditions.
- This is the framework in which we work here: entropy solutions.
- More precisely, the solutions will be of bounded variation, with small total variation in x ("a la Glimm").

Entropy conditions

Definition

An entropy/entropy flux couple for a hyperbolic system of conservation laws (SCL) is defined as a couple of regular functions $(\eta, q): \Omega \rightarrow \mathbb{R}$ satisfying:

$$
\forall u \in \Omega, \quad D \eta(u) \cdot D f(u)=D q(u)
$$

Definition

A function $u \in L^{\infty}(0, T ; B V(0, L)) \cap \mathcal{L i p}\left(0, T ; L^{1}(0, L)\right)$ is called an entropy solution of (SCL) when, for any entropy/entropy flux couple (η, q), with η convex, one has in the sense of measures

$$
\eta(u)_{t}+q(u)_{x} \leq 0
$$

that is, for all $\varphi \in \mathcal{D}((0, T) \times(0, L))$ with $\varphi \geq 0$,

$$
\int_{(0, T) \times(0, L)}\left(\eta(u(t, x)) \varphi_{t}(t, x)+q(u(t, x)) \varphi_{x}(t, x)\right) d x d t \geq 0
$$

Entropy conditions, 2

- Of course $(\eta, q)=(\pm \mathrm{Id}, \pm f)$ are entropy/entropy flux couples. So entropy solutions are particular cases of weak solutions.
- The entropy inequalities are automatically satisfied by vanishing viscosity limits:

$$
u^{\varepsilon} \rightarrow u \text { with } u_{t}^{\varepsilon}+f\left(u^{\varepsilon}\right)_{x}-\varepsilon u_{x x}^{\varepsilon}=0 .
$$

- Glimm (1965) showed the existence of global entropy solutions with the assumption of small total variation, that is when $\partial_{x} u_{0}$ is small in the space of bounded measures.

Previous results in the classical case (controllability)

- Theorem (Li-Rao, 2002): Consider

$$
\partial_{t} u+A(u) u_{x}=F(u),
$$

such that $A(u)$ has n distinct real eigenvalues such that

$$
\lambda_{1}(u)<\cdots<\lambda_{k}(u) \leq-c<0<c \leq \lambda_{k+1}(u)<\cdots<\lambda_{n}(u),
$$

and

$$
F(0)=0 .
$$

Then for all $\phi, \psi \in C^{1}([0,1])$ such that $\|\phi\|_{C^{1}}+\|\psi\|_{C^{1}}<\varepsilon$, there exists a solution $u \in C^{1}([0, T] \times[0,1])$ such that

$$
u_{\mid t=0}=\phi, \text { and } u_{\mid t=T}=\psi .
$$

- Many works since in this context of semi-global solutions! See the book of Li Ta-Tsien on the subject.

Stabilization problem

- One would like to extend to the realm of $B V$ entropy solutions stabilization results that were obtained in the context of classical solutions, such as
- Slemrod, Greenberg-Li, ...
- Bastin-Coron, Bastin-Coron-d'Andrea-Novel, Bastin-Coron-d'Andrea-Novel-de Halleux-Prieur, Bastin-Coron-Krstic-Vazquez, ...
- Leugering-Schmidt, Dick-Gugat-Leugering, Gugat-Herty,...
- Ta-Tsien Li, Tie Hu Qin, ...
- Many others!

Some results in the case of entropy solutions

- Several works on the scalar case:
- Ancona and Marson (1998),
- Horsin (1998),
- Perrollaz (2011),
- Adimurthi-Gowda-Goshal (2013),
- Andreianov-Donadello-Marson (2015),
- Adimurthi-Goshal-Marcati (2016),
- Several works on the system case:
- Bressan-Coclite (asymptotic result and a counterexample, 2002),
- Ancona-Coclite (Temple systems, 2002),
- Ancona-Marson (one-side open loop stabilization, 2007),
- G. $(2007,2014)$,
- Andreianov-Donadello-Ghoshal-Razafison (2015, triangular system),
- T. Li-L. Yu (2015, partially LD systems),
- Coron-Ervedoza-G.-Goshal-Perrollaz (2015).

A simple framework

- Here we consider 2×2 systems of conservation laws:

$$
u_{t}+f(u)_{x}=0 \text { in }[0,+\infty) \times[0, L]
$$

with characteristic speeds $\lambda_{1}<\lambda_{2}$ and satisfying the conditions:

- each characteristic field is GNL,
- velocities are positive: $0<\lambda_{1}<\lambda_{2}$.
- The boundary conditions are as follows:

$$
u(t, 0)=K u(t, L)
$$

where K is a 2×2 (real) matrix.

- The goal is to find conditions on K such ensuring the (exponential) stability of the system.

Main result

Theorem (Coron-Ervedoza-G.-Goshal-Perrollaz)

Suppose the above assumptions satisfied. If the matrix K satisfies

$$
\begin{aligned}
& \inf _{\alpha \in(0,+\infty)}\left(\operatorname { m a x } \left\{\left|\ell_{1}(0) \cdot K r_{1}(0)\right|+\alpha\left|\ell_{2}(0) \cdot K r_{1}(0)\right|\right.\right. \\
&\left.\left.\alpha^{-1}\left|\ell_{1}(0) \cdot K r_{2}(0)\right|+\left|\ell_{2}(0) \cdot K r_{2}(0)\right|\right\}\right)<1
\end{aligned}
$$

then there exist positive constants $C, \nu, \varepsilon_{0}>0$, such that for every $u_{0} \in B V(0, L)$ satisfying

$$
\left|u_{0}\right|_{B V} \leq \varepsilon_{0},
$$

there exists an entropy solution u of the system in $L^{\infty}(0, \infty ; B V(0, L))$ satisfying $u(0, \cdot)=u_{0}(\cdot)$ and the boundary conditions for almost all times, such that

$$
|u(t)|_{B V} \leq C \exp (-\nu t)\left|u_{0}\right|_{B V}, \quad t \geq 0 .
$$

- See Sablé-Tougeron for a very general related result on global existence of solutions on an interval with local feedbacks.

Rewriting the condition

Denoting for $p \in[1, \infty)$

$$
\begin{gathered}
\left\|\left(x_{1}, \ldots, x_{n}\right)\right\|_{p}:=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{1 / p},\left\|\left(x_{1}, \ldots, x_{n}\right)\right\|_{\infty}:=\max _{i=1 \ldots n}\left|x_{i}\right| \\
\|M\|_{p}:=\max _{\|\times x\|_{p}=1}\|M x\|_{p} \text { for } M \in R^{n \times n},
\end{gathered}
$$

one defines

$$
\rho_{\rho}(K):=\inf \left\{\left\|\Delta K \Delta^{-1}\right\|_{\rho}, \Delta \text { diagonal with positive entries }\right\} .
$$

It is easy to check that

$$
\begin{aligned}
& \inf _{\alpha \in(0,+\infty)}\left(\operatorname { m a x } \left\{\left|\ell_{1}(0) \cdot K r_{1}(0)\right|+\alpha\left|\ell_{2}(0) \cdot K r_{1}(0)\right|,\right.\right. \\
& \left.\left.\quad \alpha^{-1}\left|\ell_{1}(0) \cdot K r_{2}(0)\right|+\left|\ell_{2}(0) \cdot K r_{2}(0)\right|\right\}\right)=\rho_{1}(K),
\end{aligned}
$$

so that the condition can be written as $\rho_{1}(K)<1$.

Analogous conditions

- For the same question for classical solutions in C^{m}-norm ($m \geq 1$), a sufficient condition is:

$$
\rho_{\infty}(K)<1
$$

Cf. T. H. Qin, Y. C. Zhao, T. Li and Bastin-Coron.

- In the case of Sobolev spaces $W^{m, p}([0, L])$ with $m \geq 2$ and $p \in[1,+\infty]$, a sufficient condition is:

$$
\rho_{p}(K)<1 .
$$

Cf. Coron-d'Andréa-Novel-Bastin for $p=2$, Coron-Nguyen for general p.

Remarks

- One can actually show that

$$
\rho_{1}(K)=\rho_{\infty}(K)
$$

- The known results on the existence of a standard Riemann semigroup for initial-boundary problem do not seem to cover our situation exactly and uniqueness of solutions in the spirit of Bressan-LeFloch or Bressan-Goatin seems open.

Cf. Amadori, Amadori-Colombo, Colombo-Guerra, Donadello-Marson, Sablé-Tougeron,...

A general idea

- One constructs solutions using the wave-front tracking approach (here, DiPerna's approach since we consider 2×2 systems)
- Then the result relies on a Lyapunov function.
- This Lyapunov function is mainly inspired by two sources:
- Lyapunov functions constructed in the classical case, cf. Coron-Bastin-d'Andrea-Novel, Coron-Bastin, ...
- Glimm's functional used to construct entropy solutions in $B V$

1. Wave-front tracking algorithm

- Solutions are constructed directly using a wave-front tracking approach (cf. Dafermos, DiPerna, Bressan, ...):
- one constructs a sequence of approximations of a solutions,
- these approximations are piecewise constant functions on $\mathbb{R}_{+} \times \mathbb{R}$ where the discontinuities are straight lines separating states connected by shocks or rarefactions,

The Riemann problem

- Find autosimilar solutions $u=\bar{u}(x / t)$ to

$$
\left\{\begin{array}{l}
u_{t}+(f(u))_{x}=0 \\
u_{\mid \mathbb{R}^{-}}=u_{l} \text { and } u_{\mathbb{R}^{+}}=u_{r} .
\end{array}\right.
$$

- Solved by introducing Lax's curves which consist of points that can be joined starting from u_{l} (in the case of GNL fields):
- either by a shock,
- or by a rarefaction wave.

Shocks and rarefaction waves (GNL fields)

Shocks

Discontinuities satisfying:

- Rankine-Hugoniot (jump) relations

$$
[f(u)]=s[u]
$$

- Lax's inequalities:

$$
\begin{gathered}
\lambda_{i}\left(u_{r}\right)<s<\lambda_{i}\left(u_{l}\right) \\
\lambda_{i-1}\left(u_{l}\right)<s<\lambda_{i+1}\left(u_{r}\right) .
\end{gathered}
$$

Propagates at speed $s \sim f_{u_{i}}^{u_{r}} \lambda_{i}$

Rarefaction waves

Regular solutions, obtained with integral curves of r_{i} :

$$
\left\{\begin{array}{l}
\frac{d}{d \sigma} R_{i}(\sigma)=r_{i}\left(R_{i}(\sigma)\right), \\
R_{i}(0)=u_{l}
\end{array}\right.
$$

$$
\text { with } \sigma \geq 0
$$

Propagates at speed $\lambda_{i}\left(R_{i}(\sigma)\right)$

Lax's curves (GNL fields)

- We call $\Phi_{i}\left(\cdot, u_{l}\right)$ the i-th Lax curve consisting of points u_{r} that can be connected
- by a i-shock
- or by a i-rarefaction wave.
- When $u_{+}=\Phi_{i}\left(\sigma_{i}, u_{-}\right)$, we call σ_{i} the strength of the simple wave $\left(u_{-}, u_{+}\right)$.
- By convention, $\sigma_{i}>0$ for rarefactions and $\sigma_{i}<0$ for shocks.
- Lax's theorem asserts that for u_{l} and u_{r} sufficiently close, one can find $\left(\sigma_{i}\right)$ such that

$$
u_{r}=\Phi_{2}\left(\sigma_{2}, \cdot\right) \circ \Phi_{1}\left(\sigma_{1}, \cdot\right) u_{l}
$$

- This allows to solve the Riemann problem.

Solving the Riemann problem

- Lax's Theorem proves that one can solve (at least locally) the Riemann problem by first following the 1-curve, then the 2-curve.

Front-tracking algorithm

- Approximate initial condition by piecewise constant functions.
- Solve the Riemann problems and replace rarefaction waves by rarefaction fans.
- For small times, one obtains a piecewise constant function where states are separated by straight lines called fronts.

- At each interaction point (points where fronts meet), iterate the process without splitting again rarefaction fronts

Estimates, convergence, etc.

- One shows than this defines a piecewise constant function, with a finite number of fronts and discrete interaction points.
- A central argument is due to Glimm: consider

$$
V(\tau)=\sum_{\alpha \text { wave at time } t}\left|\sigma_{\alpha}\right| ; \quad Q(\tau)=\sum_{\substack{\alpha, \beta \\ \text { approaching waves }}}\left|\sigma_{\alpha}\right| \cdot\left|\sigma_{\beta}\right|,
$$

- Analyzing interactions $\alpha+\beta \rightarrow \alpha^{\prime}+\beta^{\prime}+\gamma^{\prime}$ one shows that: for some $C>0$, if $T V\left(u_{0}\right)$ is small enough, then $V(t)+C Q(t)$ is non-increasing. (Glimm's functional)
- One deduces bounds in $L_{t}^{\infty} B V_{x}$, then in $\operatorname{Lip}_{t} L_{x}^{1}$, so we have compactness...

Boundary Riemann problem

- In our case we have to take the boundary into account, and to be able to solve the boundary Riemann problem.
- Cf. Dubois-LeFloch, Amadori, Amadori-Colombo, Colombo-Guerra, Donadello-Marson, etc.

Boundary "interactions"

- One can then take "boundary interactions" into account.
- One can measure the size of the oungoing fronts in terms of the size of the incoming one. This highly depends on K !
- Roughly speaking, our condition ensures

$$
\left|\sigma_{\text {outgoing }}^{1}\right|+\left|\sigma_{\text {outgoing }}^{2}\right| \leq \kappa\left|\sigma_{\text {incoming }}\right|, \quad 0<\kappa<1
$$

2. Lyapunov functions: the classical case

An example from Coron-Bastin-d'Andrea-Novel: for the system

$$
\left\{\begin{array}{l}
\partial_{t} a+c(a, b) \partial_{x} a=0, \\
\partial_{t} b-d(a, b) \partial_{x} b=0,
\end{array}\right.
$$

with $c, d>0$, one finds a Lyapunov functional of the form

$$
\begin{aligned}
& \mathcal{L}=\int_{0}^{L} a^{2}(x) e^{-\mu x} d x+\int_{0}^{L} b^{2}(x) e^{+\mu x} d x \\
&+ C_{1}\left(\int_{0}^{L}\left(\partial_{x} a\right)^{2}(x) e^{-\mu x} d x+\int_{0}^{L}\left(\partial_{x} b\right)^{2}(x) e^{+\mu x} d x\right) \\
&+C_{2}\left(\int_{0}^{L}\left(\partial_{x x}^{2} a\right)^{2}(x) e^{-\mu x} d x+\int_{0}^{L}\left(\partial_{x x} b\right)^{2}(x) e^{+\mu x} d x\right) .
\end{aligned}
$$

This is connected to J.-M. Coron's Lyapunov function for stabilization of the incompressible Euler equation in 2-D simply connected domains (see also G . in the multi-connected case).

3. Our Lyapunov functional

Our Lyapunov functional is as follows:

$$
J:=V+C Q
$$

where

$$
\begin{aligned}
& V(U)=\sum_{i=0}^{n}\left(\left|\sigma_{i, 1}\right|+\left|\sigma_{i, 2}\right|\right) e^{-\gamma x_{i}}, \\
& Q(U)=\sum_{\left(x_{i}, \sigma_{i}\right)}\left|\sigma_{i}\right| e^{-\gamma x_{i}}\left(\sum_{\left(x_{j}, \sigma_{j}\right)} \sum_{\text {approaching }\left(x_{i}, \sigma_{i}\right)}\left|\sigma_{j}\right| e^{-\gamma x_{j}}\right),
\end{aligned}
$$

for suitable constants, where

- $\sigma_{i, k}$ is the strength of the k-wave at x_{i} (σ_{i} when there is no ambiguity, i.e. for $i \geq 1$),
- x_{1}, \ldots, x_{n} are the discontinuities in ($0, L$),
- $u(t, 0+)=\Psi_{2}\left(\sigma_{0,2}, \Psi_{1}\left(\sigma_{0,1}, K u(t, L-)\right)\right)$.

Our Lyapunov functional, 2

Analyzing in particular interactions of fronts with the boundary, one shows that for suitable constants and provided that

$$
T V\left(u_{0}\right) \text { is small enough, }
$$

one has for proper $\nu>0$:

$$
J(t) \leq J(0) \exp (-\nu t)
$$

This allows to construct approximations and the solutions globally in time and to get the result.

Open problems

- Considering a less particular case: speeds with different signs, $n \times n$ systems, nonlinear boundary conditions, non GNL characteristic fields, etc.
- Equivalent on networks. We believe this result to be sufficiently similar to the classical case to yield close results on networks in the entropy case.
- What about source terms?

