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Introduction

In 2002, Fatiha Alabau, Piermarco Cannarsa and Vilmos
Komornik published a paper (ACK) entitled

Indirect internal stabilization of weakly coupled
evolution equations

in which they investigated the extent of asymptotic stability of
the null solution for weakly coupled partially damped equations
of the type

u′′ +A1u+Bu′ + Cv = v′′ +A2v + Cu = 0

where A1, A2, B and C are positive self-adjoint operators
satisfying suitable additional conditions.
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The main point is that the damping operator acts only on the
first component u and when A1, A2 are comparable coercive
unbounded operators while B,C are coercive and bounded, the
coupling is not strong enough to produce an exponential decay
in the energy space associated to the conservative part of the
system. As a consequence, for initial data in the energy space,
the rate of decay is not exponential and explicit decay rates are
only available in a weaker norm. Moreover, due to the nature of
the result it seems impossible to obtain the asymptotic stability
result by the classical Liapunov method consisting in the
exhibition of an exponentially decreasing quadratic function of
(u, v, u′, v′).
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I. Liapunov’s classical approach.

A long time ago (1892), Liapunov defined and investigated the
dynamical stability of equilibrium solutions to differential
systems of the form

U ′(t) = F (U(t))

where F ∈ C2(RN ). Given a ∈ F−1(0) he proved that a is
asymptotically stable (in fact exponentially stable) as soon as
all the eigenvalues of the square matrix M = DF (a) have
negative real parts. The original proof of Liapunov consisted in
considering first the linearized equation

Y ′ = MY (t) (LIN)

for which 0 is an exponentially stable equilibrium.
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Under the hypothesis on the eigenvalues, it is not difficult to see
that all solutions of (LIN) tend to 0 as t tends to infinity. Then
by considering a basis of RN , it follows easily that for some
T > 0 we have || exp(TM)|| < 1. Then by a classical division
argument we find

∀t ≥ 0, || exp(tM)|| ≤ Ce−δt

for some C ≥ 1 and δ > 0, thereby proving exponential stability
of 0 for the linearized equation. Is seems that at the time of
Liapunov (and even much later) it was not natural to use the
potential well argument for the nonlinear perturbation equation
by using Duhamel’s variation of constants formula. Therefore
Liapunov looked for a renorming allowing to get the same
estimate with C = 1 , in which case a direct potential well
argument in differential form becomes possible.
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The following quadratic function

Φ(z) =

∫ ∞
0
| exp(sM)z|2ds

provides a solution of the problem. Indeed for any solution
Y (t) = exp(tM)Y0 of (LIN) we have

d

dt
Φ(Y (t)) =

d

dt

∫ ∞
0
| exp(sM) exp(tM)Y0|2ds

=
d

dt

∫ ∞
0
| exp(s+t)M)Y0|2ds =

d

dt

∫ ∞
t
| exp(τ)M)Y0|2dτ = −|Y (t)|2

By the equivalence of norms on the finite dimensional space RN
we see immediately that the new norm defined by
||z|| = Φ(z)1/2 is a solution.
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II. A simple scalar system

A few years ago I was writing down one chapter of [3] devoted
to the invariance principle and while looking for simple striking
examples I happened to read the (ACK) paper. I realized that
the restriction of their equation to the space generated by an
eigenfunction already provides an interesting one. The simplest
renormalized system can be written in the form :

u′′ + λu+ bu′ + cv = v′′ + λv + cu = 0 (1)

Here λ > 0, b > 0 and c 6= 0 can have any sign. In order to have
asymptotic stability of (0, 0, 0, 0) in the phase space R4 we need
that the stationary system λu+ cv = λv + cu = 0 has no
solution, hence c2 6= λ2.
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Moreover, standard manipulation gives the identity

d

dt
(λu2 + λv2 + 2cuv + u′2 + v′2) = −2bu′2 ≤ 0

Assuming c2 < λ2, the function

F (u, v, w, z) = λ(u2 + v2) + 2cuv + w2 + z2

is a positive definite quadratic form. Since F (u, v, u′, v′) is
non-increasing along the trajectories, the 4 components
(u, v, u′, v′) are bounded and we are in a good position to apply
the invariance principle.
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Indeed let (u, v) be a solution for which F (u, v, u′, v′) is
constant. Then 2bu′2 = 0 implies u′ = 0, hence u is constant
and u′′ = 0. Then by the first equation v = −λ

cu is also
constant. Since the only equilibrium is u = v = 0 we are done.
Now an interesting question occurs : actually we know that the
semi-group associated with this ODE system is exponentially
stabilizing. In particular the quadratic form Φ introduced by
Liapunov is a strict Liapunov function. This form cannot be
computed since we do not have access to an explicit formula for
the semi-group (the characteristic equation has degree 4 !) We
know, however, that the form can be computed on a basis of
4×(4+1)

2 = 10 monomials in (u, v, w, z). Who is that form ?
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III. A Liapunov function for the ODE case

Let us introduce for each solution (u, v) of (1), its total energy

E(u, u′, v, v′) =
1

2

[
u′2 + v′2 + λ(u2 + v2)

]
+ cuv

Proposition

[H-Jendoubi 2013] Assuming for simplicity b = 1, for any p > 1
and for all ε > 0 small enough the quadratic form

Hε = E − εvv′ + pεuu′ +
(p+ 1)λε

2c
(u′v − uv′) (2)

is a strict Liapunov function for (1). More precisely for some
ρ(ε) > 0 independent of the solution (u, v) of (1) we have

H ′ε ≤ −ρ(ε)Hε (3)
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Remark

The only missing term in this quadratic form is u′v′. This was
predictable since its derivative does not seem to contain any
interesting term. Moreover it is usual that the Liapunov
function is a small perturbation of the energy. The term in uu′

seems to be mandatory since it is what we need in the
uncoupled case to produce the emergence of a −u2 term . The
term in −vv′ is added to produce a −v′2 by differentiation. It is
then remarkable that a multiple of the wronskian-like skew
product u′v − uv′ is sufficient to produce the emergence of a
−v2 term and at the same time compensate the “junk terms”
coming from the other differentiated terms.
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Sketch of proof.

First of all we note that the derivative of the skew product
involves −v2. Indeed

d

dt
(u′v − uv′) = (u′′v − uv′′) = −v(u′ + cv + λu) + u(cu+ λv)

= c(u2 − v2)− u′v
Then we find easily

d

dt
[−vv′ + puu′ +

(p+ 1)λ

2c
(u′v − uv′)]

= pu′2 − v′2 + v(cu+ λv)− pu(u′ + cv + λu)

+
(p+ 1)λ

2
(u2 − v2)− (p+ 1)λ

2c
u′v

= pu′2 − v′2 − u′(pu+
(p+ 1)λ

2c
v)− (p− 1)

2
[λ(u2 + v2) + 2cuv]
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The end of the proof is now nearly obvious. First we have

λ(u2 + v2) + 2cuv ≥ (λ− |c|)(u2 + v2)

Moreover we have for some constant K > 0

|u′(pu+
(p+ 1)λ

2c
v)| ≤ (p− 1)

4
(λ− |c|)(u2 + v2) +Ku′2

so that

d

dt
[−vv′ + puu′ +

(p+ 1)λ

2c
(u′v − uv′)] ≤ (p+K)u′2 − v′2

−(p− 1)

4
(λ− |c|)(u2 + v2)

The conclusion follows immediately.
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IV. some remarks on the ODE case.

Remark

The ODE case may look a bit simple, however finding this
Liapunov function took us some time, and as soon as it was
done, infinite dimensional analogs appeared natural. Moreover
the ODE case becomes less trivial when we try to use the
Liapunov method to get quantitative information on the decay
of solutions. For the moment we only have partial results in
some very specific range of parameters.
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Remark

Although the general solution cannot be computed, it is possible
to investigate the rate of decay by another method relying on
the characteristic polynomial. For instance for b = 1 , and for
any value of c, it is rather easy to show that the logarithmic
decrement of the general solution can never exceed the value 1

4
while for the uncoupled equation in u the maximum decrement
is 1

2 . Indeed the characteristic polynomial P for b = 1 is

P (ζ) = (ζ2 + λ)(ζ2 + ζ + λ)− c2

Denoting by ζj the 4 characteristic numbers (all positive and
eventually counted with their multiplicity) and setting
ρj := −Re(ζj), the identity

∑4
j=1 ρj = 1 implies infj ρj ≤ 1

4 .
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Remark

A sharper study shows that the value 1
4 is never achieved, but

any smaller positive number can be realized for adequate values
of c > 0 and λ > c. Recently, we even recovered asymptotically
this maximal decrement in a very narrow region by a thorough
refinement of our explicit Liapunov function. More precisely we
have, assuming for definiteness c > 0

Proposition

As c
λ tends to 0 and c

λ1/2
tend to infinity, the logarithmic

decrement (as evaluated by the method of proof of Proposition
0.1 ) tends to the highest possible value 1

4 .
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V. The strongly coupled case.

In this section we generalize the scalar system in a framework
which concerns finite-dimensional and infinite-dimensional
systems as well. Let A be a closed, self-adjoint, positive coercive
operator on a separable Hilbert space H. with domain D(A).
We denote by (u, v) the inner product of two vectors u, v in H

and by |u| the H norm of u. Let V = D(A
1
2 ) endowed with the

norm given by

∀u ∈ V, ‖u‖ = |A
1
2u|.

The topological dual of H is identified with H, therefore

V ⊂ H = H ′ ⊂ V ′

with continuous and dense imbeddings.
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Let C ∈ L(V, V ′) satisfy the following conditions

‖C‖L(V,V ′) < 1 (4)

kerC = 0, H ⊂ C(V ) and C−1 ∈ L(H,V ) (5)

V ′ ⊂ C(H) and C−1 ∈ L(V ′, H) (6)

AC−1 − C−1A ∈ L(H,H) (7)

i.e. the operator AC−1 − C−1A ∈ L(V, V ′) is in fact bounded
for the H-norm with values in H and can therefore be extended
on the whole of H as a bounded operator. We consider{

u′′ + u′ +Au+ Cv = 0,

v′′ +Av + C∗u = 0.
(8)

Let us set

H0(u, v, u′, v′) =
1

2
(‖u‖2 + ‖v‖2 + |u′|2 + |v′|2) + 〈Cv, u〉.
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Then all solutions of the system (8) are bounded with

d

dt
H0(u, v, u′, v′) = −|u′|2

and we have

Theorem (H-Jendoubi 2013)

For any p > 1 and for all ε > 0 small enough the quadratic form
Hε = Hε(u, v, w, z) defined by

Hε = H0−ε(v, z)+pε(u,w)+
(p+ 1)ε

2
[〈AC−1w, v〉−〈AC−1u, z〉]

satisfies (3). In particular the semi-group generated by (8) is
exponentially damped in V × V ×H ×H.
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Example

1. Maximal coupling.

Let Ω be a bounded open domain of RN . Then for any
γ ∈ (0, 1), the system{

∂2
t u−∆u+ ∂tu− γ∆v = 0

∂2
t v −∆v − γ∆u = 0

(9)

with homogeneous Dirichlet boundary conditions generates an
exponentially damped linear semi-group in V × V ×H ×H
with H = L2(Ω) and V = H1

0 (Ω).
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Example

2. Structural coupling.
Ω be a bounded open domain of RN with C2 boundary . Then
for any γ ∈ (0, λ1(Ω)), the system{

∂2
t u+ ∆2u+ ∂tu− γ∆v = 0

∂2
t v + ∆2v − γ∆u = 0

(10)

with the boundary conditions u = v = ∆u = ∆v = 0 generates
an exponentially damped linear semi-group in W ×W ×H ×H
with H = L2(Ω) and W = H2 ∩H1

0 (Ω).
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Example

3. A plate equation with structural non-commuting
coupling.
Let Ω be a bounded open domain of RN with C2 boundary and
let m ∈ L∞(Ω) be a non-negative function . Then for any
γ ∈ (0, λ1(Ω)), the system{

∂2
t u+ ∆2u+m(x)u+ ∂tu− γ∆v = 0

∂2
t v + ∆2v +m(x)v − γ∆u = 0

(11)

with the boundary conditions u = v = ∆u = ∆v = 0 generates
an exponentially damped linear semi-group in W ×W ×H ×H
with H = L2(Ω) and W = H2 ∩H1

0 (Ω).
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Assuming that W is endowed with the norm given by

‖u‖2W =

∫
Ω

(|∆u|2 +m(x)u2)dx

it is easy to check that

‖∆u‖W ′ ≤ 1

λ1(Ω)
‖∆u‖H ≤

1

λ1(Ω)
‖u‖W

Moreover, here C−1 = (−γ∆)−1 and A = ∆2 +m(x)I do not
commute, but

C−1A−AC−1 = C−1M−MC−1

where M denotes the operator of multiplication by m(x) is not
only bounded, but even compact as an operator from H to
itself.
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VI. The infinite dimensional weakly coupled case.

We now consider the system{
u′′ + u′ +Au+ cv = 0,

v′′ +Av + cu = 0.
(12)

and we introduce

E(u, v, , w, z) =
1

2
(‖u‖2 + ‖v‖2 + |w|2 + |z|2) + c(u, v).

Then all (weak) solutions of the system (12) are bounded with

d

dt
E(u, v, u′, v′) = −|u′|2
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and we have

Theorem (H-Jendoubi 2013)

Assume c 6= 0 and |c| < λ1(A) := λ1. Then for any p > λ1+|c|
λ1−|c|

and all ε > 0 small enough the quadratic form Hε defined by

Hε(u, v, w, z) = E − ελ1(v, z)∗ + pε(u,w) + ρε[(w, v)− (u, z)]

with ρ = (p+1)λ1
2c satisfies the inequality

d

dt
Hε(u, v, u

′, v′) ≤ −γ(p, ε)
1

2
(|u|2 + |v|2 + ‖u′‖2∗ + ‖v′‖2∗)

valid for any weak solution of (12).
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Corollary

For any solution (u, v) of (12) we have for some constant C > 0

∀t > 0, |u(t)|2 + |v(t)|2 + ‖u′(t)‖2∗ + ‖v′(t)‖2∗ ≤ C
E0

t

with
E0 = ‖u(0)‖2 + ‖v(0)‖2 + |u′(0)|2 + |v′(0)|2.
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Sketch of proof.

The quadratic form

E−1(u, v, , w, z) =
1

2
(|u|2 + |v|2 + ‖u′‖2∗ + ‖v′‖2∗) + c〈u, v〉∗

is equivalent to

K(u, v, , w, z) = |u|2 + |v|2 + ‖u′‖2∗ + ‖v′‖2∗
and non-increasing along trajectories. Then we also have

d

dt
Hε(u, v, u

′, v′) ≤ −γ′E−1(u, v, u′, v′)

and by integrating on (0, t)we find

tE−1(u, v, u′, v′)(t) ≤
∫ t

0
E−1(u, v, u′, v′)(s)ds ≤ CE0.

The result follows immediately.
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Remark

We recover here one of the main results of (ACK) by a
Liapunov function approach. It seems that many indirect
stabilization results can be proved by the same method. All the
results involving different usual norms on both sides of the
inequality can be deduced from the corollary by using A−
invariance, induction or interpolation. The theory will be
complete as soon as optimality of the negative power of t is
established, and the comparison with similar simpler problems
make it look reasonable.
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