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Introduction

Consider the Parabolic Equation

(PE )


yt −∆y + a(t, x)y = v(t, x)1ω , (t, x) ∈ (0,T )× Ω

Boundary Conditions,

y(0) = y0

v is the control acting on a internal regional ω of Ω.

Null controllability of (PE ) in time T > 0 : ∀y0 ∈ L2(Ω)

∃v ∈ L2((0,T )× ω) : y(T , ·) = 0 on Ω.
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y(T , ·) = S(T , 0)y0 + T v , T v =

∫ T

0
S(T , τ)χωv(τ) dτ.

Hence, the null controllability : ∀y0, ∃v : y(T , ·) = 0

⇐⇒ S(T , 0)y0 = −T v ,

⇐⇒ ImS(T , 0) ⊂ ImT
⇐⇒ ∃C :‖S(T , 0)∗ϕT‖ ≤ C‖T ∗ϕT‖, ϕT ∈ L2(Ω). (1)

(1) =

∫ 1

0
ϕ2(0, x)dx ≤ C

∫ T

0

∫
ω
ϕ2(t, x)dxdt, (Observability Inequality)

where ϕ is the solution of the backward adjoint problem

(APE )


−ϕt −∆ϕ+ a(t, x)ϕ = 0

Boundary Conditions,

ϕ(T ) = ϕT
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Carleman estimate

Consider the equation
ϕt −∆ϕ+ a(t, x)ϕ = f (t, x)

+BC

ϕ(0) = ϕ0

Carleman estimate :∫
Q
ρ1 ϕ

2 +

∫
Q
ρ2 ϕ

2
x ≤

∫
Q
ρ3 f 2 +

∫ T

0

∫
ω
ρ4ϕ

2
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The Null controllability of this parabolic equations was studied in
the literature in the case of boundary conditions :
- Dirichlet,
- Neumann
- Mixed boundary conditions ( Robin or Fourier).

-Lebeau-Robbiano
- Fursikov-Imanuvilov

- Albano, Cannarsa, Zuazua, Yamamoto, Zhang, Guerrero,
Fernandez-Cara, Puel, Benabdellah, Dermenjian, Le Rousseau, ...
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Dynamic Boundary Parabolic Equations

In this work, we are concerned with the null controllability of the
following Parabolic equation with dynamic boundary conditions


∂ty − d∆y + a(t, x)y = χωv(t, x) in ΩT := (0,T )× Ω,

∂tyΓ − δ∆ΓyΓ + d∂νy + b(t, x)yΓ = 0 on ΓT := (0,T )× Γ,

y(0, ·) = y0, yΓ(0, ·) = y0,Γ,

I Ω ⊂ RN is a bounded domain with smooth boundary Γ = ∂Ω,
N ≥ 2, and the control region ω is an arbitrary nonempty
open subset such that ω ⊂ Ω.

I yΓ = y |Γ.
I The term ∂tyΓ −∆ΓyΓ models the tangential diffusive flux on

the boundary which is coupled to the equation on the bulk by
the normal derivative ∂νy = (ν · ∇y)|Γ.
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Motivation and References

This type of boundary conditions arises for many known equations
of mathematical physics.
They are motivated by :

I problems in diffusion phenomena,

I Reaction-diffusion systems in phase-transition phenomena.

I Special flows in hydrodynamics (the flow of heat for a solid in
contact with a fluid),

I Models in climatology, ....

References :
C. Gal, Favini, J. and G. Goldstein, Grasselli, Miranville, Meyeries,
Romanelli, Vazquez, Zellik, ....

G. R. Goldstein, Derivation of dynamical boundary conditions, Adv.
Differential Equations, 11 (2006), 457–480.
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The Laplace-Beltrami operator

The operator ∆Γ on Γ is given here by the surface divergence
theorem∫

Γ
∆Γy z dS = −

∫
Γ
〈∇Γy ,∇Γz〉Γ dS , y ∈ H2(Γ), z ∈ H1(Γ),

where ∇Γ is the surface gradient.

Proposition

The operator (∆Γ,H
2(Γ)) is self-adjoint and non positive on L2(Γ).

Thus it generates an analytic C0-semigroup on L2(Γ).
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Well-posedness

Consider the following inhomogeneous parabolic problem with
dynamic boundary conditions


∂ty − d∆y + a(t, x)y = f (t, x), in ΩT ,

∂tyΓ − δ∆ΓyΓ + d(∂νy)|Γ + b(t, x)yΓ = g(t, x), on ΓT

y(0, ·) = y0, yΓ(0, ·) = y0,Γ,

(2)

On L2 := L2(Ω)× L2(Γ), we consider the linear operator

A =

(
d∆ 0
−d∂ν δ∆Γ

)
, D(A) = H2,

where Hk := {(y , yΓ) ∈ Hk(Ω)× Hk(Γ) : y |Γ = yΓ} for k ∈ N,
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Our wellposedness and regularity results for the underlying
evolution equations rely on this fact.

Proposition

The operator A is densely defined, self-adjoint, negative and
generates an analytic C0-semigroup (etA)t≥0 on L2. We further
have (L2,H2)1/2,2 = H1.

Proof :
Introduce on L2 the densely defined, closed, symmetric, positive
sesquilinear form

a[y , z] =

∫
Ω

d ∇y · ∇z dx +

∫
Γ
δ 〈∇Γy ,∇Γz〉Γ dS , D(a) = H1.

It induces a positive self-adjoint sectorial operator Ã on L2 and one
can show that A ⊂ Ã.
For the other inclusion, we need to show that λ− A is surjective
for some ”large”λ.
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The following perturbed system


∂ty − d∆y + a(t, x)y = 0 in ΩT := (0,T )× Ω,

∂tyΓ − δ∆ΓyΓ + d(∂νy)|Γ + b(t, x)yΓ = 0 on ΓT := (0,T )× Γ,

y(0, ·) = y0, yΓ(0, ·) = y0,Γ,

has also a solution which is an evolution family S(t, s) on L2

depending strongly continuously on 0 ≤ s ≤ t ≤ T such that

S(t, τ)y0 = e(t−τ)Ay0 −
∫ t

τ
e(t−s)A(a(s, ·), b(s, ·))S(s, τ)y0 ds
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Proposition

Let f ∈ L2(ΩT ), g ∈ L2(ΓT ) and (y0, ) ∈ L2.

(a) There is a unique mild solution y ∈ C ([0,T ];L2) of (2).
The solution map (y0, f , g) 7→ y is linear and continuous from
L2 × L2(ΩT )× L2(ΓT ) to C ([0,T ];L2).
Moreover, y belongs to
E1(τ,T ) := H1(τ,T ;L2) ∩ L2(τ,T ; D(A)) and solves (2)
strongly on (τ,T ) with initial y(τ), for all τ ∈ (0,T ) and it is
given by

y(t) = S(t, 0)y0 +

∫ t

0
S(t, s)(f (s), g(s)) ds, t ∈ [0,T ],
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Proposition

(b) Given R > 0, there is a constant C = C (R) > 0 such that for
all a and b with ‖a‖∞, ‖b‖∞ ≤ R and all data the mild
solution of y of (2) satisfies

‖y‖C([0,T ];L2) ≤ C (‖y0‖L2 + ‖f ‖L2(ΩT ) + ‖g‖L2(ΓT )).

(c) If y0 ∈ H1, then the mild solution y of (2) is the strong one,
i.e., y ∈ E1 := H1(0,T ;L2) ∩ L2(0,T ; D(A)) and solves (2)
strongly on (0,T ) with initial data y0.
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Null Controllability

We study the null controllability of the linear system

∂ty − d∆y + a(t, x)y = v(t, x)1ω in ΩT ,

∂ty − δ∆Γy + d∂νy + b(t, x)y = 0 on ΓT , (3)

y(0, ·) = y0 in Ω,
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Definition of null controllability

Definition

The system (3) is said to be null controllable at time T > 0 if for
all given y0 ∈ L2(Ω) and y0,Γ ∈ L2(Γ) we can find a control
v ∈ L2((0,T )× ω) such that the solution satisfies

y(T , ·) = yΓ(T , ·) = 0.
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Some References : Dynamic boundary conditions

1. I.I. Vrabie, the approximate controllability of (3), (ω = Ω).

2. D. Höomberg, K. Krumbiegel, J. Rehberg, Optimal Control of
(3), (ω = Ω. )

3. G. Nikel and Kumpf, Approximate controllability of dynamic
boundary control problems, (one-dimension heat equation)
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Null Controllability of linear problems

The solution of the linear system

∂ty − d∆y + a(t, x)y = v(t, x)1ω in ΩT , (4)

∂ty − δ∆Γy + d∂νy + b(t, x)y = 0 on ΓT , (5)

y(0, ·) = y0 in Ω, (6)

can be written as

y(T , ·) = S(T , 0)y0 + T v , T v =

∫ T

0
S(T , τ)(χωv(τ), 0) dτ.

Hence, the null controllability : ∀y0, ∃v : y(T , ·) = 0

⇐⇒ ∃C : ‖S(T , 0)∗ϕT‖L2 ≤ C‖T ∗ϕT‖L2 , ϕT ∈ L2. (7)
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Null Controllability of linear problems

Lemma

1. The function ϕ(t) = S(T , t)∗ϕT is the solution of the backward
adjoint system

− ∂tϕ− d∆ϕ+ a(t, x)ϕ = 0 in ΩT ,

−∂tϕΓ − δ∆ΓϕΓ + d∂νϕ+ b(t, x)ϕΓ = 0 on ΓT

ϕ(T , ·) = ϕT in Ω,

2. The adjoint of the operator T is given by

T ∗ϕT = χωϕ.

3. The estimate (7) can be written as (Observability Ineq.)

‖ϕ(0, ·)‖2
L2 + ‖ϕΓ(0, ·)‖2

L2 ≤ C

∫ T

0

∫
ω
|ϕ|2 dx dt
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Carleman estimate

The crucial way to show the above observabity inequality is to
show a Carleman estimate for the backward adjoint linear problem

− ∂tϕ− d∆ϕ+ a(t, x)ϕ = f (t, x) in ΩT ,

−∂tϕΓ − δ∆ΓϕΓ + d∂νϕ+ b(t, x)ϕΓ = g(t, x) on ΓT (8)

ϕ(T , ·) = ϕT in Ω,

for given ϕT in H1(Ω) or in L2(Ω), f ∈ L2(ΩT ) and g ∈ L2(ΓT ).
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The Carleman estimate

Lemma

Given a nonempty open set ω b Ω, there is a function η0 ∈ C 2(Ω)
such that

η0 > 0 in Ω, η0 = 0 on Γ, |∇η0| > 0 in Ω\ω.

Since |∇η0|2 = |∇Γη
0|2 + |∂νη0|2 on Γ, the function η0 in the

lemma satisfies

∇Γη
0 = 0, |∇η0| = |∂νη0|, ∂νη

0 ≤ −c < 0 on Γ (9)

for a constant c > 0.
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Take λ,m > 1 and η0 with respect to ω as in the lemma. We
define the weight functions α and ξ by

α(x , t) = (t(T − t))−1
(
e2λm‖η0‖∞ − eλ(m‖η0‖∞+η0(x))

)
, x ∈ Ω

ξ(x , t) = (t(T − t))−1eλ(m‖η0‖∞+η0(x)), x ∈ Ω.

Note that the weights are constant on the boundary Γ so that

∇Γα = 0 and ∇Γξ = 0 on Γ. (10)
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The Carleman estimate

Theorem

There are constants C > 0 and λ1, s1 ≥ 1 such that,
∀λ ≥ λ1, s ≥ s1 and every mild solution ϕ of (8), we have

sλ2

∫
ΩT

e−2sαξ|∇ϕ|2 dx dt + s3λ4

∫
ΩT

e−2sαξ3|ϕ|2 dx dt

+sλ

∫
ΓT

e−2sαξ|∇Γϕ|2 + s3λ3

∫
ΓT

e−2sαξ3|ϕ|2 dS dt

+sλ

∫
ΓT

e−2sαξ|∂νϕ|2 dS dt

≤ Cs3λ4

∫ T

0

∫
ω

e−2sαξ3|ϕ|2 dx dt

+C

∫
ΩT

e−2sα|f |2 dx dt + C

∫
ΓT

e−2sα|g |2 dS dt.
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Proof :

We define
ψ := e−sαϕ

and rewrite the adjoint equation as

M1ψ + M2ψ = f̃ in ΩT , N1ψ + N2ψ = g̃ on ΓT ,

with the abbreviations

M1ψ := ∂tψ − 2sλ2ψξ|∇η0|2 − 2sλξ∇ψ · ∇η0,

M2ψ := ∆ψ + s2λ2ψξ2|∇η0|2 + sψ∂tα,

N1ψ := ∂tψ + sλψξ∂νη
0

N2ψ := δ∆Γψ + sψ∂tα− ∂νψ,
f̃ := e−sαf + sλψξ∆η0 − sλ2ψξ|∇η0|2 + aψ,

g̃ := e−sαg + bψ.
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Proof :

2∑
i=1

[‖Miψ‖2
L2(ΩT ) + ‖Niψ‖2

L2(ΓT )] + s3λ4

∫
ΩT

ξ3ψ2 dx dt + sλ2

∫
ΩT

ξ|∇ψ|2 dx dt

+ s3λ3

∫
ΓT

ξ3ψ2 dS dt + sλ

∫
ΓT

ξ|∇Γψ|2 dS dt + sλ

∫
ΓT

ξ(∂νψ)2 dS dt

≤ C

∫
ΩT

e−2sα|f |2 dx dt + C

∫
ΓT

e−2sα|g |2 dS dt

+ Cs3λ4

∫
(0,T )×ω

ξ3ψ2 dx dt + Csλ2

∫
(0,T )×ω

ξ|∇ψ|2 dx dt

+ Csλ2

∫
ΓT

(∂νη
0)2ξψ∂νψ dS dt + Csλ

∫
ΓT

ξ∂νη
0∂νψψ dS dt

+ Csλ

∫
ΓT

ξψ|∇Γ∂νη
0| |∇Γψ| dS dt + Csλ

∫
ΓT

ξ|∂νη0| |∇Γψ|2 dS dt.
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For the last integral, we have

Csλ

∫
ΓT

|∂νη0ξ|∇Γψ|2 dS dt ≤ Csλ

∫ T

0
ξ‖∇Γψ‖2

L2(Γ) dt

≤ C

∫ T

0

(
s−1/2ξ−1/2‖ψ‖H2(Γ)

)(
s3/2λξ3/2‖ψ‖L2(Γ)

)
dt

≤ εs−1

∫
ΓT

ξ−1|∆Γψ|2 dS dt + Cεs
3λ2

∫
ΓT

ξ3|ψ|2 dS dt.

We used the interpolation inequality

‖∇Γψ‖2
L2(Γ) ≤ C‖ψ‖H2(Γ)‖ψ‖L2(Γ), ‖·‖L2(Γ)+‖∆Γ·‖L2(Γ) ≡ ‖·‖H2(Γ).

δ∆Γψ = N2ψ − sψ∂tα + ∂νψ

.
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∫
ΓT

ξ−1|∆Γψ|2 dS dt + Cεs
3λ2

∫
ΓT

ξ3|ψ|2 dS dt.

We used the interpolation inequality

‖∇Γψ‖2
L2(Γ) ≤ C‖ψ‖H2(Γ)‖ψ‖L2(Γ), ‖·‖L2(Γ)+‖∆Γ·‖L2(Γ) ≡ ‖·‖H2(Γ).

δ∆Γψ = N2ψ − sψ∂tα + ∂νψ

.
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Observability Inequality

Lemma

For f = g = 0, we obtain the following fundamental estimates∫ 3T
4

T
4

∫
Ω
|ϕ|2 dx dt +

∫ 3T
4

T
4

∫
Γ
|ϕΓ|2 dS dt

≤ C

∫ T

0

∫
ω
|ϕ|2 dx dt

and

‖ϕ(0, ·)‖2
L2 ≤ C‖ϕ(t, ·)‖2

L2 , 0 ≤ t ≤ T .
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Observability Inequality

Proposition

Let T > 0, a nonempty open set ω b Ω and a ∈ L∞(ΩT ) and
b ∈ L∞(ΓT ). Then there is a constant C > 0 ( depending on
Ω, ω, ‖a‖∞, ‖b‖∞) such that

‖ϕ(0, ·)‖2
L2(Ω) + ‖ϕΓ(0, ·)‖2

L2(Γ) ≤ C

∫ T

0

∫
ω
|ϕ|2 dx dt

for every mild solution ϕ of the homogeneous backward problem

− ∂tϕ− d∆ϕ+ a(t, x)ϕ = 0 in ΩT ,

−∂tϕΓ − δ∆ΓϕΓ + d∂νϕ+ b(t, x)ϕΓ = 0 on ΓT

ϕ(T , ·) = ϕT in Ω,

Null Controllability for Parabolic Systems with Dynamic Boundary Conditions L. Maniar, Cadi Ayyad University



Null Controllability

Theorem

Let T > 0 and coefficients d , δ > 0, a ∈ L∞(ΩT ) and b ∈ L∞(ΓT )
be given. Then for each nonempty open set ω b Ω and for all data
y0, y0,Γ, there is a control v ∈ L2((0,T )× ω) such that the mild
solution y of (4)–(6) satisfies y(T , ·) = yΓ(T , ·) = 0.
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Null controllability for boundary controls

Consider the Parabolic equation with dynamic boundary conditions
and a control on a part Γ0 of the boundary Γ

∂ty − d∆y + a(t, x)y = 0,

∂tyΓ − δ∆ΓyΓ + d(∂νy)|Γ + b(t, x)yΓ = v1Γ0 , (11)

y(0, ·) = y0, yΓ(0, ·) = y0,Γ.

Proposition

Let y0 ∈ H2 with y0 ∈W
2−2/p
p (Ω) for some p > (N + 2)/2. Then

there is a control v ∈ L2((0,T ); L2
loc(Γ0)) such that the solution y

of (11) satisfies y(T , ·) = 0 on Ω.
This solution is contained in H1(0,T ; L2(Ω)) ∩ L2(0,T ; H2(Ω))
and has a trace in H1(0,T ; H1/2(Γ′)) ∩ L2(0,T ; H5/2(Γ′))
where Γ′ = (Γ \ Γ0) ∪ Γ1 for any Γ1 b Γ0.
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Systems of parabolic equations with dynamic boundary conditions


∂ty − D∆y + Ay = Bχωv(t, x) in (0,T )× Ω,

∂tyΓ − DΓ∆ΓyΓ + D(∂νy)|Γ + AΓ(t, x)y = 0 in (0,T )× Γ,

(y , yΓ)|t=0 = (y0, y0,Γ) in Ω× Γ,
(12)

where A = (aij)1≤i ,j≤n, AΓ = (aΓ
ij)1≤i ,j≤n and D = diag(d , · · · , d),

DΓ = diag(δ, · · · , δ), B is a n ×m matrix, v = (v1, · · · , vm)∗.

The aim : The system (12) is null controllable iff

rank[B,AB, . . . ,An−1B] = n. (13)

This question has been extensively studied, in the case of Static
boundary conditions, and several optimal results are obtained by :
Ammar-Khodja, Benabdellah, de Teresa, Dupaix, Dermenjian,
Fernandez-Cara, González-Burgos, ....
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Null Controllability for Parabolic Systems with Dynamic Boundary Conditions L. Maniar, Cadi Ayyad University



Sufficient Condition

Theorem

Let T > 0, ω b Ω be nonempty and open,
A ∈ L(Rn),B ∈ L(Rm,Rn) such that (13) holds, and
C ∈ (L∞(ΓT ))n

2
.

Then, system (12) is null controllable on [0,T ].

Proposition

Let T > 0, ω ⊂ Ω be nonempty and open, A ∈ L(Rn),
B ∈ L(Rm,Rn) such that (15) holds. There is a constant C > 0
such that for all ϕT ∈ (L2)n the mild solution ϕ of the adjoint
system of (12) satisfies the Observability Inequality

‖ϕ(0, ·)‖2
(L2)n ≤ C

∫
ωT

|B∗ϕ|2 dx dt. (14)
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Carleman estimate for systems

Theorem

Let T > 0, ω b Ω be nonempty and open, A and B satisfy the
condition (13) and C ∈ L∞(ΓT )n

2
. Then, there exists λ̂ > 0 and

l ≥ 3 such that for every λ ≥ λ̂, we can choose s0(λ, l) satisfying :
there is a constant C (λ, l) > 0 such that every solution ϕ of of the
adjoint system of (12) satisfies

n∑
i=1

J(3(n − i), ϕi ) ≤ Cs l
∫
ω×(0,T )

γ le−2sα|B∗ϕ|2 dx dt

for all s ≥ s0(λ, l). The term J(k, z) is given by

J(k, z) = sk+1

∫
Q
γk+1e−2sα|∇z |2 dx dt + sk+1

∫
ΓT

γk+1e−2sα|∇Γz |2

+ sk+3

∫
ΩT

γk+3e−2sα|z |2 dx dt + sk+3

∫
ΓT

γk+3e−2sα|z |2 dS dt

+ sk+1

∫
ΓT

γk+1e−2sα|∂νϕ|2 dS dt.
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Comments and open Problems

– The necessary conditions of the null controllability of the above
systems can be obtained in the particular case :

AΓ = A.

– The General case AΓ 6= A is open.

– The case of D = diag(d1, . . . , dn) and DΓ = diag(δ1, . . . , δn) is
also an open problem.

Ammar-Khodja et al. showed that

System (12) (with static boundary case )is null controllable iff

rank[−λpD + A|B] = n, ∀p ≥ 1. (15)
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Comments and open Problems

In this work, the regularity of the surface diffusion δ∆Γ in the
boundary equation played a crucial role to absorb some boundary
integrals.

In the case δ = 0, i.e.,

∂ty − D∆y + Ay = v1ω,

∂tyΓ + D(∂νy)|Γ + CyΓ = 0

y(0, ·) = y0, yΓ(0, ·) = y0,Γ.

we could not show a Carleman estimate ! !.
- Could we show a uniform Carleman estimate on δ and tend δ to
0 ? ?
- Could we reobtain the case of static boundary conditions by
tending δ to ∞.
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Thank you very much for your attention
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