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Introduction
Linear difference equations

Σ(Λ,A) : x(t) =
N∑

j=1
Aj(t)x(t − Λj), t ≥ 0.

Λ1, . . . ,ΛN : positive delays.
A1(t), . . . ,AN(t): time-dependent d × d matrices.
x(t) ∈ Cd .
Notation: Λmin = mini Λi , Λmax = maxi Λi .

Motivation:

Applications to some hyperbolic PDEs.
Generalization of previous results: N = 1, autonomous.
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Introduction
Motivation: transport systems

Hyperbolic PDEs → difference equations: [Cooke, Krumme; 1968],
[Slemrod; 1971], [Greenberg, Li; 1984], [Coron, Bastin, d’Andréa Novel;
2008], [Fridman, Mondié, Saldivar; 2010], [Gugat, Sigalotti; 2010]...



∂tui (t, ξ) + ∂ξui (t, ξ) + αi (t, ξ)ui (t, ξ) = 0,
t ∈ R+, ξ ∈ [0,Λi ], i ∈ J1,NK,

ui (t, 0) =
N∑

j=1
mij(t)uj(t,Λj), t ∈ R+, i ∈ J1,NK.

Method of characteristics: for t ≥ Λmax,

ui (t, 0) =
N∑

j=1
mij(t)uj(t,Λj) =

N∑
j=1

mij(t)e−
r Λj
0 αj (t−s,Λj−s)dsuj(t − Λj , 0).

Set x(t) = (ui (t, 0))i∈J1,NK. Then x satisfies a difference equation.
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Introduction
Motivation: wave propagation on networks

Λ1

Λ2

Λ3

ΛN

Edges: E
Vertices: V

∂2ttui (t, ξ) = ∂2ξξui (t, ξ)
ui (t, q) = uj(t, q), ∀q ∈ V, ∀i , j ∈ Eq

+ conditions on vertices.
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Introduction
Motivation: wave propagation on networks

D’Alembert decomposition on travelling waves:

System of 2N transport equations.
Can be reduced to a system of difference equations.
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Introduction
Motivation: case N = 1

When N = 1: x(t) = A(t)x(t − Λ).
Can be reduced to xn = Anxn−1.

Autonomous system Arbitrary switching
xn = Axn−1 xn = Anxn−1
A ∈Md (C) An ∈ B ⊂Md (C)

Exponential stability
⇐⇒ ρ(A) < 1

Uniform exponential stability
⇐⇒ ρJ(B) < 1

Finite-time stability
⇐⇒ ρ(A) = 0

Finite-time stability
⇐⇒ ρJ(B) = 0

ρ(A) = lim
n→+∞

|An|
1
n

= max
λ∈σ(A)

|λ|
ρJ(B) = lim

n→+∞
sup

A1,...,An∈B
|A1A2 · · ·An|

1
n

(cf. [Jungers; 2009])
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Introduction
Motivation: autonomous case

Σaut(Λ,A) : x(t) =
N∑

j=1
Ajx(t − Λj), t ≥ 0

[Cruz, Hale; 1970], [Henry; 1974], [Michiels et al.; 2009]...
Studied through spectral methods.

Stability: real parts of the roots of det

Id− N∑
j=1

Aje−sΛj

 = 0

(exponential polynomial, see [Avellar, Hale; 1980]).
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Introduction
Motivation: autonomous case

Let ρHS(A) = max
(θ1,...,θN )∈[0,2π]N

ρ

 N∑
j=1

Ajeiθj

.
Theorem ([Hale; 1975], [Silkowski; 1976])
The following are equivalent:

ρHS(A) < 1;
Σaut(Λ,A) is exponentially stable for some Λ ∈ (0,+∞)N with
rationally independent components;
Σaut(Λ,A) is exponentially stable for every Λ ∈ (0,+∞)N .

Still true if we replace ρHS(A) < 1 by ρHS(A) = 0 and
exponential by finite-time stability.
For rationally dependent delays: [Michiels et al.; 2009].
Can this be generalized to the non-autonomous case?
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Introduction
Main problem

Main problem: exponential stability of the non-autonomous system
Σ(Λ,A) uniformly with respect to a given class A of functions
A : R→Md (C)N .

The techniques from the autonomous case cannot be applied.
Our approach: explicit formula for solutions of Σ(Λ,A).
When A = L∞(R,B), we obtain a generalization of
Hale–Silkowski’s Theorem.

Exponential stability criteria:
Autonomous Arbitrary switching

N = 1 ρ(A) < 1 ρJ(B) < 1
any N ρHS(A) < 1
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Stability analysis
Explicit solution (I)

Σ(Λ,A) : x(t) =
N∑

j=1
Aj(t)x(t − Λj), t ≥ 0

Solution with initial condition x0 : [−Λmax, 0)→ Cd : x satisfying
Σ(Λ,A) for t ≥ 0 and x(t) = x0(t) for −Λmax ≤ t < 0.

Lemma
The solution x : [−Λmax,+∞)→ Cd of Σ(Λ,A) with initial
condition x0 : [−Λmax, 0)→ Cd is, for t ≥ 0,
x(t) =

∑
n∈NN

t<Λ·n≤t+Λmax

∑
j∈J1,NK

Λ·n−Λj≤t

ΞΛ,A
n−ej ,tAj(t − Λ · n + Λj)x0(t − Λ · n),

where the matrices ΞΛ,A
n,t are defined recursively by

ΞΛ,A
n,t =

∑N
k=1
nk≥1

Ak(t)ΞΛ,A
n−ek ,t−Λk

, ΞΛ,A
0,t = Idd .
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Stability analysis
Stability analysis (I)

Σ(Λ,A) : x(t) =
N∑

j=1
Aj(t)x(t − Λj), t ≥ 0

Xp = Lp([−Λmax, 0],Cd ), p ∈ [1,+∞]
A: set of uniformly locally bounded functions taking values in
N-tuples of matrices
Σ(Λ,A): family of systems Σ(Λ,A) for A ∈ A.
For x solution of Σ(Λ,A), xt = x(t + ·)|[−Λmax,0] ∈ Xp.
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Stability analysis
Stability analysis (I)

Definition
Σ(Λ,A) is of:

exponential type γ in Xp if ∀ε > 0 ∃K > 0 s.t. ∀A ∈ A,
∀x0 ∈ Xp, the solution x satisfies ‖xt‖Xp

≤ Ke(γ+ε)t ‖x0‖Xp
;

Θ-exponential type γ if ∀ε > 0 ∃K > 0 s.t. ∀A ∈ A,
∀n ∈ NN , a.e. t ∈ (Λ · n− Λmax,Λ · n), one has∣∣∣ΘΛ,A

n,t

∣∣∣ ≤ Ke(γ+ε)t ;
Ξ-exponential type γ if ∀ε > 0 ∃K > 0 s.t. ∀A ∈ A,
∀n ∈ NN , a.e. t ∈ R, one has

∣∣∣ΞΛ,A
n,t

∣∣∣ ≤ Ke(γ+ε)Λ·n.

Exponential stability: exponential type γ < 0.
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Stability analysis
Stability analysis (I)

x(t) =
∑

n∈NN
t<Λ·n≤t+Λmax

ΘΛ,A
n,t x0(t − Λ · n), t ≥ 0.

Theorem (Chitour, M., Sigalotti; 2015)
Let Λ ∈ (0,+∞)N and A be uniformly locally bounded.

If Σ(Λ,A) is of Θ-exponential type γ then ∀p ∈ [1,+∞] it is
of exponential type γ in Xp.

Suppose that Λ1, . . . ,ΛN are rationally independent. If
∃p ∈ [1,+∞] such that Σ(Λ,A) is of exponential type γ in
Xp, then it is of Θ-exponential type γ.
Suppose that A is shift-invariant. Then Θ- and Ξ-exponential
types γ are equivalent.
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x(t) =
∑

n∈NN
t<Λ·n≤t+Λmax

ΘΛ,A
n,t x0(t − Λ · n), t ≥ 0.

Theorem (Chitour, M., Sigalotti; 2015)
Let Λ ∈ (0,+∞)N and A be uniformly locally bounded.

If Σ(Λ,A) is of Θ-exponential type γ then ∀p ∈ [1,+∞] it is
of exponential type γ in Xp.
Suppose that Λ1, . . . ,ΛN are rationally independent. If
∃p ∈ [1,+∞] such that Σ(Λ,A) is of exponential type γ in
Xp, then it is of Θ-exponential type γ.

Suppose that A is shift-invariant. Then Θ- and Ξ-exponential
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Stability analysis
Rational dependence of the delays

Let Λ = (Λ1, . . . ,ΛN) ∈ (0,+∞)N . We define

Z (Λ) = {n ∈ ZN | Λ · n = 0},
V (Λ) = {L ∈ RN | Z (Λ) ⊂ Z (L)}, (more rationally dependent)

W (Λ) = {L ∈ RN | Z (Λ) = Z (L)}, (as rationally dependent)

V+(Λ) = V (Λ) ∩ (0,+∞)N , W+(Λ) = W (Λ) ∩ (0,+∞)N .

Example: Λ = (1,
√
2, 1 +

√
2).

Z (Λ) = {(n,m,−n −m) | n,m ∈ Z};
V (Λ) = {(a, b, a + b) | a, b ∈ R};
W (Λ) = {(a, b, a + b) | a, b ∈ R rationally independent}.
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Stability analysis
Rational dependence of the delays

For Λ ∈ (0,+∞)N , define the following equivalence relations on
J1,NK and ZN ,

i ∼ j iff Λi = Λj ,

J = J1,NK/ ∼,
n ≈ n′ iff Λ · n = Λ · n′,

Z = ZN/ ≈ .

For A : R→Md (C)N , L ∈ V+(Λ), [n] ∈ Z, [i ] ∈ J, and t ∈ R,

Ξ̂L,Λ,A
[n],t =

∑
n′∈[n]

ΞL,A
n′,t , ÂΛ

[i](t) =
∑
j∈[i]

Aj(t),

Θ̂L,Λ,A
[n],t =

∑
[j]∈J

L·n−Lj≤t

Ξ̂L,Λ,A
[n−ej ],tÂ

Λ
[j](t − L · n + Lj).
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Λ
[j](t − L · n + Lj).

Stability of difference equations and applications to transport and wave propagation on networks Guilherme Mazanti



Introduction Stability analysis Application to a transport system Relative controllability

Stability analysis
Explicit solution (II)

Lemma (Chitour, M., Sigalotti; 2015)
Let Λ ∈ (0,+∞)N , L ∈ V+(Λ), A : R→Md (C)N , and
x0 : [−Lmax, 0)→ Cd . The corresponding solution
x : [−Lmax,+∞)→ Cd of Σ(L,A) is, for t ≥ 0,

x(t) =
∑

[n]∈Z
t<L·n≤t+Lmax

∑
[j]∈J

L·n−Lj≤t

Ξ̂L,Λ,A
[n−ej ],tÂ

Λ
[j](t − L · n + Lj)x0(t − L · n)
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Stability analysis
Stability analysis (II)

We can define exponential types for Θ̂ and Ξ̂ similarly. Since they
depend on Λ, we write (Θ̂,Λ)- and (Ξ̂,Λ)-exponential types.

Theorem (Chitour, M., Sigalotti; 2015)
Let Λ ∈ (0,+∞)N and A be uniformly locally bounded.

Let L ∈ V+(Λ). If Σ(L,A) is of (Θ̂,Λ)-exponential type γ
then ∀p ∈ [1,+∞] it is of exponential type γ in Xp.
Let L ∈W+(Λ). If ∃p ∈ [1,+∞] such that Σ(L,A) is of
exponential type γ in Xp, then it is of (Θ̂,Λ)-exponential type
γ.
Suppose that A is shift-invariant. Then (Θ̂,Λ)- and
(Ξ̂,Λ)-exponential types γ are equivalent.
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Stability analysis
Maximal Lyapunov exponent

Definition
The maximal Lyapunov exponent of Σ(L,A) in Xp is

λp(L,A) = lim sup
t→+∞

sup
A∈A

sup
x0∈Xp
‖x0‖Xp =1

log ‖xt‖Xp

t .

Proposition
λp(L,A) = inf{γ ∈ R | Σ(L,A) is of exponential type γ in Xp}.
In particular,

Σ(L,A) exponentially stable ⇐⇒ λp(L,A) < 0.

By the previous results, λp(L,A) does not depend on p.
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Stability analysis
Maximal Lyapunov exponent

Theorem (Chitour, M., Sigalotti; 2015)
Let Λ ∈ (0,+∞)N and suppose that A is shift-invariant. For every
L ∈W+(Λ) and p ∈ [1,+∞],

λp(L,A) = lim sup
|n|1→+∞

sup
A∈A

ess sup
t∈R

log
∣∣∣Ξ̂L,Λ,A

n,t

∣∣∣
L · n .
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Stability analysis
Arbitrary switching

Σ(L,A) : x(t) =
N∑

j=1
Aj(t)x(t − Lj), t ≥ 0.

B ⊂Md (C)N : bounded set of N-tuples of matrices.
A = L∞(R,B).
(A1(t), . . . ,AN(t)) is any measurable function taking values
on B: switched system with arbitrary switching signal.
In this case, one can obtain more precise results.
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Stability analysis
Arbitrary switching

Using the recurrence relation for ΞL,A
n,t , we obtain:

Ξ̂L,Λ,A
[n],t =

∑
n′∈[n]∩NN

∑
v∈Vn′

|n′|1∏
k=1

Avk

(
t −

k−1∑
r=1

Lvr

)
.

Vn: set of all permutations of (1, . . . , 1︸ ︷︷ ︸
n1 times

, 2, . . . , 2︸ ︷︷ ︸
n2 times

, . . . ,N, . . . ,N︸ ︷︷ ︸
nN times

).

Definition

µ(Λ,B) = lim sup
ξ→+∞
ξ∈L(Λ)

sup
Br∈B

for r∈Lξ(Λ)

∣∣∣∣∣∣∣∣
∑

n∈NN
Λ·n=ξ

∑
v∈Vn

|n|1∏
k=1

B
Λv1+...+Λvk−1
vk

∣∣∣∣∣∣∣∣
1
ξ

,

where L(Λ) = {Λ · n | n ∈ NN} and Lξ(Λ) = L(Λ) ∩ [0, ξ).
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Stability analysis
Arbitrary switching

Theorem (Chitour, M., Sigalotti; 2015)
λp(Λ,A) = logµ(Λ,B);

for every L ∈ V+(Λ), λp(L,A) ≤ m1 logµ(Λ,B);
for every L ∈W+(Λ), m2λp(Λ,A) ≤ λp(L,A) ≤ m1λp(Λ,A).

Here, {m1,m2} =
{
minj∈J1,NK

Λj
Lj
,maxj∈J1,NK

Λj
Lj

}
.

Corollary
The following statements are equivalent:

µ(Λ,B) < 1;
Σ(Λ,A) is exponentially stable in Xp for some p ∈ [1,+∞];
Σ(L,A) is exponentially stable in Xp for every p ∈ [1,+∞]
and L ∈ V+(Λ).
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Stability analysis
Conclusion

Exponential stability criteria:
Autonomous Arbitrary switching

N = 1 ρ(A) < 1 ρJ(B) < 1
any N ρHS(A) < 1 µ(Λ,B) < 1

Interesting questions:

Both ρ(A) and ρJ(B) are limits and limn→+∞ can be replaced by
infn∈N∗ . Is the same true for µ(Λ,B)?
ρ(A) = 0, ρJ(B) = 0, and ρHS(A) = 0 are equivalent to
convergence in finite time. Is this also true for µ(Λ,B)?
Can we numerically compute or approximate µ? (For ρJ, this
problem is NP-hard, Turing-undecidable, and non-algebraic, but
several useful bounds and approximations exist, see [Jungers; 2009]).
What can we say if Λ1, . . . ,ΛN are time-dependent?
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Application to a transport system
Transport system



∂tui (t, ξ) + ∂ξui (t, ξ) + αi (t)χi (ξ)ui (t, ξ) = 0,
t ∈ R+, ξ ∈ [0, Li ], i ∈ J1,NdK,

∂tui (t, ξ) + ∂ξui (t, ξ) = 0, t ∈ R+, ξ ∈ [0, Li ], i ∈ JNd + 1,NK,

ui (t, 0) =
N∑

j=1
mijuj(t, Lj), t ∈ R+, i ∈ J1,NK.

χi : characteristic function of an interval [ai , bi ] ⊂ [0, Li ].
M = (mij)1≤i ,j≤N : transmission matrix.
αi is persistently exciting for i ∈ J1,NdK.
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Application to a transport system
Persistence of excitation

Persistently exciting (PE) signals: for T ≥ µ > 0, we say that
α ∈ G(T , µ) if α ∈ L∞(R; [0, 1]) and

∀t ∈ R,
w t+T

t
α(s)ds ≥ µ.

G(T , µ) is shift-invariant.

Introduced in the context of identification and adaptive
control [Anderson; 1977].
Much studied in finite-dimensional control systems [Chitour,
Sigalotti; 2010], [Chitour, M., Sigalotti; 2013].
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Application to a transport system
Main result

Hypotheses:
There exist i , j ∈ J1,NK such that Li

Lj
/∈ Q.

|M|1 ≤ 1 and mij 6= 0 for every i , j ∈ J1,NK.

Theorem
∀T ≥ µ > 0, ∃C , γ > 0 s.t., ∀p ∈ [1,+∞], ∀ui ,0 ∈ Lp(0, Li ),
i ∈ J1,NK, and ∀αk ∈ G(T , µ), k ∈ J1,NdK, the corresponding
solution satisfies

N∑
i=1
‖ui (t)‖Lp(0,Li ) ≤ Ce−γt

N∑
i=1
‖ui ,0‖Lp(0,Li ) , ∀t ≥ 0.
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Application to a transport system
Technique of the proof

For t ≥ Lmax:

ui (t, 0) =
N∑

j=1
mijuj(t, Lj) =

N∑
j=1

mije
−

r t−Lj +bj
t−Lj +aj

αj (s)dsuj(t−Lj , 0)

Set x(t) = (ui (t, 0))i∈J1,NK. Then x satisfies the difference
equation

x(t) =
N∑

k=1
Ak(t)x(t − Lk)

with
Ak(t) =

(
δjkmije

−
r t−Lj +bj

t−Lj +aj
αj (s)ds

)
i ,j∈J1,NK

It suffices to show that such difference equation is
(Ξ̂, L)-exponentially stable. We study the behavior of the
coefficients ΞL,A

n,t as |n|1 → +∞.
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Application to a transport system
Technique of the proof

Decomposition of the set NN .
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Application to a transport system
Technique of the proof

Decomposition of the set NN .

Nb(ρ) = {n ∈ NN |
∃k ∈ J1,NK s.t. nk ≤ ρ |n|1}

Nc(ρ) = {n ∈ NN |
nk > ρ |n|1 , ∀k ∈ J1,NK}
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Application to a transport system
Technique of the proof

Decomposition of the set NN .

Nb(ρ) = {n ∈ NN |
∃k ∈ J1,NK s.t. nk ≤ ρ |n|1}

Nc(ρ) = {n ∈ NN |
nk > ρ |n|1 , ∀k ∈ J1,NK}

combinatorial estimate
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Application to a transport system
Technique of the proof

In Nc(ρ): “box lemma”

Stability of difference equations and applications to transport and wave propagation on networks Guilherme Mazanti



Introduction Stability analysis Application to a transport system Relative controllability

Application to a transport system
Technique of the proof

In Nc(ρ): “box lemma”

e−
r t−L·n+bk

t−L·n+ak
αk (s)ds

Stability of difference equations and applications to transport and wave propagation on networks Guilherme Mazanti



Introduction Stability analysis Application to a transport system Relative controllability

Application to a transport system
Technique of the proof

In Nc(ρ): “box lemma”

e−
r t−L·n+bk

t−L·n+ak
αk (s)ds ≤ η
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Application to a transport system
Technique of the proof

In Nc(ρ): “box lemma”

Find η ∈ (0, 1) such that e−
r t−L·n+bk

t−L·n+ak
αk (s)ds ≤ η “often enough”
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Application to a transport system
Technique of the proof

In Nc(ρ): “box lemma”

∃η ∈ (0, 1),
∃ size K of box s.t
∀ box of size K ,
∃ point in the box where
e−

r t−L·n+bk
t−L·n+ak

αk (s)ds ≤ η

Important:
Li
Lj
/∈ Q

α ∈ G(T , µ)
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Application to a transport system
Technique of the proof

In Nc(ρ): “box lemma”

∃η ∈ (0, 1),
∃ size K of box s.t
∀ box of size K ,
∃ point in the box where
e−

r t−L·n+bk
t−L·n+ak

αk (s)ds ≤ η

Important:
Li
Lj
/∈ Q

α ∈ G(T , µ)

====⇒ΞL,A
n,t decreases exponentially with n in Nc(ρ)
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Application to a transport system
Technique of the proof

In Nc(ρ): “box lemma”

∃η ∈ (0, 1),
∃ size K of box s.t
∀ box of size K ,
∃ point in the box where
e−

r t−L·n+bk
t−L·n+ak

αk (s)ds ≤ η

Important:
Li
Lj
/∈ Q

α ∈ G(T , µ)

====⇒ΞL,A
n,t decreases exponentially with n in Nc(ρ)

=⇒ the solutions converge exponentially �
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Relative controllability
Definition

Σcontr : x(t) =
N∑

j=1
Ajx(t − Λj) + Bu(t), t ≥ 0.

For every initial condition x0 : [−Λmax, 0)→ Cd and control
u : [0,T ]→ Cm, Σcontr admits a unique solution
x : [−Λmax,T ]→ Cd (no regularity assumptions!).

Definition
We say that Σcontr is relatively controllable in time T > 0 if, for
every x0 : [−Λmax, 0)→ Cd and x1 ∈ Cd , there exists
u : [0,T ]→ Cm such that the unique solution x of Σcontr with
initial condition x0 and control u satisfies x(T ) = x1.
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Relative controllability
Explicit formula

Similarly to the stability analysis, we use an explicit formula for the
solutions in order to characterize relative controllability.

Lemma (Explicit solution)
Let u : [0,T ]→ Cm. The solution x : [−Λmax,T ]→ Cd of Σcontr
with zero initial condition and control u is, for t ∈ [0,T ],

x(t) =
∑

[n]∈Z
Λ·n≤t

Bu(t − Λ · n).

By linearity, solution with initial condition x0 and control u is the
sum of this formula with the previous one.
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Similarly to the stability analysis, we use an explicit formula for the
solutions in order to characterize relative controllability.

Lemma (Explicit solution)
Let u : [0,T ]→ Cm. The solution x : [−Λmax,T ]→ Cd of Σcontr
with zero initial condition and control u is, for t ∈ [0,T ],

x(t) =
∑

[n]∈Z
Λ·n≤t

Ξ̂L,Λ,A
n,t Bu(t − Λ · n).

By linearity, solution with initial condition x0 and control u is the
sum of this formula with the previous one.
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Relative controllability
Relative controllability criterion

Theorem (M.; 2016)
The following statements are equivalent:

Σcontr is relatively controllable in time T ;

Span
{

Ξ̂Λ,A
[n] Bw | n ∈ NN , Λ · n ≤ T , w ∈ Cm

}
= Cd ;

∃ε0 > 0 such that, for every ε ∈ (0, ε0), x0 : [−Λmax, 0)→ Cd , and
x1 : [0, ε]→ Cd , there exists u : [0,T + ε]→ Cm such that the
solution x of Σcontr with initial condition x0 and control u satisfies
x(T + ·)|[0,ε] = x1;

∃ε0 > 0 such that, for every p ∈ [1,+∞], ε ∈ (0, ε0),
x0 ∈ Lp((−Λmax, 0),Cd ), and x1 ∈ Lp((0, ε),Cd ), there exists
u ∈ Lp((0,T + ε),Cm) such that the solution x of Σcontr with initial
condition x0 and control u satisfies x ∈ Lp((−Λmax,T + ε),Cd ) and
x(T + ·)|[0,ε] = x1.
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Relative controllability
Relative controllability criterion

Can also be generalized to other spaces (e.g., Ck).

Generalizes Kalman criterion: for x(t) = Ax(t − 1) + Bu(t),
one has

Span
{

Ξ̂Λ,A
n Bw | n ∈ NN , Λ · n ≤ T , w ∈ Cm

}
= Ran

(
B AB A2B · · · AbTcB

)
.

Theorem (M.; 2016)
If Σcontr is relatively controllable in some time T > 0, then it
is also relatively controllable in time T = (d − 1)Λmax.

If Λ1, . . . ,ΛN are rationally independent, then Σcontr is
relatively controllable in some time T > 0 if and only if

Span
{

ΞA
nBej | n ∈ NN , |n|1 ≤ d − 1, j ∈ J1,mK

}
= Cd .
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