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Introduction

Linear difference equations

(N A): x(t) = XN:Aj(t)X(t —N\j), t>0.
=1

@ A1,...,An: positive delays.
@ Ai(t),...,An(t): time-dependent d x d matrices.
o x(t) € CY.

@ Notation: Amin = min; Aj, Amax = max; A;.
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Introduction

Linear difference equations

(N A): x(t) = zN:Aj(t)x(t —N\j), t>0.
=1

@ A1,...,An: positive delays.

@ Ai(t),...,An(t): time-dependent d x d matrices.

o x(t) € CY.

@ Notation: Amin = min; Aj, Amax = max; A;.
Motivation:

@ Applications to some hyperbolic PDEs.

@ Generalization of previous results: N = 1, autonomous.
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Introduction

Motivation: transport systems

Hyperbolic PDEs — difference equations: [Cooke, Krumme; 1968],
[Slemrod; 1971], [Greenberg, Li; 1984], [Coron, Bastin, d'Andréa Novel;
2008], [Fridman, Mondié, Saldivar; 2010], [Gugat, Sigalotti; 2010]...
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[Slemrod; 1971], [Greenberg, Li; 1984], [Coron, Bastin, d'Andréa Novel;
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atui(tv‘g) + 8§ui(ta€) + ai(t7£)ui(t?§) = 07
te R-H g € [07/\1']7 S [[]-7 N]]?

Zmu Jui(t,Aj), teR, ie[1,N].
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Introduction

Motivation: transport systems

Hyperbolic PDEs — difference equations: [Cooke, Krumme; 1968],
[Slemrod; 1971], [Greenberg, Li; 1984], [Coron, Bastin, d'Andréa Novel;
2008], [Fridman, Mondié, Saldivar; 2010], [Gugat, Sigalotti; 2010]...

atui(tv‘g) + 8§ui(ta€) + ai(t7£)ui(t?§) = 07
te R-H g € [07/\1']7 S [[]-7 N]]?

Zmu Jui(t,Aj), teR, ie[1,N].
Method of characterlstlcs for t > Amax,
N N

i
ui(t,0) = > my(t)u(t, ) =Y my(t)e Jom UEmSNTE (1 A 0).
j=1 =1

Set x(t) = (uj(t,0));cqz,np- Then x satisfies a difference equation.
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Motivation: wave propagation on networks
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Introduction

Motivation: wave propagation on networks

A
Edges: €
Vertices: 'V
A3
A2 An

8§tui(t7 5) = 8§2§ui(t7 5)
ui(t, q) = uj(t, q), VqeV, Vi,je&,
+ conditions on vertices.
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D’'Alembert decomposition on travelling waves:
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Motivation: wave propagation on networks

D’'Alembert decomposition on travelling waves:

System of 2/ transport equations.
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Introduction

Motivation: wave propagation on networks

D’'Alembert decomposition on travelling waves:

System of 2/ transport equations.
Can be reduced to a system of difference equations.
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Introduction

Motivation: case N =1

e When N =1: x(t) = A(t)x(t — N).
@ Can be reduced to x, = Apxp_1.
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Introduction

Motivation: case N =1

e When N =1: x(t) = A(t)x(t — N).
@ Can be reduced to x, = Apxp_1.

Autonomous system
Xp = AXp_1

Ae Md((C)

Exponential stability
— p(A) <1
Finite-time stability
<~ p(A)=0

p(A) = lim |A"|"

n——+00

= max ||
Xeo(A)
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Introduction

Motivation: case N =1

e When N =1: x(t) = A(t)x(t — N).
@ Can be reduced to x, = Apxp_1.

Autonomous system Arbitrary switching
Xp = AXp_1 Xp = AnXp_1
Ae Md(C) A, €8 C Md((C)
Exponential stability Uniform exponential stability
— p(A) <1 — py(B) <1
Finite-time stability Finite-time stability
> p(A)=0 = py(B)=0

. mi
p(A)=lim [A"[n py(B) = lim sup \A1A2~-An|%

n——+00
n—+00 A1,..,An€EDB

= )\rgaa(é\) B (cf. [Jungers; 2009])
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Motivation: autonomous case

N
YA, A) x(t) = Ax(t — Ny), t>0
Jj=1

e [Cruz, Hale; 1970], [Henry; 1974], [Michiels et al.; 2009]...

@ Studied through spectral methods.
N
@ Stability: real parts of the roots of det | Id — Z Aje_SAf =0
j=1
(exponential polynomial, see [Avellar, Hale; 1980]).
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Motivation: autonomous case

N
Let A) = max Aje’
pHS( ) (61’..'79N)€[O727F]Np JX; J

Theorem ([Hale; 1975], [Silkowski; 1976])

The following are equivalent:

@ pus(A) < 1;

o Y2UY(A, A) is exponentially stable for some A € (0, +oc)N with
rationally independent components;

o Y2UY(A, A) is exponentially stable for every A € (0, +o0)N.
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Motivation: autonomous case

N
Let pus(A) = max p (Z Ajeief) .
j=1

(61.....6n)€[0,27]

Theorem ([Hale; 1975], [Silkowski; 1976])

The following are equivalent:

@ pus(A) < 1;
o Y2UY(A, A) is exponentially stable for some A € (0, +oc)N with
rationally independent components;

o Y2UY(A, A) is exponentially stable for every A € (0, +o0)N.

o Still true if we replace ppys(A) < 1 by pps(A) =0 and
exponential by finite-time stability.

e For rationally dependent delays: [Michiels et al.; 2009].

@ Can this be generalized to the non-autonomous case?
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Main problem

Main problem: exponential stability of the non-autonomous system
Y (A, A) uniformly with respect to a given class A of functions
AR — My(C)V.
@ The techniques from the autonomous case cannot be applied.
@ Our approach: explicit formula for solutions of £ (A, A).

@ When A = L*(R,B), we obtain a generalization of
Hale—Silkowski's Theorem.
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Introduction
Main problem

Main problem: exponential stability of the non-autonomous system
Y (A, A) uniformly with respect to a given class A of functions
AR — My(C)V.
@ The techniques from the autonomous case cannot be applied.
@ Our approach: explicit formula for solutions of £ (A, A).
@ When A = L*(R,B), we obtain a generalization of
Hale—Silkowski's Theorem.

Exponential stability criteria:

Autonomous Arbitrary switching
N=1 p(A) <1 pi(B) <1
any N pns(A) < 1
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Stability analysis

Stability analysis

Explicit solution (I)

Y(NA): x(t) = iAj(t)x(t - Aj), t>0

Solution with initial condition xg : [~Amax,0) — C9: x satisfying
Y (A, A) for t > 0 and x(t) = xo(t) for —Amax < t < 0.
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Stability analysis

Stability analysis

Explicit solution (I)

Y(NA): x(t) = iAj(t)x(t - Aj), t>0

Solution with initial condition xg : [~Amax,0) — C9: x satisfying
Y (A, A) for t > 0 and x(t) = xo(t) for —Amax < t < 0.

Lemma
The solution x : [~Amax, +00) — C? of X(A, A) with initial
condition xq : [~Amax,0) — C9 is, for t >0,

—AA
()= ) > Enle At —A-n+A)xo(t—A-n),
neNV J€1,N]
t<A-n<t+Amax An—/\JSt

o —AA . g
where the matrices ="y are defined recursively by

=NA _ N =N\A =ANA _
—n,t — Z k=1 Ak(t)—nfek,tfl\p =0t — |dd o
ne>1
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Stability analysis

Explicit solution (I)

Y(NA): x(t) = iAj(t)x(t - Aj), t>0

Solution with initial condition xg : [~Amax,0) — C9: x satisfying
Y (A, A) for t > 0 and x(t) = xo(t) for —Amax < t < 0.

Lemma
The solution x : [~Amax, +00) — C? of X(A, A) with initial
condition xq : [~Amax,0) — C9 is, for t >0,

xt)= > A At — A n+ A)xo(t—A-n),

neNV JELN]
t<A-n<t+Amax /\n—/\JSt

o —AA . g
where the matrices ="y are defined recursively by
—AA N —AA —A\A
Znt = > k=1 Ak(t)= —n—ey,t—NAy> =0t =Idg.
ne>1
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Stability analysis

Stability analysis

Explicit solution (I)

Y(NA): x(t) = iAj(t)x(t - Aj), t>0

Solution with initial condition xg : [~Amax,0) — C9: x satisfying
Y (A, A) for t > 0 and x(t) = xo(t) for —Amax < t < 0.

Lemma

The solution x : [~Amax, +00) — C? of X(A, A) with initial
condition xq : [~Amax,0) — C9 is, for t >0,

x(t)= Y Ohfx(t—A-n),
neNV
t<A-n<t+Amax
where the matrices Eﬁ,\,’tA are defined recursively by

=N\A N =N\A =N\A
=n,t _‘E:k:d Ak( ) —n—ey,t—Ay’ =0,t =ldg.
ne>1
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Stability analysis
Stability analysis (1)

Y(NA): x(t) = ZN:Aj(t)x(t - NA)), t>0

o X, = LP([~Amax,0],C%), p € [1, +<]
e A: set of uniformly locally bounded functions taking values in
N-tuples of matrices

e Y (A, A): family of systems (A, A) for A € A.
o For x solution of (A, A), xe = x(t +)|[_p....0 € Xp-
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Stability analysis
Stability analysis (1)

Y (A, A) is of:
@ exponential type v in X, if Ve > 0 3JK > 0s.t. VAc A,
Vxo € Xp, the solution x satisfies ||x[|y < Kelyt+e)t [1%o0llx,;
@ O-exponential type v if Ve > 0 4K > 0 s.t. VA € A,
Yne NN ae t€ (A n—Apa,A-n), one has
O < kel
@ =-exponential type v if Ve > 0 dK > 0 s.t. VA € A,
VYne NV ae teR, one has Ei,\;tA’ < Kelvte)An,

Exponential stability: exponential type v < 0.
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Stability analysis
Stability analysis (1)

x(t)= Y OMx(t-A-n), t>o0.

neNV
t<A-n<t+Amax

Theorem (Chitour, M., Sigalotti; 2015)

Let A € (0,+00)N and A be uniformly locally bounded.
o If (A, A) is of ©-exponential type y then Vp € [1,+o0] it is
of exponential type v in Xp.
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Stability analysis
Stability analysis (1)

x(t) = Z @Q:fxo(t —A-n), t > 0.

neNV
t<A-n<t+Amax

Theorem (Chitour, M., Sigalotti; 2015)

Let A € (0,+00)N and A be uniformly locally bounded.

o If (A, A) is of ©-exponential type y then Vp € [1,+o0] it is
of exponential type v in Xp.

@ Suppose that N1, ..., Ay are rationally independent. If
dp € [1,+00] such that (A, A) is of exponential type v in
Xp, then it is of ©-exponential type .
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Stability analysis
Stability analysis (1)

x(t) = Z @Q:fxo(t —A-n), t > 0.

neNV
t<A-n<t+Amax

Theorem (Chitour, M., Sigalotti; 2015)

Let A € (0,+00)N and A be uniformly locally bounded.
o If (A, A) is of ©-exponential type y then Vp € [1,+o0] it is
of exponential type v in Xp.

@ Suppose that N1, ..., Ay are rationally independent. If
dp € [1,+00] such that (A, A) is of exponential type v in
Xp, then it is of ©-exponential type .

@ Suppose that A is shift-invariant. Then ©- and =-exponential
types v are equivalent.
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Stability analysis

Rational dependence of the delays

Let A= (A1,...,An) € (0,4+00)N. We define

ZIN)={neZV|A-n=0},
V(A) = {LeRY | Z(N) C Z(L)},
W(A) = {Le RV | Z(N) = Z(L)},
Vi(A) = V(A)N(0,+0)V, Wi (A) = W(A)N (0, +o0)V.
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Stability analysis

Rational dependence of the delays

Let A= (A1,...,An) € (0,4+00)N. We define

ZIN)={neZV|A-n=0},
V(A) = {LeRY | Z(N) C Z(L)},
W(A) = {Le RV | Z(N) = Z(L)},
Vi(A) = V(A)N(0,+0)V, Wi (A) = W(A)N (0, +o0)V.

Example: A = (1,v/2, 1+\/§).

Z(A) = {(n, —m)|n,meZ};
()—{(aba—i—b)\a b € R};

° W(/\) = {(a,b,a+ b) | a, b € R rationally independent}.
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Stability analysis

Rational dependence of the delays

For A € (0, +00)N, define the following equivalence relations on
[1, N] and ZV,
i~ jiff Aj =N, n~niff A-n=A-n,
J=[1,N]/ ~, 2=z,

%
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Stability analysis

Rational dependence of the delays

For A € (0, +00)N, define the following equivalence relations on
[1, N] and ZV,

i~ jiff Aj =N, n~niff A-n=A-n,
J=[1,N]/ ~, 2=2")~.
For A:R — My(C)N, Le Vi (N), [n] €2, [i] €43, and t € R,

SLAA —LA -~
=l = > S Aly(8) = > Aj(b),

LAA el LAA Jj€li]

QLNA — =LAA A

Omi = 2 FpogAn(t—LontL).
liled
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Stability analysis

Explicit solution (II)

Lemma (Chitour, M., Sigalotti; 2015)

Let A € (0,+00)N, L€ Vi (N), A: R — My(C)V, and
x0 : [~Lmax,0) — C9. The corresponding solution
X ¢ [=Lmax, +00) — C% of (L, A) is, for t >0,

x)= Y 3 éﬁ;ﬁ’é]?tﬁf}](t —L-n+Lj)x(t—L-n)

[n]ez [1ed
t<l-n<t+Lmax L-n—L;<t
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Stability analysis

Explicit solution (II)

Lemma (Chitour, M., Sigalotti; 2015)

Let A € (0,+00)N, L€ Vi (N), A: R — My(C)V, and
x0 : [~Lmax,0) — C9. The corresponding solution
X ¢ [=Lmax, +00) — C% of (L, A) is, for t >0,

x)= Y 3 éﬁ;ﬁ’é]?tﬁf}](t —L-n+Lj)xo(t — L-n)

[n]ez [j1ed
t<l-n<t+Lmax L-n—L;<t

Stability of difference equations and applications to transport and wave propagation on networks Guilherme Mazanti


http://arxiv.org/abs/1504.01116

Stability analysis

Stability analysis

Explicit solution (II)

Lemma (Chitour, M., Sigalotti; 2015)

Let A € (0,+00)N, L€ Vi (N), A: R — My(C)V, and
x0 : [~Lmax,0) — C9. The corresponding solution
X ¢ [=Lmax, +00) — C% of (L, A) is, for t >0,

x)= Y 3 é[Lr;/i’Q]7t2\O](t —L-n+Lj)x(t—L-n)

[n]ez [1e€d
t<l-n<t+Lmax L-n—L;<t
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Stability analysis

Stability analysis

Explicit solution (II)

Lemma (Chitour, M., Sigalotti; 2015)

Let A € (0,+00)N, L€ Vi (N), A: R — My(C)V, and
x0 : [~Lmax,0) — C9. The corresponding solution
X ¢ [=Lmax, +00) — C% of (L, A) is, for t >0,

x(t) = > é[Lr;]/};Axo(t —L-n)
[n]ez
t<L-n<t+Lmax
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Stability analysis
°

Stability analysis
Stability analysis (I1)

~

We can define exponential types for @ and = similarly. Since they
depend on A, we write (©,\)- and (=, A)-exponential types.
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Stability analysis
°

Stability analysis
Stability analysis (I1)

We can define exponential types for @ and = similarly. Since they
depend on A, we write (©,\)- and (=, A)-exponential types.

Theorem (Chitour, M., Sigalotti; 2015)

Let A € (0,4+00)N and A be uniformly locally bounded.
o Let L e Vi (N). IfF(L,A) is of (©,\)-exponential type ~
then Vp € [1,+00] it is of exponential type 7 in Xp.
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Stability analysis
°

Stability analysis
Stability analysis (I1)

We can define exponential types for @ and = similarly. Since they
depend on A, we write (©,\)- and (=, A)-exponential types.

Theorem (Chitour, M., Sigalotti; 2015)

Let A € (0,4+00)N and A be uniformly locally bounded.
o Let L e Vi (N). IfF(L,A) is of (©,\)-exponential type ~
then Vp € [1,+00] it is of exponential type 7 in Xp.
o Let L € W.(A). If 3p € [1,+00] such that (L, A) is of
exponential type 7y in Xp, then it is of (©, \)-exponential type
7.

Stability of difference equations and applications to transport and wave propagation on networks Guilherme Mazanti


http://arxiv.org/abs/1504.01116

Stability analysis
°

Stability analysis
Stability analysis (I1)

We can define exponential types for @ and = similarly. Since they
depend on A, we write (©,\)- and (=, A)-exponential types.

Theorem (Chitour, M., Sigalotti; 2015)

Let A € (0,4+00)N and A be uniformly locally bounded.

o Let L e Vi (N). IfF(L,A) is of (©,\)-exponential type ~
then Vp € [1,+00] it is of exponential type 7 in Xp.

o Let L € W.(A). If 3p € [1,+00] such that (L, A) is of
exponential type 7y in Xp, then it is of (©, \)-exponential type
7.

© Suppose that A is shift-invariant. Then (©,N)- and
(=, N\)-exponential types ~ are equivalent.
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Stability analysis
®0

Stability analysis

Maximal Lyapunov exponent

Definition
The maximal Lyapunov exponent of ¥(L, A) in X, is
log | x|l
Ap(L, A) = limsup sup sup =
t—+oo AEA x0EXp t
xollx, =1
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Stability analysis
®0

Stability analysis

Maximal Lyapunov exponent

Definition
The maximal Lyapunov exponent of ¥(L, A) in X, is
log | x|l
Ap(L, A) = limsup sup sup =
t—+oo AEA x0EXp t
xollx, =1

Proposition

Ap(L, A) =inf{y € R | X(L, A) is of exponential type v in Xp}.
In particular,
Y (L, A) exponentially stable <= A\,(L,A) < 0.

By the previous results, A,(L, A) does not depend on p.
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Stability analysis
oce

Stability analysis

Maximal Lyapunov exponent

Theorem (Chitour, M., Sigalotti; 2015)

Let A € (0, +oo)N and suppose that A is shift-invariant. For every
Le Wi(A) and p € [1,+0],

Ap(L,A) = limsup sup esssup
[n|;—4o00 AEA  teR L-n
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Stability analysis
®00

Stability analysis

Arbitrary switching

Y(L,A): x(t) = zN:Aj(t)x(t — L), t>0.
=1

o B C My(C)V: bounded set of N-tuples of matrices.

o A= L>*(R,DB).

o (Ai(t),...,An(t)) is any measurable function taking values
on ‘B: switched system with arbitrary switching signal.

@ In this case, one can obtain more precise results.
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Stability analysis

Arbitrary switching

. . —LA :
Using the recurrence relation for ="', we obtain:

|“/|1 k—1
SLAA
St = > > ITAW{t-> L
n’e[n]NNN veV,, k=1 r=1
Va: set of all permutations of (1,...,1,2,...,2,...,N,..., N).
—— N — ——

ni times  np times ny times
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Stability analysis
oeo

Stability analysis

Arbitrary switching

. . —LA :
Using the recurrence relation for ="', we obtain:

[n]; k-1
SLAA
- >y (X))
n’e[n]NNN veV,, k=1 r=1
Va: set of all permutations of (1,...,1,2,...,2,...,N,..., N).
——— ——

——
ni times  np times ny times
Definition
1
3
|n|1

w(A,B) = limsup  sup Z Z H Bckvﬁmﬂ\vk*l 7

§—to0  B'ED N veV, k=1
£cL(n) for rele(n) [REN, VEH

where L(A) = {A-n|n e NN} and Lg(A) = £(A) N[0, €).
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Stability analysis
ooe

Stability analysis

Arbitrary switching

Theorem (Chitour, M., Sigalotti; 2015)
o \p(A,A) = log (A, B);
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Stability analysis
ooe

Stability analysis

Arbitrary switching

Theorem (Chitour, M., Sigalotti; 2015)
o \p(A,A) = log (A, B);
o forevery L € V. (N), A\p(L, A) < mylogp(A,B);
o for every L € Wi (N), mpAp(A,A) < Ap(L,A) < mAp(A,A).

. A; A;
Here, {my, my} = {m'”jeﬂl,N]] L—;, maXx;e[1,n] Tj}
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Stability analysis
ooe

Stability analysis

Arbitrary switching

Theorem (Chitour, M., Sigalotti; 2015)
o \p(A,A) = log (A, B);
o forevery L € V. (N), A\p(L, A) < mylogp(A,B);
o for every L € Wi (N), mpAp(A,A) < Ap(L,A) < mAp(A,A).

I Aj Aj
Here, {my, my} = {mlnje[[l,,v]] T MaXje[1,n] L—j}.

Corollary

The following statements are equivalent:
o u(A,B) <1,
e Y (A, A) is exponentially stable in X, for some p € [1,400];

e Y (L, A) is exponentially stable in X, for every p € [1,4+00]
and L € V. (N).
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Stability analysis
°

Stability analysis

Conclusion

Exponential stability criteria:

Autonomous Arbitrary switching
N=1 p(A) <1 pi(B) < 1
any N pus(A) < 1 w(A,B) <1
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Stability analysis
°

Stability analysis

Conclusion

Exponential stability criteria:

Autonomous Arbitrary switching
N=1 p(A) <1 pi(B) < 1
any N pus(A) < 1 w(A,B) <1

Interesting questions:

@ Both p(A) and p;(*B) are limits and lim,_, o, can be replaced by
infpens. Is the same true for p(A, B)?
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Stability analysis

Conclusion

Exponential stability criteria:

Autonomous Arbitrary switching
N=1 p(A) <1 pi(B) < 1
any N pus(A) < 1 w(A,B) <1

Interesting questions:

@ Both p(A) and p;(*B) are limits and lim,_, o, can be replaced by
infpens. Is the same true for p(A, B)?

@ p(A) =0, py(B) =0, and pus(A) = 0 are equivalent to
convergence in finite time. Is this also true for (A, B)?
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Stability analysis
°

Stability analysis

Conclusion

Exponential stability criteria:

Autonomous Arbitrary switching
N=1 p(A) <1 pi(B) < 1
any N pus(A) < 1 w(A,B) <1

Interesting questions:
@ Both p(A) and p;(*B) are limits and lim,_, o, can be replaced by
infpens. Is the same true for p(A, B)?

@ p(A) =0, py(B) =0, and pus(A) = 0 are equivalent to
convergence in finite time. Is this also true for (A, B)?

@ Can we numerically compute or approximate p? (For pj, this
problem is NP-hard, Turing-undecidable, and non-algebraic, but
several useful bounds and approximations exist, see [Jungers; 2009]).
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Stability analysis
°

Stability analysis

Conclusion

Exponential stability criteria:

Autonomous Arbitrary switching
N=1 p(A) <1 pi(B) < 1
any N pus(A) < 1 w(A,B) <1

Interesting questions:

@ Both p(A) and p;(*B) are limits and lim,_, o, can be replaced by
infpens. Is the same true for p(A, B)?

@ p(A) =0, py(B) =0, and pus(A) = 0 are equivalent to
convergence in finite time. Is this also true for (A, B)?

@ Can we numerically compute or approximate p? (For pj, this
problem is NP-hard, Turing-undecidable, and non-algebraic, but
several useful bounds and approximations exist, see [Jungers; 2009]).

@ What can we say if A1,..., Ay are time-dependent?
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Application to a transport system
[1e}

Application to a transport system

Transport system
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Application to a transport system

Transport system
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Application to a transport system
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Application to a transport system

Transport system
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Application to a transport system
oce

Application to a transport system

Transport system

Opuj(t,6) + Ocui(t, &) + ai(t)xi(§)ui(t, &) =0,
teRy, £€0,L], i€[L, Ny,
Oeui(t,§) +3§Ui(f §)=0, teRy, £€0,L], i€ [Na+1,N],

(t,0) = Zmuuj(t L), teRy, ielL,N].

@ y;: characteristic function of an interval [a;, bj] C [0, L;].
® M= (mj);; ;- transmission matrix.

@ «; is persistently exciting for i € [1, N4].
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Application to a transport system
.

Application to a transport system

Persistence of excitation

e Persistently exciting (PE) signals: for T > u > 0, we say that
ae§(T,p)if ae L®(R;]0, 1]) and

vVt e R, f a(s)ds > p.
e G(T,pu) is shift-invariant.
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Application to a transport system
.

Application to a transport system

Persistence of excitation

Persistently exciting (PE) signals: for T > p > 0, we say that
ae§(T,p)if ae L®(R;]0, 1]) and

vVt e R, f a(s)ds > p.
G(T, p) is shift-invariant.

Introduced in the context of identification and adaptive
control [Anderson; 1977].

@ Much studied in finite-dimensional control systems [Chitour,
Sigalotti; 2010], [Chitour, M., Sigalotti; 2013].
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Application to a transport system
°

Application to a transport system

Main result

Hypotheses:
@ There exist i,j € [1, N] such that ’Z—J' ¢ Q.
e |[M|; <1 and mj; # 0 for every i,j € [1, N].

Theorem

VT >p>0,3C,v>0s.t, Vpe[l,+o00], Yuig € LP(0, L;),
i €[1,N], and Ve € S(T, p), k € [1, Ng], the corresponding
solut/on satisfies

ZHU: Miero,Ly < Ce™

vt > 0.

Stability of difference equations and applications to transport and wave propagation on networks Guilherme Mazanti



Application to a transport system
®00

Application to a transport system
Technique of the proof

@ Fort > Lmax
t— L+b

ui(t,0) Zmuuj(t L)me, it ()5 uj(t—L;,0)

@ Set x(t) = ( i(£,0)) e ng- Then x satisfies the difference
equation

E:'Ak t—-Lk)

with
t—Lj+b;

Aw(t) = <5jkmlje_Jij+aj “f(s)d5>
i JE[L,N]

o It suffices to show that such difference equation is
(=, L)-exponentially stable. We study the behavior of the
coefficients E,L,:tA as |n|; — +o0.
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Application to a transport system
ceo

Application to a transport system
Technique of the proof

Decomposition of the set NV.
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Application to a transport system
ceo

Application to a transport system
Technique of the proof

Decomposition of the set NV.

Np(p) = {n e NV |
Jk € [1,N] sit. nk < pln|;}
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Application to a transport system
ceo

Application to a transport system
Technique of the proof

Decomposition of the set NV.

<combinatoria| estimate

Np(p) = {n e NV |
Jk € [1,N] sit. nk < pln|;}
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Application to a transport system

ooe

Application to a transport system
Technique of the proof

In Ne(p): “box lemma”
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Application to a transport system
ocoe

Application to a transport system
Technique of the proof

In Ne(p): “box lemma”

t—L-n+by

e_ t—L-nt+ay ak(s)ds
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Application to a transport system
ocoe

Application to a transport system
Technique of the proof

In Ne(p): “box lemma”

t—L-n+by
e_ t—L-ntay ak(s)ds S n
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Application to a transport system
ocoe

Application to a transport system
Technique of the proof

In Ne(p): “box lemma”

t—L-n+by

Find n € (0,1) such that e “t-tn+a k(s)ds

< 7 "often enough”
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Application to a transport system
ocoe

Application to a transport system
Technique of the proof

In Ne(p): “box lemma”

377 E (07 1)1
i size K of box s.t Important:
V box of size K, 5%@
3 point in the box where L
P t—Lontby a€§(T,p)

e Jt—Lin+ay o (s)ds <n
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Application to a transport system
ocoe

Application to a transport system
Technique of the proof

In Ne(p): “box lemma”

dn € (0,1),
i size K of box s.t

Important:
V box of size K, 5%@
3 point in the box where L
P t—Lontby a€§(T,p)

e Jt—Lin+ay o (s)ds <n

:E,L,:f‘ decreases exponentially with n in 91.(p)
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Application to a transport system
ocoe

Application to a transport system
Technique of the proof

In Ne(p): “box lemma”

dn € (0,1),
i size K of box s.t

Important:
V box of size K, 5%@
3 point in the box where L
P t—Lontby a€§(T,p)

e Jt—Lin+ay o (s)ds <n

:E,L,:f‘ decreases exponentially with n in 91.(p)
—> the solutions converge exponentially H
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Relative controllability
°

Relative controllability

Definition

2 contr : X(t) = ZAJ'X(t - /\J) + Bu(t), t>0.
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Relative controllability
°

Relative controllability

Definition

N
2 contr : X(t) = ZAJ'X(t - /\J) + Bu(t), t>0.
j=1
For every initial condition xg : [~Amax,0) — C¢ and control
u:[0, T] = C™, Lcontr admits a unique solution
X : [=Amax, T] = C9 (no regularity assumptions!).
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Relative controllability
°

Relative controllability

Definition

N
2 contr - X(t) = ZAJ'X(t - /\J) + Bu(t), t>0.
j=1
For every initial condition xg : [~Amax,0) — C¢ and control
u:[0, T] = C™, Lcontr admits a unique solution
X : [=Amax, T] = C9 (no regularity assumptions!).

Definition

We say that X contr is relatively controllable in time T > 0 if, for
every Xo : [~Amax,0) — C9 and x; € C, there exists

u: [0, T] — C™ such that the unique solution x of X ontr with
initial condition xp and control u satisfies x(T) = x;.
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Relative controllability
.

Relative controllability

Explicit formula

Similarly to the stability analysis, we use an explicit formula for the
solutions in order to characterize relative controllability.

Stability of difference equations and applications to transport and wave propagation on networks Guilherme Mazanti



Relative controllability
.

Relative controllability

Explicit formula

Similarly to the stability analysis, we use an explicit formula for the
solutions in order to characterize relative controllability.

Lemma (Explicit solution)

Let u: [0, T] — C™. The solution x : [~Amax, T] = C? of Leontr
with zero initial condition and control u is, for t € [0, T|,
x(t)= Y =M Bu(t — A - n).

[n]ez
A-n<t
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Relative controllability
.

Relative controllability

Explicit formula

Similarly to the stability analysis, we use an explicit formula for the
solutions in order to characterize relative controllability.

Lemma (Explicit solution)

Let u: [0, T] — C™. The solution x : [~Amax, T] = C? of Leontr
with zero initial condition and control u is, for t € [0, T|,
x(t)= > =Z"Bu(t—A-n).

[n]ez
A-n<t
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Relative controllability
.

Relative controllability

Explicit formula

Similarly to the stability analysis, we use an explicit formula for the
solutions in order to characterize relative controllability.

Lemma (Explicit solution)

Let u: [0, T] — C™. The solution x : [~Amax, T] = C? of Leontr
with zero initial condition and control u is, for t € [0, T|,
x(t)= > =Z"Bu(t—A-n).

[n]ez
A-n<t

By linearity, solution with initial condition xp and control u is the
sum of this formula with the previous one.
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Relative controllability
[ 1}

Relative controllability

Relative controllability criterion

Theorem (M.; 2016)

The following statements are equivalent:

@ X onir Is relatively controllable in time T,

° Span{gﬁl’]ABw|n€NN,/\-n§T,WE(C’"}:(Cd;
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Relative controllability
[ 1}

Relative controllability

Relative controllability criterion

Theorem (M.; 2016)

The following statements are equivalent:

@ X onir Is relatively controllable in time T,
° Span{gﬁl’]ABw|n€NN,/\-n§T,WE(C’"}:(Cd;

@ Jeg > 0 such that, for every € € (0,&0), X0 : [~Amax,0) — C?, and
x; : [0,e] — €9, there exists u : [0, T +¢] — C™ such that the
solution x of Lontr With initial condition xo and control u satisfies
X(T 4 ), =X/
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Relative controllability
[ 1}

Relative controllability

Relative controllability criterion

Theorem (M.; 2016)

The following statements are equivalent:

@ X onir Is relatively controllable in time T,
° Span{gﬁl’]ABw|n€NN,/\-n§T,WE(C’"}:(Cd;

@ Jeg > 0 such that, for every € € (0,&0), X0 : [~Amax,0) — C?, and
x; : [0,e] — €9, there exists u : [0, T +¢] — C™ such that the
solution x of Lontr With initial condition xo and control u satisfies
X(T 4 ), =X/

@ Jeo > 0 such that, for every p € [1,+o¢], € € (0, 0),
x0 € LP((—=Amax,0),C9), and x; € LP((0,¢),CY), there exists
u € LP((0, T +¢€),C™) such that the solution x of Lconte With initial
condition xy and control u satisfies x € LP((—Amax, T +¢),C9) and
X(T + ), = -
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Relative controllability
oce

Relative controllability

Relative controllability criterion

o Can also be generalized to other spaces (e.g., ).
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Relative controllability
oce

Relative controllability

Relative controllability criterion

o Can also be generalized to other spaces (e.g., ).

o Generalizes Kalman criterion: for x(t) = Ax(t — 1) 4+ Bu(t),
one has

Span {éA’ABW IneNV, A-n<T,we (Cm}
=Ran(B AB A’B - AlTIB).
Theorem (M.; 2016)

o If Lcontr Is relatively controllable in some time T > 0, then it
is also relatively controllable in time T = (d — 1)Amax.

<
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Relative controllability
oce

Relative controllability

Relative controllability criterion

o Can also be generalized to other spaces (e.g., ).

o Generalizes Kalman criterion: for x(t) = Ax(t — 1) 4+ Bu(t),
one has

Span {éA’ABW IneNV, A-n<T,we (Cm}
=Ran(B AB A’B - AlTIB).
Theorem (M.; 2016)

o If Lcontr Is relatively controllable in some time T > 0, then it
is also relatively controllable in time T = (d — 1)Amax.

o If\1,..., Ay are rationally independent, then ¥ contr is
relatively controllable in some time T > 0 if and only if

Span {Eﬁ‘Bej IneNV |nj, <d-1, €[l m]]} = .

<
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