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Introduction
Linear difference equations

Σ(Λ,A) : x(t) =
N∑

j=1
Aj(t)x(t − Λj), t ≥ 0.

Λ1, . . . ,ΛN : positive delays.
A1(t), . . . ,AN(t): time-dependent d × d matrices.
x(t) ∈ Cd .
Notation: Λmin = mini Λi , Λmax = maxi Λi .

Motivation:

Applications to some hyperbolic PDEs.
Generalization of previous results: N = 1, autonomous.
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Introduction
Motivation: transport systems

Hyperbolic PDEs → difference equations: [Cooke, Krumme; 1968],
[Slemrod; 1971], [Greenberg, Li; 1984], [Coron, Bastin, d’Andréa Novel;
2008], [Fridman, Mondié, Saldivar; 2010], [Gugat, Sigalotti; 2010]...



∂tui (t, ξ) + ∂ξui (t, ξ) + αi (t, ξ)ui (t, ξ) = 0,
t ∈ R+, ξ ∈ [0,Λi ], i ∈ J1,NK,

ui (t, 0) =
N∑

j=1
mij(t)uj(t,Λj), t ∈ R+, i ∈ J1,NK.

Method of characteristics: for t ≥ Λmax,

ui (t, 0) =
N∑

j=1
mij(t)uj(t,Λj) =

N∑
j=1

mij(t)e−
r Λj
0 αj (t−s,Λj−s)dsuj(t − Λj , 0).

Set x(t) = (ui (t, 0))i∈J1,NK. Then x satisfies a difference equation.
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Introduction
Motivation: wave propagation on networks

Λ1

Λ2

Λ3

ΛN

Edges: E
Vertices: V

∂2ttui (t, ξ) = ∂2ξξui (t, ξ)
ui (t, q) = uj(t, q), ∀q ∈ V, ∀i , j ∈ Eq

+ conditions on vertices.
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Introduction
Motivation: wave propagation on networks

D’Alembert decomposition on travelling waves:

System of 2N transport equations.
Can be reduced to a system of difference equations.
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Introduction
Motivation: case N = 1

When N = 1: x(t) = A(t)x(t − Λ).
Can be reduced to xn = Anxn−1.

Autonomous system Arbitrary switching
xn = Axn−1 xn = Anxn−1
A ∈Md (C) An ∈ B ⊂Md (C)

Exponential stability
⇐⇒ ρ(A) < 1

Uniform exponential stability
⇐⇒ ρJ(B) < 1

Finite-time stability
⇐⇒ ρ(A) = 0

Finite-time stability
⇐⇒ ρJ(B) = 0

ρ(A) = lim
n→+∞

|An|
1
n

= max
λ∈σ(A)

|λ|
ρJ(B) = lim

n→+∞
sup

A1,...,An∈B
|A1A2 · · ·An|

1
n

(cf. [Jungers; 2009])
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Introduction
Motivation: autonomous case

Σaut(Λ,A) : x(t) =
N∑

j=1
Ajx(t − Λj), t ≥ 0

[Cruz, Hale; 1970], [Henry; 1974], [Michiels et al.; 2009]...
Studied through spectral methods.

Stability: real parts of the roots of det

Id− N∑
j=1

Aje−sΛj

 = 0

(exponential polynomial, see [Avellar, Hale; 1980]).
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Introduction
Motivation: autonomous case

Let ρHS(A) = max
(θ1,...,θN )∈[0,2π]N

ρ

 N∑
j=1

Ajeiθj

.
Theorem ([Hale; 1975], [Silkowski; 1976])
The following are equivalent:

ρHS(A) < 1;
Σaut(Λ,A) is exponentially stable for some Λ ∈ (0,+∞)N with
rationally independent components;
Σaut(Λ,A) is exponentially stable for every Λ ∈ (0,+∞)N .

Still true if we replace ρHS(A) < 1 by ρHS(A) = 0 and
exponential by finite-time stability.
For rationally dependent delays: [Michiels et al.; 2009].
Can this be generalized to the non-autonomous case?
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Introduction
Main problem

Main problem: exponential stability of the non-autonomous system
Σ(Λ,A) uniformly with respect to a given class A of functions
A : R→Md (C)N .

The techniques from the autonomous case cannot be applied.
Our approach: explicit formula for solutions of Σ(Λ,A).
When A = L∞(R,B), we obtain a generalization of
Hale–Silkowski’s Theorem.

Exponential stability criteria:
Autonomous Arbitrary switching

N = 1 ρ(A) < 1 ρJ(B) < 1
any N ρHS(A) < 1
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Stability analysis
Explicit solution (I)

Σ(Λ,A) : x(t) =
N∑

j=1
Aj(t)x(t − Λj), t ≥ 0

Solution with initial condition x0 : [−Λmax, 0)→ Cd : x satisfying
Σ(Λ,A) for t ≥ 0 and x(t) = x0(t) for −Λmax ≤ t < 0.

Lemma
The solution x : [−Λmax,+∞)→ Cd of Σ(Λ,A) with initial
condition x0 : [−Λmax, 0)→ Cd is, for t ≥ 0,
x(t) =

∑
n∈NN

t<Λ·n≤t+Λmax

∑
j∈J1,NK

Λ·n−Λj≤t

ΞΛ,A
n−ej ,tAj(t − Λ · n + Λj)x0(t − Λ · n),

where the matrices ΞΛ,A
n,t are defined recursively by

ΞΛ,A
n,t =

∑N
k=1
nk≥1

Ak(t)ΞΛ,A
n−ek ,t−Λk

, ΞΛ,A
0,t = Idd .
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Stability analysis
Stability analysis (I)

Σ(Λ,A) : x(t) =
N∑

j=1
Aj(t)x(t − Λj), t ≥ 0

Xp = Lp([−Λmax, 0],Cd ), p ∈ [1,+∞]
A: set of uniformly locally bounded functions taking values in
N-tuples of matrices
Σ(Λ,A): family of systems Σ(Λ,A) for A ∈ A.
For x solution of Σ(Λ,A), xt = x(t + ·)|[−Λmax,0] ∈ Xp.
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Stability analysis
Stability analysis (I)

Definition
Σ(Λ,A) is of:

exponential type γ in Xp if ∀ε > 0 ∃K > 0 s.t. ∀A ∈ A,
∀x0 ∈ Xp, the solution x satisfies ‖xt‖Xp

≤ Ke(γ+ε)t ‖x0‖Xp
;

Θ-exponential type γ if ∀ε > 0 ∃K > 0 s.t. ∀A ∈ A,
∀n ∈ NN , a.e. t ∈ (Λ · n− Λmax,Λ · n), one has∣∣∣ΘΛ,A

n,t

∣∣∣ ≤ Ke(γ+ε)t ;
Ξ-exponential type γ if ∀ε > 0 ∃K > 0 s.t. ∀A ∈ A,
∀n ∈ NN , a.e. t ∈ R, one has

∣∣∣ΞΛ,A
n,t

∣∣∣ ≤ Ke(γ+ε)Λ·n.

Exponential stability: exponential type γ < 0.
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Stability analysis
Stability analysis (I)

x(t) =
∑

n∈NN
t<Λ·n≤t+Λmax

ΘΛ,A
n,t x0(t − Λ · n), t ≥ 0.

Theorem (Chitour, M., Sigalotti; 2015)
Let Λ ∈ (0,+∞)N and A be uniformly locally bounded.

If Σ(Λ,A) is of Θ-exponential type γ then ∀p ∈ [1,+∞] it is
of exponential type γ in Xp.

Suppose that Λ1, . . . ,ΛN are rationally independent. If
∃p ∈ [1,+∞] such that Σ(Λ,A) is of exponential type γ in
Xp, then it is of Θ-exponential type γ.
Suppose that A is shift-invariant. Then Θ- and Ξ-exponential
types γ are equivalent.
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types γ are equivalent.
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Stability analysis
Stability analysis (I)

x(t) =
∑

n∈NN
t<Λ·n≤t+Λmax

ΘΛ,A
n,t x0(t − Λ · n), t ≥ 0.
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Stability analysis
Rational dependence of the delays

Let Λ = (Λ1, . . . ,ΛN) ∈ (0,+∞)N . We define

Z (Λ) = {n ∈ ZN | Λ · n = 0},
V (Λ) = {L ∈ RN | Z (Λ) ⊂ Z (L)}, (more rationally dependent)

W (Λ) = {L ∈ RN | Z (Λ) = Z (L)}, (as rationally dependent)

V+(Λ) = V (Λ) ∩ (0,+∞)N , W+(Λ) = W (Λ) ∩ (0,+∞)N .

Example: Λ = (1,
√
2, 1 +

√
2).

Z (Λ) = {(n,m,−n −m) | n,m ∈ Z};
V (Λ) = {(a, b, a + b) | a, b ∈ R};
W (Λ) = {(a, b, a + b) | a, b ∈ R rationally independent}.
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Stability analysis
Rational dependence of the delays

For Λ ∈ (0,+∞)N , define the following equivalence relations on
J1,NK and ZN ,

i ∼ j iff Λi = Λj ,

J = J1,NK/ ∼,
n ≈ n′ iff Λ · n = Λ · n′,

Z = ZN/ ≈ .

For A : R→Md (C)N , L ∈ V+(Λ), [n] ∈ Z, [i ] ∈ J, and t ∈ R,

Ξ̂L,Λ,A
[n],t =

∑
n′∈[n]

ΞL,A
n′,t , ÂΛ

[i](t) =
∑
j∈[i]

Aj(t),

Θ̂L,Λ,A
[n],t =

∑
[j]∈J

L·n−Lj≤t

Ξ̂L,Λ,A
[n−ej ],tÂ

Λ
[j](t − L · n + Lj).
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Stability analysis
Explicit solution (II)

Lemma (Chitour, M., Sigalotti; 2015)
Let Λ ∈ (0,+∞)N , L ∈ V+(Λ), A : R→Md (C)N , and
x0 : [−Lmax, 0)→ Cd . The corresponding solution
x : [−Lmax,+∞)→ Cd of Σ(L,A) is, for t ≥ 0,

x(t) =
∑

[n]∈Z
t<L·n≤t+Lmax

∑
[j]∈J

L·n−Lj≤t

Ξ̂L,Λ,A
[n−ej ],tÂ

Λ
[j](t − L · n + Lj)x0(t − L · n)
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Stability analysis
Stability analysis (II)

We can define exponential types for Θ̂ and Ξ̂ similarly. Since they
depend on Λ, we write (Θ̂,Λ)- and (Ξ̂,Λ)-exponential types.

Theorem (Chitour, M., Sigalotti; 2015)
Let Λ ∈ (0,+∞)N and A be uniformly locally bounded.

Let L ∈ V+(Λ). If Σ(L,A) is of (Θ̂,Λ)-exponential type γ
then ∀p ∈ [1,+∞] it is of exponential type γ in Xp.
Let L ∈W+(Λ). If ∃p ∈ [1,+∞] such that Σ(L,A) is of
exponential type γ in Xp, then it is of (Θ̂,Λ)-exponential type
γ.
Suppose that A is shift-invariant. Then (Θ̂,Λ)- and
(Ξ̂,Λ)-exponential types γ are equivalent.
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Stability analysis
Maximal Lyapunov exponent

Definition
The maximal Lyapunov exponent of Σ(L,A) in Xp is

λp(L,A) = lim sup
t→+∞

sup
A∈A

sup
x0∈Xp
‖x0‖Xp =1

log ‖xt‖Xp

t .

Proposition
λp(L,A) = inf{γ ∈ R | Σ(L,A) is of exponential type γ in Xp}.
In particular,

Σ(L,A) exponentially stable ⇐⇒ λp(L,A) < 0.

By the previous results, λp(L,A) does not depend on p.
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Stability analysis
Maximal Lyapunov exponent

Theorem (Chitour, M., Sigalotti; 2015)
Let Λ ∈ (0,+∞)N and suppose that A is shift-invariant. For every
L ∈W+(Λ) and p ∈ [1,+∞],

λp(L,A) = lim sup
|n|1→+∞

sup
A∈A

ess sup
t∈R

log
∣∣∣Ξ̂L,Λ,A

n,t

∣∣∣
L · n .
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Stability analysis
Arbitrary switching

Σ(L,A) : x(t) =
N∑

j=1
Aj(t)x(t − Lj), t ≥ 0.

B ⊂Md (C)N : bounded set of N-tuples of matrices.
A = L∞(R,B).
(A1(t), . . . ,AN(t)) is any measurable function taking values
on B: switched system with arbitrary switching signal.
In this case, one can obtain more precise results.
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Stability analysis
Arbitrary switching

Using the recurrence relation for ΞL,A
n,t , we obtain:

Ξ̂L,Λ,A
[n],t =

∑
n′∈[n]∩NN

∑
v∈Vn′

|n′|1∏
k=1

Avk

(
t −

k−1∑
r=1

Lvr

)
.

Vn: set of all permutations of (1, . . . , 1︸ ︷︷ ︸
n1 times

, 2, . . . , 2︸ ︷︷ ︸
n2 times

, . . . ,N, . . . ,N︸ ︷︷ ︸
nN times

).

Definition

µ(Λ,B) = lim sup
ξ→+∞
ξ∈L(Λ)

sup
Br∈B

for r∈Lξ(Λ)

∣∣∣∣∣∣∣∣
∑

n∈NN
Λ·n=ξ

∑
v∈Vn

|n|1∏
k=1

B
Λv1+...+Λvk−1
vk

∣∣∣∣∣∣∣∣
1
ξ

,

where L(Λ) = {Λ · n | n ∈ NN} and Lξ(Λ) = L(Λ) ∩ [0, ξ).
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Stability analysis
Arbitrary switching

Theorem (Chitour, M., Sigalotti; 2015)
λp(Λ,A) = logµ(Λ,B);

for every L ∈ V+(Λ), λp(L,A) ≤ m1 logµ(Λ,B);
for every L ∈W+(Λ), m2λp(Λ,A) ≤ λp(L,A) ≤ m1λp(Λ,A).

Here, {m1,m2} =
{
minj∈J1,NK

Λj
Lj
,maxj∈J1,NK

Λj
Lj

}
.

Corollary
The following statements are equivalent:

µ(Λ,B) < 1;
Σ(Λ,A) is exponentially stable in Xp for some p ∈ [1,+∞];
Σ(L,A) is exponentially stable in Xp for every p ∈ [1,+∞]
and L ∈ V+(Λ).
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Stability analysis
Conclusion

Exponential stability criteria:
Autonomous Arbitrary switching

N = 1 ρ(A) < 1 ρJ(B) < 1
any N ρHS(A) < 1 µ(Λ,B) < 1

Interesting questions:

Both ρ(A) and ρJ(B) are limits and limn→+∞ can be replaced by
infn∈N∗ . Is the same true for µ(Λ,B)?
ρ(A) = 0, ρJ(B) = 0, and ρHS(A) = 0 are equivalent to
convergence in finite time. Is this also true for µ(Λ,B)?
Can we numerically compute or approximate µ? (For ρJ, this
problem is NP-hard, Turing-undecidable, and non-algebraic, but
several useful bounds and approximations exist, see [Jungers; 2009]).
What can we say if Λ1, . . . ,ΛN are time-dependent?
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Application to a transport system
Transport system



∂tui (t, ξ) + ∂ξui (t, ξ) + αi (t)χi (ξ)ui (t, ξ) = 0,
t ∈ R+, ξ ∈ [0, Li ], i ∈ J1,NdK,

∂tui (t, ξ) + ∂ξui (t, ξ) = 0, t ∈ R+, ξ ∈ [0, Li ], i ∈ JNd + 1,NK,

ui (t, 0) =
N∑

j=1
mijuj(t, Lj), t ∈ R+, i ∈ J1,NK.

χi : characteristic function of an interval [ai , bi ] ⊂ [0, Li ].
M = (mij)1≤i ,j≤N : transmission matrix.
αi is persistently exciting for i ∈ J1,NdK.
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Application to a transport system
Persistence of excitation

Persistently exciting (PE) signals: for T ≥ µ > 0, we say that
α ∈ G(T , µ) if α ∈ L∞(R; [0, 1]) and

∀t ∈ R,
w t+T

t
α(s)ds ≥ µ.

G(T , µ) is shift-invariant.

Introduced in the context of identification and adaptive
control [Anderson; 1977].
Much studied in finite-dimensional control systems [Chitour,
Sigalotti; 2010], [Chitour, M., Sigalotti; 2013].
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Application to a transport system
Main result

Hypotheses:
There exist i , j ∈ J1,NK such that Li

Lj
/∈ Q.

|M|1 ≤ 1 and mij 6= 0 for every i , j ∈ J1,NK.

Theorem
∀T ≥ µ > 0, ∃C , γ > 0 s.t., ∀p ∈ [1,+∞], ∀ui ,0 ∈ Lp(0, Li ),
i ∈ J1,NK, and ∀αk ∈ G(T , µ), k ∈ J1,NdK, the corresponding
solution satisfies

N∑
i=1
‖ui (t)‖Lp(0,Li ) ≤ Ce−γt

N∑
i=1
‖ui ,0‖Lp(0,Li ) , ∀t ≥ 0.
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Application to a transport system
Technique of the proof

For t ≥ Lmax:

ui (t, 0) =
N∑

j=1
mijuj(t, Lj) =

N∑
j=1

mije
−

r t−Lj +bj
t−Lj +aj

αj (s)dsuj(t−Lj , 0)

Set x(t) = (ui (t, 0))i∈J1,NK. Then x satisfies the difference
equation

x(t) =
N∑

k=1
Ak(t)x(t − Lk)

with
Ak(t) =

(
δjkmije

−
r t−Lj +bj

t−Lj +aj
αj (s)ds

)
i ,j∈J1,NK

It suffices to show that such difference equation is
(Ξ̂, L)-exponentially stable. We study the behavior of the
coefficients ΞL,A

n,t as |n|1 → +∞.
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Application to a transport system
Technique of the proof

Decomposition of the set NN .
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Application to a transport system
Technique of the proof

Decomposition of the set NN .

Nb(ρ) = {n ∈ NN |
∃k ∈ J1,NK s.t. nk ≤ ρ |n|1}

Nc(ρ) = {n ∈ NN |
nk > ρ |n|1 , ∀k ∈ J1,NK}
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Application to a transport system
Technique of the proof

Decomposition of the set NN .

Nb(ρ) = {n ∈ NN |
∃k ∈ J1,NK s.t. nk ≤ ρ |n|1}

Nc(ρ) = {n ∈ NN |
nk > ρ |n|1 , ∀k ∈ J1,NK}

combinatorial estimate
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Application to a transport system
Technique of the proof

In Nc(ρ): “box lemma”
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Application to a transport system
Technique of the proof

In Nc(ρ): “box lemma”

e−
r t−L·n+bk

t−L·n+ak
αk (s)ds
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Application to a transport system
Technique of the proof

In Nc(ρ): “box lemma”

e−
r t−L·n+bk

t−L·n+ak
αk (s)ds ≤ η
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Application to a transport system
Technique of the proof

In Nc(ρ): “box lemma”

Find η ∈ (0, 1) such that e−
r t−L·n+bk

t−L·n+ak
αk (s)ds ≤ η “often enough”
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Application to a transport system
Technique of the proof

In Nc(ρ): “box lemma”

∃η ∈ (0, 1),
∃ size K of box s.t
∀ box of size K ,
∃ point in the box where
e−

r t−L·n+bk
t−L·n+ak

αk (s)ds ≤ η

Important:
Li
Lj
/∈ Q

α ∈ G(T , µ)
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Application to a transport system
Technique of the proof

In Nc(ρ): “box lemma”

∃η ∈ (0, 1),
∃ size K of box s.t
∀ box of size K ,
∃ point in the box where
e−

r t−L·n+bk
t−L·n+ak

αk (s)ds ≤ η

Important:
Li
Lj
/∈ Q

α ∈ G(T , µ)

====⇒ΞL,A
n,t decreases exponentially with n in Nc(ρ)
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Application to a transport system
Technique of the proof

In Nc(ρ): “box lemma”

∃η ∈ (0, 1),
∃ size K of box s.t
∀ box of size K ,
∃ point in the box where
e−

r t−L·n+bk
t−L·n+ak

αk (s)ds ≤ η

Important:
Li
Lj
/∈ Q

α ∈ G(T , µ)

====⇒ΞL,A
n,t decreases exponentially with n in Nc(ρ)

=⇒ the solutions converge exponentially �
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Relative controllability
Definition

Σcontr : x(t) =
N∑

j=1
Ajx(t − Λj) + Bu(t), t ≥ 0.

For every initial condition x0 : [−Λmax, 0)→ Cd and control
u : [0,T ]→ Cm, Σcontr admits a unique solution
x : [−Λmax,T ]→ Cd (no regularity assumptions!).

Definition
We say that Σcontr is relatively controllable in time T > 0 if, for
every x0 : [−Λmax, 0)→ Cd and x1 ∈ Cd , there exists
u : [0,T ]→ Cm such that the unique solution x of Σcontr with
initial condition x0 and control u satisfies x(T ) = x1.
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Relative controllability
Explicit formula

Similarly to the stability analysis, we use an explicit formula for the
solutions in order to characterize relative controllability.

Lemma (Explicit solution)
Let u : [0,T ]→ Cm. The solution x : [−Λmax,T ]→ Cd of Σcontr
with zero initial condition and control u is, for t ∈ [0,T ],

x(t) =
∑

[n]∈Z
Λ·n≤t

Bu(t − Λ · n).

By linearity, solution with initial condition x0 and control u is the
sum of this formula with the previous one.

Stability of difference equations and applications to transport and wave propagation on networks Guilherme Mazanti



Introduction Stability analysis Application to a transport system Relative controllability

Relative controllability
Explicit formula

Similarly to the stability analysis, we use an explicit formula for the
solutions in order to characterize relative controllability.

Lemma (Explicit solution)
Let u : [0,T ]→ Cm. The solution x : [−Λmax,T ]→ Cd of Σcontr
with zero initial condition and control u is, for t ∈ [0,T ],
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Relative controllability
Relative controllability criterion

Theorem (M.; 2016)
The following statements are equivalent:

Σcontr is relatively controllable in time T ;

Span
{

Ξ̂Λ,A
[n] Bw | n ∈ NN , Λ · n ≤ T , w ∈ Cm

}
= Cd ;

∃ε0 > 0 such that, for every ε ∈ (0, ε0), x0 : [−Λmax, 0)→ Cd , and
x1 : [0, ε]→ Cd , there exists u : [0,T + ε]→ Cm such that the
solution x of Σcontr with initial condition x0 and control u satisfies
x(T + ·)|[0,ε] = x1;

∃ε0 > 0 such that, for every p ∈ [1,+∞], ε ∈ (0, ε0),
x0 ∈ Lp((−Λmax, 0),Cd ), and x1 ∈ Lp((0, ε),Cd ), there exists
u ∈ Lp((0,T + ε),Cm) such that the solution x of Σcontr with initial
condition x0 and control u satisfies x ∈ Lp((−Λmax,T + ε),Cd ) and
x(T + ·)|[0,ε] = x1.
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Relative controllability
Relative controllability criterion

Can also be generalized to other spaces (e.g., Ck).

Generalizes Kalman criterion: for x(t) = Ax(t − 1) + Bu(t),
one has

Span
{

Ξ̂Λ,A
n Bw | n ∈ NN , Λ · n ≤ T , w ∈ Cm

}
= Ran

(
B AB A2B · · · AbTcB

)
.

Theorem (M.; 2016)
If Σcontr is relatively controllable in some time T > 0, then it
is also relatively controllable in time T = (d − 1)Λmax.

If Λ1, . . . ,ΛN are rationally independent, then Σcontr is
relatively controllable in some time T > 0 if and only if

Span
{

ΞA
nBej | n ∈ NN , |n|1 ≤ d − 1, j ∈ J1,mK

}
= Cd .
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