Stability of difference equations and applications to transport and wave propagation on networks

Guilherme Mazanti joint work with Yacine Chitour and Mario Sigalotti

Stability of non-conservative systems Valenciennes — July 5th, 2016

CMAP, École Polytechnique Université Paris–Saclay

Team GECO, Inria Saclay France

Stability analysis 000000000000000 Application to a transport system

Relative controllability 0000

Outline

2 Stability analysis

3 Application to a transport system

Stability of difference equations and applications to transport and wave propagation on networks

Guilherme Mazanti

Introduction ••••••	Stability analysis	Application to a transport system	Relative controllability 0000
Introduct	ion		

$$\Sigma(\Lambda, A):$$
 $x(t) = \sum_{j=1}^{N} A_j(t) x(t - \Lambda_j),$ $t \ge 0.$

• $\Lambda_1, \ldots, \Lambda_N$: positive delays.

- $A_1(t), \ldots, A_N(t)$: time-dependent $d \times d$ matrices.
- $x(t) \in \mathbb{C}^d$.
- Notation: $\Lambda_{\min} = \min_i \Lambda_i$, $\Lambda_{\max} = \max_i \Lambda_i$.

Introduction •••••••	Stability analysis	Application to a transport system	Relative controllability 0000
Introductio	O N		

$$\Sigma(\Lambda, A):$$
 $x(t) = \sum_{j=1}^{N} A_j(t) x(t - \Lambda_j),$ $t \ge 0.$

• $\Lambda_1, \ldots, \Lambda_N$: positive delays.

- $A_1(t), \ldots, A_N(t)$: time-dependent $d \times d$ matrices.
- $x(t) \in \mathbb{C}^d$.
- Notation: $\Lambda_{\min} = \min_i \Lambda_i$, $\Lambda_{\max} = \max_i \Lambda_i$.

Motivation:

- Applications to some hyperbolic PDEs.
- Generalization of previous results: N = 1, autonomous.

Introduction ○●000000	Stability analysis	Application to a transport system	Relative controllability
Introduction Motivation: trans	N sport systems		

Hyperbolic PDEs \rightarrow difference equations: [Cooke, Krumme; 1968], [Slemrod; 1971], [Greenberg, Li; 1984], [Coron, Bastin, d'Andréa Novel; 2008], [Fridman, Mondié, Saldivar; 2010], [Gugat, Sigalotti; 2010]...

Introduction •••••••	Stability analysis 00000000000000	Application to a transport system	Relative controllability
Introduct	tion		
Motivation: t	ransport systems		

Hyperbolic PDEs \rightarrow difference equations: [Cooke, Krumme; 1968], [Slemrod; 1971], [Greenberg, Li; 1984], [Coron, Bastin, d'Andréa Novel; 2008], [Fridman, Mondié, Saldivar; 2010], [Gugat, Sigalotti; 2010]...

$$egin{aligned} & egin{aligned} & egin{aligned} & egin{aligned} & egin{aligned} & eta_t u_i(t,\xi) + \partial_\xi u_i(t,\xi) + lpha_i(t,\xi) u_i(t,\xi) &= 0, \ & t \in \mathbb{R}_+, \ \xi \in [0,\Lambda_i], \ i \in \llbracket 1,N
bracket, & t \in \llbracket 1,N
bracket, & i \in \llbracket 1,N
bracket, & i \in \llbracket 1,N
bracket. \end{aligned}$$

Introduction 0000000	Stability analysis 00000000000000	Application to a transport system	Relative controllability 0000
Introduc	tion		
Motivation: 1	transport systems		

Hyperbolic PDEs \rightarrow difference equations: [Cooke, Krumme; 1968], [Slemrod; 1971], [Greenberg, Li; 1984], [Coron, Bastin, d'Andréa Novel; 2008], [Fridman, Mondié, Saldivar; 2010], [Gugat, Sigalotti; 2010]...

$$\begin{cases} \partial_t u_i(t,\xi) + \partial_\xi u_i(t,\xi) + \alpha_i(t,\xi)u_i(t,\xi) = 0, \\ t \in \mathbb{R}_+, \ \xi \in [0,\Lambda_i], \ i \in \llbracket 1,N \rrbracket, \\ u_i(t,0) = \sum_{j=1}^N m_{ij}(t)u_j(t,\Lambda_j), \quad t \in \mathbb{R}_+, \ i \in \llbracket 1,N \rrbracket. \end{cases}$$

Method of characteristics: for $t \ge \Lambda_{\max}$,
 $u_i(t,0) = \sum_{j=1}^N m_{ij}(t)u_j(t,\Lambda_j) = \sum_{j=1}^N m_{ij}(t)e^{-\int_0^{\Lambda_j} \alpha_j(t-s,\Lambda_j-s)ds}u_j(t-\Lambda_j,0).$
Set $x(t) = (u_i(t,0))_{i \in \llbracket 1,N \rrbracket}$. Then x satisfies a difference equation.

Stability analysis 000000000000000 Application to a transport system

Relative controllability

Introduction Motivation: wave propagation on networks

Introduction	
0000000	

Stability analysis

Application to a transport system 0000000

Relative controllability

Introduction Motivation: wave propagation on networks

Introduction	
00000000	

Stability analysis 000000000000000 Application to a transport system

Relative controllability

Introduction Motivation: wave propagation on networks

Stability analysis

Application to a transport system

Relative controllability

Introduction Motivation: wave propagation on networks

D'Alembert decomposition on travelling waves:

Stability analysis

Application to a transport system 0000000

Relative controllability

Introduction Motivation: wave propagation on networks

D'Alembert decomposition on travelling waves:

System of 2N transport equations.

Stability analysis

Application to a transport system 0000000

Relative controllability

Introduction Motivation: wave propagation on networks

D'Alembert decomposition on travelling waves:

System of 2N transport equations. Can be reduced to a system of difference equations.

Introduction 00000000	Stability analysis 0000000000000	Application to a transport system	Relative controllability
Introductic Motivation: case	on e <i>N</i> = 1		

- When N = 1: $x(t) = A(t)x(t \Lambda)$.
- Can be reduced to $x_n = A_n x_{n-1}$.

Introduction 0000000	Stability analysis 0000000000000	Application to a transport system	Relative controllability
Introductio Motivation: case	n N = 1		

- When N = 1: $x(t) = A(t)x(t \Lambda)$.
- Can be reduced to $x_n = A_n x_{n-1}$.

Autonomous system

$$x_n = A x_{n-1}$$
$$A \in \mathcal{M}_d(\mathbb{C})$$

Exponential stability $\iff \rho(A) < 1$ Finite-time stability $\iff \rho(A) = 0$

$$\rho(A) = \lim_{n \to +\infty} |A^n|^{\frac{1}{n}}$$
$$= \max_{\lambda \in \sigma(A)} |\lambda|$$

Introduction	Stability analysis 00000000000000	Application to a transport system	Relative controllability 0000
Introduct	tion		
Motivation: o	case $N=1$		

- When N = 1: $x(t) = A(t)x(t \Lambda)$.
- Can be reduced to $x_n = A_n x_{n-1}$.

Autonomous system

$$x_n = A x_{n-1}$$
$$A \in \mathcal{M}_d(\mathbb{C})$$

Arbitrary switching

 $x_n = A_n x_{n-1}$ $A_n \in \mathfrak{B} \subset \mathfrak{M}_d(\mathbb{C})$

Exponential stability $\iff \rho(A) < 1$ Finite-time stability $\iff \rho(A) = 0$ $\begin{array}{l} \text{Uniform exponential stability} \\ \iff \rho_{\mathsf{J}}(\mathfrak{B}) < 1 \\ \text{Finite-time stability} \\ \iff \rho_{\mathsf{J}}(\mathfrak{B}) = 0 \end{array}$

$$\rho(A) = \lim_{n \to +\infty} |A^n|^{\frac{1}{n}} \qquad \rho_{\mathsf{J}}(\mathfrak{B}) = \lim_{n \to +\infty} \sup_{A_1, \dots, A_n \in \mathfrak{B}} |A_1 A_2 \cdots A_n|^{\frac{1}{n}}$$
$$= \max_{\lambda \in \sigma(A)} |\lambda| \qquad \qquad (cf. [Jungers; 2009])$$

Introduction 00000000	Stability analysis	Application to a transport system	Relative controllability
Introduction Motivation: auto	nomous case		

$$\Sigma^{\mathsf{aut}}(\Lambda, A): \qquad x(t) = \sum_{j=1}^N A_j x(t - \Lambda_j), \qquad t \ge 0$$

- [Cruz, Hale; 1970], [Henry; 1974], [Michiels et al.; 2009]...
- Studied through spectral methods.
- Stability: real parts of the roots of det $\left(\operatorname{Id} \sum_{j=1}^{N} A_j e^{-s\Lambda_j} \right) = 0$ (exponential polynomial, see [Avellar, Hale; 1980]).

Introduction 0000000	Stability analysis 0000000000000	Application to a transport system	Relative controllability
Introductio	า		

INTRODUCTION Motivation: autonomous case

Let
$$ho_{\mathsf{HS}}(\mathcal{A}) = \max_{(heta_1, \dots, heta_N) \in [0, 2\pi]^N}
ho \left(\sum_{j=1}^N \mathcal{A}_j e^{i heta_j}
ight).$$

Theorem ([Hale; 1975], [Silkowski; 1976])

The following are equivalent:

- ρ_{HS}(A) < 1;
- $\Sigma^{aut}(\Lambda, A)$ is exponentially stable for some $\Lambda \in (0, +\infty)^N$ with rationally independent components;
- $\Sigma^{\operatorname{aut}}(\Lambda, A)$ is exponentially stable for every $\Lambda \in (0, +\infty)^N$.

Introduction 00000000	Stability analysis	Application to a transport system	Relative controllability
Introduction	า		

Motivation: autonomous case

Let
$$ho_{\mathsf{HS}}(\mathcal{A}) = \max_{(heta_1, \dots, heta_N) \in [0, 2\pi]^N}
ho \left(\sum_{j=1}^N \mathcal{A}_j e^{i heta_j} \right).$$

Theorem ([Hale; 1975], [Silkowski; 1976])

The following are equivalent:

- ρ_{HS}(A) < 1;
- $\Sigma^{aut}(\Lambda, A)$ is exponentially stable for some $\Lambda \in (0, +\infty)^N$ with rationally independent components;
- $\Sigma^{\operatorname{aut}}(\Lambda, A)$ is exponentially stable for every $\Lambda \in (0, +\infty)^N$.
- Still true if we replace $\rho_{HS}(A) < 1$ by $\rho_{HS}(A) = 0$ and exponential by finite-time stability.
- For rationally dependent delays: [Michiels et al.; 2009].
- Can this be generalized to the non-autonomous case?

Introduction ○○○○○○●	Stability analysis 0000000000000	Application to a transport system	Relative controllability
Introductio	n		

Main problem: exponential stability of the non-autonomous system $\Sigma(\Lambda, A)$ uniformly with respect to a given class \mathcal{A} of functions $A : \mathbb{R} \to \mathcal{M}_d(\mathbb{C})^N$.

- The techniques from the autonomous case cannot be applied.
- Our approach: explicit formula for solutions of $\Sigma(\Lambda, A)$.
- When A = L[∞](ℝ, 𝔅), we obtain a generalization of Hale–Silkowski's Theorem.

Introduction	Stability analysis 0000000000000	Application to a transport system	Relative controllability
Introductio Main problem	n		

Main problem: exponential stability of the non-autonomous system $\Sigma(\Lambda, A)$ uniformly with respect to a given class \mathcal{A} of functions $A : \mathbb{R} \to \mathcal{M}_d(\mathbb{C})^N$.

- The techniques from the autonomous case cannot be applied.
- Our approach: explicit formula for solutions of $\Sigma(\Lambda, A)$.
- When A = L[∞](ℝ, 𝔅), we obtain a generalization of Hale–Silkowski's Theorem.

Exponential stability criteria:

	Autonomous	Arbitrary switching
N = 1	ho(A) < 1	$ ho_{J}(\mathfrak{B}) < 1$
any N	$ ho_{HS}({A}) < 1$	

Introduction 00000000	Stability analysis	Application to a transport system	Relative controllability
Stability Explicit solution	analysis		

$$\Sigma(\Lambda, A): \qquad x(t) = \sum_{j=1}^N A_j(t) x(t - \Lambda_j), \qquad t \ge 0$$

Introduction 00000000	Stability analysis	Application to a transport system	Relative controllability 0000
Stability	analysis		

$$\Sigma(\Lambda,A): \qquad x(t)=\sum_{j=1}^N A_j(t)x(t-\Lambda_j), \qquad t\geq 0$$

Lemma

$$\begin{split} & \text{The solution } x: [-\Lambda_{\max}, +\infty) \to \mathbb{C}^d \text{ of } \Sigma(\Lambda, A) \text{ with initial} \\ & \text{condition } x_0: [-\Lambda_{\max}, 0) \to \mathbb{C}^d \text{ is, for } t \geq 0, \\ & x(t) = \sum_{\substack{\mathbf{n} \in \mathbb{N}^N \\ t < \Lambda \cdot \mathbf{n} \leq t + \Lambda_{\max}, \Lambda \cdot \mathbf{n} - \Lambda_j \leq t}} \sum_{\substack{j \in \llbracket 1, N \rrbracket \\ n - e_j, t}} \Xi_{\mathbf{n} - e_j, t}^{\Lambda, A} A_j(t - \Lambda \cdot \mathbf{n} + \Lambda_j) x_0(t - \Lambda \cdot \mathbf{n}), \\ & \text{where the matrices } \Xi_{\mathbf{n}, t}^{\Lambda, A} \text{ are defined recursively by} \\ & \Xi_{\mathbf{n}, t}^{\Lambda, A} = \sum_{\substack{n \in I \\ n_k \geq 1}}^{N} A_k(t) \Xi_{\mathbf{n} - e_k, t - \Lambda_k}^{\Lambda, A}, \quad \Xi_{0, t}^{\Lambda, A} = \mathrm{Id}_d \,. \end{split}$$

Introduction 00000000	Stability analysis	Application to a transport system	Relative controllability 0000
Stability	analysis		

$$\Sigma(\Lambda,A): \qquad x(t)=\sum_{j=1}^N A_j(t)x(t-\Lambda_j), \qquad t\geq 0$$

Lemma

$$\begin{split} \text{The solution } x: & [-\Lambda_{\max}, +\infty) \to \mathbb{C}^d \text{ of } \Sigma(\Lambda, A) \text{ with initial} \\ \text{condition } x_0: & [-\Lambda_{\max}, 0) \to \mathbb{C}^d \text{ is, for } t \geq 0, \\ x(t) & = \sum_{\substack{\mathbf{n} \in \mathbb{N}^N \\ t < \Lambda \cdot \mathbf{n} \leq t + \Lambda_{\max}}} \sum_{\substack{j \in \llbracket 1, N \rrbracket \\ \Lambda \cdot \mathbf{n} - \Lambda_j \leq t}} \Xi_{\mathbf{n} - e_j, t}^{\Lambda, A} A_j(t - \Lambda \cdot \mathbf{n} + \Lambda_j) x_0(t - \Lambda \cdot \mathbf{n}), \\ \text{where the matrices } \Xi_{\mathbf{n}, t}^{\Lambda, A} \text{ are defined recursively by} \\ \Xi_{\mathbf{n}, t}^{\Lambda, A} & = \sum_{\substack{n, t \\ n_k \geq 1}}^N A_k(t) \Xi_{\mathbf{n} - e_k, t - \Lambda_k}^{\Lambda, A}, \quad \Xi_{0, t}^{\Lambda, A} = \mathrm{Id}_d \,. \end{split}$$

Introduction 00000000	Stability analysis	Application to a transport system	Relative controllability 0000
Stability	analysis		

$$\Sigma(\Lambda,A): \qquad x(t)=\sum_{j=1}^N A_j(t)x(t-\Lambda_j), \qquad t\geq 0$$

Lemma

$$\begin{split} & \text{The solution } x: [-\Lambda_{\max}, +\infty) \to \mathbb{C}^d \text{ of } \Sigma(\Lambda, A) \text{ with initial} \\ & \text{condition } x_0: [-\Lambda_{\max}, 0) \to \mathbb{C}^d \text{ is, for } t \geq 0, \\ & x(t) = \sum_{\substack{\mathbf{n} \in \mathbb{N}^N \\ t < \Lambda \cdot \mathbf{n} \leq t + \Lambda_{\max}, \Lambda \cdot \mathbf{n} - \Lambda_j \leq t}} \sum_{\substack{j \in \llbracket 1, N \rrbracket \\ \mathbf{n} - e_j, t}} \Xi_{\mathbf{n} - e_j, t}^{\Lambda, A} A_j(t - \Lambda \cdot \mathbf{n} + \Lambda_j) x_0(t - \Lambda \cdot \mathbf{n}), \\ & \text{where the matrices } \Xi_{\mathbf{n}, t}^{\Lambda, A} \text{ are defined recursively by} \\ & \Xi_{\mathbf{n}, t}^{\Lambda, A} = \sum_{\substack{k=1 \\ n_k \geq 1}}^N A_k(t) \Xi_{\mathbf{n} - e_k, t - \Lambda_k}^{\Lambda, A}, \quad \Xi_{0, t}^{\Lambda, A} = \mathrm{Id}_d \,. \end{split}$$

Introduction 00000000	Stability analysis	Application to a transport system	Relative controllability 0000
Stability	analysis		

$$\Sigma(\Lambda,A): \qquad x(t)=\sum_{j=1}^N A_j(t)x(t-\Lambda_j), \qquad t\geq 0$$

Lemma

$$\begin{split} & \text{The solution } x: [-\Lambda_{\max}, +\infty) \to \mathbb{C}^d \text{ of } \Sigma(\Lambda, A) \text{ with initial} \\ & \text{condition } x_0: [-\Lambda_{\max}, 0) \to \mathbb{C}^d \text{ is, for } t \geq 0, \\ & x(t) = \sum_{\substack{\mathbf{n} \in \mathbb{N}^N \\ t < \Lambda \cdot \mathbf{n} \leq t + \Lambda_{\max}}} \sum_{\substack{j \in \llbracket 1, N \rrbracket \\ \Lambda - h_j \leq t}} \Xi_{\mathbf{n} - e_j, t}^{\Lambda, A} A_j(t - \Lambda \cdot \mathbf{n} + \Lambda_j) x_0(t - \Lambda \cdot \mathbf{n}), \\ & \text{where the matrices } \Xi_{\mathbf{n}, t}^{\Lambda, A} \text{ are defined recursively by} \\ & \Xi_{\mathbf{n}, t}^{\Lambda, A} = \sum_{\substack{n, t \\ n_k \geq 1}}^N A_k(t) \Xi_{\mathbf{n} - e_k, t - \Lambda_k}^{\Lambda, A}, \quad \Xi_{0, t}^{\Lambda, A} = \mathrm{Id}_d \,. \end{split}$$

Stability of difference equations and applications to transport and wave propagation on networks

Guilherme Mazanti

Introduction 00000000	Stability analysis	Application to a transport system	Relative controllability 0000
Stability	analysis		

$$\Sigma(\Lambda,A): \qquad x(t)=\sum_{j=1}^N A_j(t)x(t-\Lambda_j), \qquad t\geq 0$$

Lemma

The solution
$$x : [-\Lambda_{\max}, +\infty) \to \mathbb{C}^d$$
 of $\Sigma(\Lambda, A)$ with initial
condition $x_0 : [-\Lambda_{\max}, 0) \to \mathbb{C}^d$ is, for $t \ge 0$,
 $x(t) = \sum_{\substack{\mathbf{n} \in \mathbb{N}^N \\ t < \Lambda \cdot \mathbf{n} \le t + \Lambda_{\max}}} \Theta_{\mathbf{n},t}^{\Lambda,A} x_0(t - \Lambda \cdot \mathbf{n}),$
where the matrices $\Xi_{\mathbf{n},t}^{\Lambda,A}$ are defined recursively by
 $\Xi_{\mathbf{n},t}^{\Lambda,A} = \sum_{\substack{n \in \mathbb{N} \\ k=1 \\ n_k \ge 1}}^N A_k(t) \Xi_{\mathbf{n}-e_k,t-\Lambda_k}^{\Lambda,A}, \quad \Xi_{0,t}^{\Lambda,A} = \mathrm{Id}_d.$

Introduction 00000000	Stability analysis	Application to a transport system	Relative controllability
Stability analy	analysis sis (1)		

$$\Sigma(\Lambda,A): \qquad x(t)=\sum_{j=1}^N A_j(t)x(t-\Lambda_j), \qquad t\geq 0$$

•
$$X_p = L^p([-\Lambda_{\max}, 0], \mathbb{C}^d), \ p \in [1, +\infty]$$

- A: set of uniformly locally bounded functions taking values in *N*-tuples of matrices
- $\Sigma(\Lambda, \mathcal{A})$: family of systems $\Sigma(\Lambda, \mathcal{A})$ for $\mathcal{A} \in \mathcal{A}$.
- For x solution of $\Sigma(\Lambda, A)$, $x_t = x(t + \cdot)|_{[-\Lambda_{\max}, 0]} \in X_p$.

Stability analysis

Application to a transport system 0000000

Relative controllability

Stability analysis Stability analysis (I)

Definition

 $\Sigma(\Lambda, \mathcal{A})$ is of:

- exponential type γ in X_p if $\forall \varepsilon > 0 \ \exists K > 0$ s.t. $\forall A \in \mathcal{A}$, $\forall x_0 \in X_p$, the solution x satisfies $\|x_t\|_{X_p} \leq Ke^{(\gamma+\varepsilon)t} \|x_0\|_{X_p}$;
- Θ -exponential type γ if $\forall \varepsilon > 0 \ \exists K > 0 \ s.t. \ \forall A \in \mathcal{A}$, $\forall \mathbf{n} \in \mathbb{N}^N$, a.e. $t \in (\Lambda \cdot \mathbf{n} - \Lambda_{\max}, \Lambda \cdot \mathbf{n})$, one has $\left|\Theta_{\mathbf{n},t}^{\Lambda,\mathcal{A}}\right| \leq K e^{(\gamma+\varepsilon)t}$;
- \equiv -exponential type γ if $\forall \varepsilon > 0 \exists K > 0$ s.t. $\forall A \in \mathcal{A}$, $\forall \mathbf{n} \in \mathbb{N}^N$, a.e. $t \in \mathbb{R}$, one has $\left| \Xi_{\mathbf{n},t}^{\Lambda,A} \right| \leq K e^{(\gamma + \varepsilon)\Lambda \cdot \mathbf{n}}$.

Exponential stability: exponential type $\gamma < 0$.

Introduction 00000000	Stability analysis ○OO●○○○○○○○○○	Application to a transport system	Relative controllability
Stability an Stability analysis	alysis ⑴		

$$x(t) = \sum_{\substack{\mathbf{n} \in \mathbb{N}^N \ t < \Lambda \cdot \mathbf{n} \leq t + \Lambda_{\max}}} \Theta_{\mathbf{n},t}^{\Lambda,A} x_0(t - \Lambda \cdot \mathbf{n}), \qquad t \geq 0.$$

Theorem (Chitour, M., Sigalotti; 2015)

Let $\Lambda \in (0,+\infty)^N$ and $\mathcal A$ be uniformly locally bounded.

If Σ(Λ, A) is of Θ-exponential type γ then ∀p ∈ [1, +∞] it is of exponential type γ in X_p.

Introduction 00000000	Stability analysis ○OO●○○○○○○○○○	Application to a transport system	Relative controllability
Stability analysis	alysis ⑴		

$$x(t) = \sum_{\substack{\mathbf{n} \in \mathbb{N}^N \\ t < \Lambda \cdot \mathbf{n} \le t + \Lambda_{\max}}} \Theta_{\mathbf{n},t}^{\Lambda,A} x_0(t - \Lambda \cdot \mathbf{n}), \qquad t \ge 0.$$

Theorem (Chitour, M., Sigalotti; 2015)

Let $\Lambda \in (0, +\infty)^N$ and \mathcal{A} be uniformly locally bounded.

- If Σ(Λ, A) is of Θ-exponential type γ then ∀p ∈ [1, +∞] it is of exponential type γ in X_p.
- Suppose that $\Lambda_1, \ldots, \Lambda_N$ are rationally independent. If $\exists p \in [1, +\infty]$ such that $\Sigma(\Lambda, \mathcal{A})$ is of exponential type γ in X_p , then it is of Θ -exponential type γ .

Introduction 00000000	Stability analysis	Application to a transport system	Relative controllability
Stability and Stability analysis	alysis ⑴		

$$x(t) = \sum_{\substack{\mathbf{n} \in \mathbb{N}^{N} \\ t < \Lambda \cdot \mathbf{n} \le t + \Lambda_{\max}}} \Theta_{\mathbf{n},t}^{\Lambda,\mathcal{A}} x_{0}(t - \Lambda \cdot \mathbf{n}), \qquad t \ge 0.$$

Theorem (Chitour, M., Sigalotti; 2015)

Let $\Lambda \in (0, +\infty)^N$ and \mathcal{A} be uniformly locally bounded.

- If Σ(Λ, A) is of Θ-exponential type γ then ∀p ∈ [1, +∞] it is of exponential type γ in X_p.
- Suppose that $\Lambda_1, \ldots, \Lambda_N$ are rationally independent. If $\exists p \in [1, +\infty]$ such that $\Sigma(\Lambda, \mathcal{A})$ is of exponential type γ in X_p , then it is of Θ -exponential type γ .
- Suppose that A is shift-invariant. Then Θ- and Ξ-exponential types γ are equivalent.

Stability analysis

Application to a transport system 0000000

Relative controllability

Stability analysis Rational dependence of the delays

Let $\Lambda = (\Lambda_1, \ldots, \Lambda_N) \in (0, +\infty)^N.$ We define

 $Z(\Lambda) = \{\mathbf{n} \in \mathbb{Z}^N \mid \Lambda \cdot \mathbf{n} = 0\},\$ $V(\Lambda) = \{L \in \mathbb{R}^N \mid Z(\Lambda) \subset Z(L)\}, \quad (\text{more rationally dependent})\$ $W(\Lambda) = \{L \in \mathbb{R}^N \mid Z(\Lambda) = Z(L)\}, \quad (\text{as rationally dependent})\$ $V_+(\Lambda) = V(\Lambda) \cap (0, +\infty)^N, \qquad W_+(\Lambda) = W(\Lambda) \cap (0, +\infty)^N.$

Stability analysis

Application to a transport system 0000000

Relative controllability

Stability analysis Rational dependence of the delays

Let
$$\Lambda=(\Lambda_1,\ldots,\Lambda_N)\in (0,+\infty)^N.$$
 We define

 $Z(\Lambda) = \{\mathbf{n} \in \mathbb{Z}^{N} \mid \Lambda \cdot \mathbf{n} = 0\},\$ $V(\Lambda) = \{L \in \mathbb{R}^{N} \mid Z(\Lambda) \subset Z(L)\}, \quad (\text{more rationally dependent})\$ $W(\Lambda) = \{L \in \mathbb{R}^{N} \mid Z(\Lambda) = Z(L)\}, \quad (\text{as rationally dependent})\$ $V_{+}(\Lambda) = V(\Lambda) \cap (0, +\infty)^{N}, \qquad W_{+}(\Lambda) = W(\Lambda) \cap (0, +\infty)^{N}.$

Example: $\Lambda = (1, \sqrt{2}, 1 + \sqrt{2}).$

For $\Lambda\in(0,+\infty)^N,$ define the following equivalence relations on $[\![1,N]\!]$ and $\mathbb{Z}^N,$

$$i \sim j \text{ iff } \Lambda_i = \Lambda_j, \qquad \mathbf{n} \approx \mathbf{n}' \text{ iff } \Lambda \cdot \mathbf{n} = \Lambda \cdot \mathbf{n}', \\ \mathcal{J} = \llbracket 1, N \rrbracket / \sim, \qquad \qquad \mathcal{Z} = \mathbb{Z}^N / \approx .$$

For $\Lambda\in(0,+\infty)^N,$ define the following equivalence relations on $[\![1,N]\!]$ and $\mathbb{Z}^N,$

$$\begin{split} i \sim j \text{ iff } \Lambda_i &= \Lambda_j, \qquad \mathbf{n} \approx \mathbf{n}' \text{ iff } \Lambda \cdot \mathbf{n} = \Lambda \cdot \mathbf{n}', \\ \mathcal{J} &= \llbracket 1, N \rrbracket / \sim, \qquad \mathcal{Z} = \mathbb{Z}^N / \approx . \end{split}$$

For $A : \mathbb{R} \to \mathcal{M}_d(\mathbb{C})^N, \ \boldsymbol{L} \in V_+(\Lambda), \ [\mathbf{n}] \in \mathbb{Z}, \ [i] \in \mathcal{J}, \text{ and } t \in \mathbb{R}, \end{split}$

$$\widehat{\Xi}_{[\mathbf{n}],t}^{L,\Lambda,A} = \sum_{\substack{\mathbf{n}' \in [\mathbf{n}] \\ \mathbf{n}',t}} \Xi_{\mathbf{n}',t}^{L,A}, \qquad \widehat{A}_{[i]}^{\Lambda}(t) = \sum_{j \in [i]} A_j(t),$$

$$\widehat{\Theta}_{[\mathbf{n}],t}^{L,\Lambda,A} = \sum_{\substack{[j] \in \mathcal{J} \\ L \cdot \mathbf{n} - L_j \leq t}} \widehat{\Xi}_{[\mathbf{n} - e_j],t}^{L,\Lambda,A} \widehat{A}_{[j]}^{\Lambda}(t - L \cdot \mathbf{n} + L_j).$$
Stability analysis

Application to a transport system

Relative controllability

Stability analysis Explicit solution (II)

Lemma (Chitour, M., Sigalotti; 2015)

Let
$$\Lambda \in (0, +\infty)^N$$
, $L \in V_+(\Lambda)$, $A : \mathbb{R} \to \mathcal{M}_d(\mathbb{C})^N$, and
 $x_0 : [-L_{\max}, 0) \to \mathbb{C}^d$. The corresponding solution
 $x : [-L_{\max}, +\infty) \to \mathbb{C}^d$ of $\Sigma(L, A)$ is, for $t \ge 0$,
 $x(t) = \sum_{\substack{[\mathbf{n}] \in \mathbb{Z} \\ t < L \cdot \mathbf{n} \le t + L_{\max}} \sum_{\substack{[j] \in \mathcal{J} \\ L \cdot \mathbf{n} - L_j \le t}} \widehat{\Xi}_{[\mathbf{n} - e_j], t}^{L, \Lambda, A} \widehat{A}_{[j]}^{\Lambda}(t - L \cdot \mathbf{n} + L_j) x_0(t - L \cdot \mathbf{n})$

Stability analysis

Application to a transport system

Relative controllability

Stability analysis Explicit solution (II)

Lemma (Chitour, M., Sigalotti; 2015)

Let
$$\Lambda \in (0, +\infty)^N$$
, $L \in V_+(\Lambda)$, $A : \mathbb{R} \to \mathcal{M}_d(\mathbb{C})^N$, and
 $x_0 : [-L_{\max}, 0) \to \mathbb{C}^d$. The corresponding solution
 $x : [-L_{\max}, +\infty) \to \mathbb{C}^d$ of $\Sigma(L, A)$ is, for $t \ge 0$,
 $x(t) = \sum_{\substack{[\mathbf{n}] \in \mathbb{Z} \\ t < L \cdot \mathbf{n} \le t + L_{\max}} \sum_{\substack{[j] \in \mathcal{J} \\ L \cdot \mathbf{n} - L_j \le t}} \widehat{\Xi}_{[\mathbf{n} - e_j], t}^{L, \Lambda, A} \widehat{A}_{[j]}^{\Lambda}(t - L \cdot \mathbf{n} + L_j) x_0(t - L \cdot \mathbf{n})$

Stability analysis

Application to a transport system 0000000

Relative controllability

Stability analysis Explicit solution (II)

Lemma (Chitour, M., Sigalotti; 2015)

Stability of difference equations and applications to transport and wave propagation on networks

 $L \cdot \mathbf{n}$

Stability analysis

Application to a transport system 0000000

Relative controllability

Stability analysis Explicit solution (II)

Lemma (Chitour, M., Sigalotti; 2015)

Let
$$\Lambda \in (0, +\infty)^N$$
, $L \in V_+(\Lambda)$, $A : \mathbb{R} \to \mathcal{M}_d(\mathbb{C})^N$, and
 $x_0 : [-L_{\max}, 0) \to \mathbb{C}^d$. The corresponding solution
 $x : [-L_{\max}, +\infty) \to \mathbb{C}^d$ of $\Sigma(L, A)$ is, for $t \ge 0$,
 $x(t) = \sum_{\substack{[\mathbf{n}] \in \mathbb{Z} \\ t < L \cdot \mathbf{n} \le t + L_{\max}}} \widehat{\Theta}_{[\mathbf{n}], t}^{L, \Lambda, A} x_0(t - L \cdot \mathbf{n})$

Stability of difference equations and applications to transport and wave propagation on networks

Introduction	Stability analysis	Application to a transport system	Relative controllability
00000000	○○○○○○●○○○○○○		0000
Stability Stability analy	analysis _{'sis} (11)		

Introduction 00000000	Stability analysis	Application to a transport system	Relative controllability
Stability analysis	inalysis		

Theorem (Chitour, M., Sigalotti; 2015)

Let $\Lambda \in (0,+\infty)^N$ and $\mathcal A$ be uniformly locally bounded.

 Let L ∈ V₊(Λ). If Σ(L, A) is of (Θ̂, Λ)-exponential type γ then ∀p ∈ [1, +∞] it is of exponential type γ in X_p.

Introduction 00000000	Stability analysis ○○○○○○●○○○○○○	Application to a transport system	Relative controllability
Stability Stability analy	analysis _{/sis} (11)		

Theorem (Chitour, M., Sigalotti; 2015)

Let $\Lambda \in (0,+\infty)^N$ and $\mathcal A$ be uniformly locally bounded.

- Let L ∈ V₊(Λ). If Σ(L, A) is of (Θ̂, Λ)-exponential type γ then ∀p ∈ [1, +∞] it is of exponential type γ in X_p.
- Let L ∈ W₊(Λ). If ∃p ∈ [1, +∞] such that Σ(L, A) is of exponential type γ in X_p, then it is of (Θ, Λ)-exponential type γ.

Introduction 00000000	Stability analysis ○○○○○○●○○○○○○	Application to a transport system	Relative controllability
Stability Stability analy	analysis _{/sis} (11)		

Theorem (Chitour, M., Sigalotti; 2015)

Let $\Lambda \in (0,+\infty)^N$ and $\mathcal A$ be uniformly locally bounded.

- Let L ∈ V₊(Λ). If Σ(L, A) is of (Θ̂, Λ)-exponential type γ then ∀p ∈ [1, +∞] it is of exponential type γ in X_p.
- Let L ∈ W₊(Λ). If ∃p ∈ [1, +∞] such that Σ(L, A) is of exponential type γ in X_p, then it is of (Θ̂, Λ)-exponential type γ.
- Suppose that \mathcal{A} is shift-invariant. Then $(\widehat{\Theta}, \Lambda)$ and $(\widehat{\Xi}, \Lambda)$ -exponential types γ are equivalent.

Introduction	

Stability analysis

Application to a transport system 0000000

Relative controllability 0000

Stability analysis Maximal Lyapunov exponent

Definition

Introd	uction

Stability analysis

Application to a transport system 0000000

Relative controllability

Stability analysis Maximal Lyapunov exponent

Definition

The maximal Lyapunov exponent of $\Sigma(L, \mathcal{A})$ in X_p is $\lambda_p(L, \mathcal{A}) = \limsup_{t \to +\infty} \sup_{A \in \mathcal{A}} \sup_{\substack{X_0 \in X_p \\ \|X_0\|_{X_p} = 1}} \frac{\log \|X_t\|_{X_p}}{t}.$

Proposition

 $\lambda_p(L, A) = \inf\{\gamma \in \mathbb{R} \mid \Sigma(L, A) \text{ is of exponential type } \gamma \text{ in } X_p\}.$ In particular,

 $\Sigma(L,\mathcal{A})$ exponentially stable $\iff \lambda_p(L,\mathcal{A}) < 0.$

By the previous results, $\lambda_p(L, \mathcal{A})$ does not depend on p.

Stability analysis

Application to a transport system 0000000

Relative controllability

Stability analysis Maximal Lyapunov exponent

Theorem (Chitour, M., Sigalotti; 2015)

Let $\Lambda \in (0, +\infty)^N$ and suppose that \mathcal{A} is shift-invariant. For every $L \in W_+(\Lambda)$ and $p \in [1, +\infty]$, $\lambda_p(L, \mathcal{A}) = \limsup_{|\mathbf{n}|_1 \to +\infty} \sup_{A \in \mathcal{A}} \sup_{t \in \mathbb{R}} \frac{\log \left|\widehat{\Xi}_{\mathbf{n}, t}^{L, \Lambda, A}\right|}{L \cdot \mathbf{n}}.$

Introduction	Stability analysis	Application to a transport system	Relative controllability
00000000	○○○○○○○○○○○○○		0000
Stability an	nalysis		

$$\Sigma(L,A): \qquad x(t) = \sum_{j=1}^N A_j(t) x(t-L_j), \qquad t \ge 0.$$

• $\mathfrak{B} \subset \mathcal{M}_d(\mathbb{C})^N$: bounded set of *N*-tuples of matrices.

• $\mathcal{A} = L^{\infty}(\mathbb{R}, \mathfrak{B}).$

Arbitrary switching

- (A₁(t),..., A_N(t)) is any measurable function taking values on B: switched system with arbitrary switching signal.
- In this case, one can obtain more precise results.

Using the recurrence relation for $\Xi_{\mathbf{n},t}^{L,A}$, we obtain: $\widehat{\Xi}_{[\mathbf{n}],t}^{L,A,A} = \sum_{\mathbf{n}' \in [\mathbf{n}] \cap \mathbb{N}^N} \sum_{v \in V_{\mathbf{n}'}} \prod_{k=1}^{|\mathbf{n}'|_1} A_{v_k} \left(t - \sum_{r=1}^{k-1} L_{v_r} \right).$ $V_{\mathbf{n}}$: set of all permutations of $(\underbrace{1,\ldots,1}_{p_1 \text{ times}}, \underbrace{2,\ldots,2}_{p_2 \text{ times}}, \underbrace{N,\ldots,N}_{p_N \text{ times}}).$

$$\begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \mbox{total} \\ \mbox{total} \\ \mbox{total} \\ \end{array} \end{array} \end{array} \end{array} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \mbox{total} \\ \mbox{total} \\ \end{array} \end{array} \end{array} \end{array} \end{array} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \mbox{total} \\ \mbox{total} \\ \end{array} \end{array} \end{array} \end{array} \end{array} \begin{array}{l} \begin{array}{l} \begin{array}{l} \mbox{total} \\ \mbox{total} \\ \end{array} \end{array} \end{array} \end{array} \end{array} \begin{array}{l} \begin{array}{l} \begin{array}{l} \mbox{total} \\ \mbox{total} \\ \end{array} \end{array} \end{array} \end{array} \end{array} \begin{array}{l} \begin{array}{l} \begin{array}{l} \mbox{total} \\ \mbox{total} \\ \end{array} \end{array} \end{array} \end{array} \begin{array}{l} \begin{array}{l} \mbox{total} \\ \mbox{total} \\ \end{array} \end{array} \end{array} \begin{array}{l} \begin{array}{l} \mbox{total} \\ \mbox{total} \\ \end{array} \end{array} \end{array} \begin{array}{l} \begin{array}{l} \mbox{total} \\ \mbox{total} \\ \end{array} \end{array} \end{array} \begin{array}{l} \begin{array}{l} \mbox{total} \\ \mbox{total} \\ \end{array} \end{array} \begin{array}{l} \begin{array}{l} \mbox{total} \\ \mbox{total} \\ \mbox{total} \\ \end{array} \end{array} \begin{array}{l} \begin{array}{l} \mbox{total} \\ \mbox{total} \\ \end{array} \end{array} \begin{array}{l} \mbox{total} \\ \mbox{total} \\ \mbox{total} \\ \mbox{total} \\ \mbox{total} \\ \mbox{total} \\ \end{array} \end{array} \begin{array}{l} \begin{array}{l} \mbox{total} \\ \mbo$$

$$\mu(\Lambda,\mathfrak{B}) = \limsup_{\substack{\xi \to +\infty \\ \xi \in \mathcal{L}(\Lambda)}} \sup_{\substack{B' \in \mathfrak{B} \\ \text{ for } r \in \mathcal{L}_{\xi}(\Lambda)}} \left| \sum_{\substack{\mathbf{n} \in \mathbb{N}^{N} \\ \Lambda \cdot \mathbf{n} = \xi}} \sum_{v \in V_{\mathbf{n}}} \prod_{k=1}^{|\mathbf{n}|_{1}} B_{v_{k}}^{\Lambda_{v_{1}} + \ldots + \Lambda_{v_{k-1}}} \right|^{\xi},$$

where $\mathcal{L}(\Lambda) = \{\Lambda \cdot \mathbf{n} \mid \mathbf{n} \in \mathbb{N}^{N}\}$ and $\mathcal{L}_{\xi}(\Lambda) = \mathcal{L}(\Lambda) \cap [0, \xi).$

Stability analysis

Application to a transport system

Relative controllability 0000

Stability analysis Arbitrary switching

Theorem (Chitour, M., Sigalotti; 2015)

•
$$\lambda_{p}(\Lambda, \mathcal{A}) = \log \mu(\Lambda, \mathfrak{B});$$

Stability of difference equations and applications to transport and wave propagation on networks

Introduction	Stability analysis	Application to a transport system	Relative controllability
00000000	○○○○○○○○○○○		0000
Stability a	nalysis		

Theorem (Chitour, M., Sigalotti; 2015)

•
$$\lambda_{p}(\Lambda, \mathcal{A}) = \log \mu(\Lambda, \mathfrak{B});$$

• for every $L \in V_+(\Lambda)$, $\lambda_p(L, \mathcal{A}) \le m_1 \log \mu(\Lambda, \mathfrak{B})$;

• for every $L \in W_+(\Lambda)$, $m_2\lambda_p(\Lambda, \mathcal{A}) \leq \lambda_p(L, \mathcal{A}) \leq m_1\lambda_p(\Lambda, \mathcal{A})$.

Here,
$$\{m_1, m_2\} = \left\{\min_{j \in \llbracket 1, N \rrbracket} \frac{\Lambda_j}{L_j}, \max_{j \in \llbracket 1, N \rrbracket} \frac{\Lambda_j}{L_j} \right\}.$$

Introduction	Stability analysis	Application to a transport system	Relative controllability
00000000	○○○○○○○○○○○		0000
Stability a	inalysis		

Theorem (Chitour, M., Sigalotti; 2015)

•
$$\lambda_{p}(\Lambda, \mathcal{A}) = \log \mu(\Lambda, \mathfrak{B});$$

- for every $L \in V_+(\Lambda)$, $\lambda_p(L, \mathcal{A}) \le m_1 \log \mu(\Lambda, \mathfrak{B})$;
- for every $L \in W_+(\Lambda)$, $m_2\lambda_p(\Lambda, \mathcal{A}) \leq \lambda_p(L, \mathcal{A}) \leq m_1\lambda_p(\Lambda, \mathcal{A})$.

Here,
$$\{m_1, m_2\} = \left\{\min_{j \in \llbracket 1, N \rrbracket} \frac{\Lambda_j}{L_j}, \max_{j \in \llbracket 1, N \rrbracket} \frac{\Lambda_j}{L_j} \right\}.$$

Corollary

The following statements are equivalent:

- μ(Λ, 𝔅) < 1;
- $\Sigma(\Lambda, \mathcal{A})$ is exponentially stable in X_p for some $p \in [1, +\infty]$;
- $\Sigma(L, \mathcal{A})$ is exponentially stable in X_p for every $p \in [1, +\infty]$ and $L \in V_+(\Lambda)$.

Introduction 00000000	Stability analysis	Application to a transport system	Relative controllability
Stability a	analysis		

Exponential stability criteria:

	Autonomous	Arbitrary switching
N = 1	ho(A) < 1	$ ho_{ extsf{J}}(\mathfrak{B}) < 1$
any N	$ ho_{HS}({A}) < 1$	$\mu({f \Lambda},{\mathfrak B}) < 1$

Introduction 00000000	Stability analysis ○○○○○○○○○○○	Application to a transport system	Relative controllability
Stability Conclusion	analysis		
Expon	ential stability criteri	a:	

	Autonomous	Arbitrary switching
N = 1	ho(A) < 1	$ ho_{ extsf{J}}(\mathfrak{B}) < 1$
any N	$ ho_{HS}({A}) < 1$	$\mu({\sf \Lambda},\mathfrak{B})<1$

Interesting questions:

Both ρ(A) and ρ_J(𝔅) are limits and lim_{n→+∞} can be replaced by inf_{n∈ℕ*}. Is the same true for μ(Λ,𝔅)?

Introduction 00000000	Stability analysis	Application to a transport system	Relative controllability
Stability Conclusion	analysis		
Expone	ential stability criteri	a:	

Exponential	stability	criteria:
-------------	-----------	-----------

	Autonomous	Arbitrary switching
N = 1	ho(A) < 1	$ ho_{ extsf{J}}(\mathfrak{B}) < 1$
any N	$ ho_{HS}({A}) < 1$	$\mu({f \Lambda},{\mathfrak B}) < 1$

Interesting questions:

- Both $\rho(A)$ and $\rho_J(\mathfrak{B})$ are limits and $\lim_{n\to+\infty}$ can be replaced by inf_{$n \in \mathbb{N}^*$}. Is the same true for $\mu(\Lambda, \mathfrak{B})$?
- $\rho(A) = 0$, $\rho_J(\mathfrak{B}) = 0$, and $\rho_{HS}(A) = 0$ are equivalent to convergence in finite time. Is this also true for $\mu(\Lambda, \mathfrak{B})$?

Introduction 00000000	Stability analysis ○○○○○○○○○○○	Application to a transport system	Relative controllability
Stability Conclusion	analysis		
Expone	ential stability criteri	a:	

i stabiit

	Autonomous	Arbitrary switching
N = 1	ho(A) < 1	$ ho_{ extsf{J}}(\mathfrak{B}) < 1$
any N	$ ho_{HS}({A}) < 1$	$\mu(\Lambda,\mathfrak{B}) < 1$

Interesting questions:

- Both $\rho(A)$ and $\rho_1(\mathfrak{B})$ are limits and $\lim_{n \to +\infty}$ can be replaced by inf_{$n \in \mathbb{N}^*$}. Is the same true for $\mu(\Lambda, \mathfrak{B})$?
- $\rho(A) = 0$, $\rho_J(\mathfrak{B}) = 0$, and $\rho_{HS}(A) = 0$ are equivalent to convergence in finite time. Is this also true for $\mu(\Lambda, \mathfrak{B})$?
- Can we numerically compute or approximate μ ? (For $\rho_{\rm J}$, this problem is NP-hard, Turing-undecidable, and non-algebraic, but several useful bounds and approximations exist, see [Jungers; 2009]).

Introduction 00000000	Stability analysis ○○○○○○○○○○○	Application to a transport system	Relative controllability
Stability Conclusion	analysis		
Expone	ential stability criteri	а.	

ai stability

	Autonomous	Arbitrary switching
N = 1	ho(A) < 1	$ ho_{J}(\mathfrak{B}) < 1$
any N	$ ho_{HS}({A}) < 1$	$\mu(\Lambda,\mathfrak{B}) < 1$

Interesting questions:

- Both $\rho(A)$ and $\rho_1(\mathfrak{B})$ are limits and $\lim_{n \to +\infty}$ can be replaced by inf_{$n \in \mathbb{N}^*$}. Is the same true for $\mu(\Lambda, \mathfrak{B})$?
- $\rho(A) = 0$, $\rho_1(\mathfrak{B}) = 0$, and $\rho_{HS}(A) = 0$ are equivalent to convergence in finite time. Is this also true for $\mu(\Lambda, \mathfrak{B})$?
- Can we numerically compute or approximate μ ? (For $\rho_{\rm J}$, this problem is NP-hard, Turing-undecidable, and non-algebraic, but several useful bounds and approximations exist, see [Jungers; 2009]).
- What can we say if $\Lambda_1, \ldots, \Lambda_N$ are time-dependent?

Stability analysis 000000000000000 Application to a transport system

Relative controllability

Stability analysis 00000000000000 Application to a transport system

Relative controllability

Stability analysis 00000000000000 Application to a transport system

Relative controllability

Stability analysis 000000000000000 Application to a transport system 0 = 0 = 0 = 0

Relative controllability

$$\begin{aligned} \partial_t u_i(t,\xi) + \partial_\xi u_i(t,\xi) + \alpha_i(t)\chi_i(\xi)u_i(t,\xi) &= 0, \\ t \in \mathbb{R}_+, \ \xi \in [0, L_i], \ i \in \llbracket 1, N_d \rrbracket, \\ \partial_t u_i(t,\xi) + \partial_\xi u_i(t,\xi) &= 0, \quad t \in \mathbb{R}_+, \ \xi \in [0, L_i], \ i \in \llbracket N_d + 1, N \rrbracket, \\ u_i(t,0) &= \sum_{j=1}^N m_{ij}u_j(t, L_j), \quad t \in \mathbb{R}_+, \ i \in \llbracket 1, N \rrbracket. \end{aligned}$$

- χ_i : characteristic function of an interval $[a_i, b_i] \subset [0, L_i]$.
- $M = (m_{ij})_{1 \le i,j \le N}$: transmission matrix.
- α_i is persistently exciting for $i \in [\![1, N_d]\!]$.

Stability analysis

Application to a transport system

Relative controllability

Application to a transport system Persistence of excitation

- Persistently exciting (PE) signals: for $T \ge \mu > 0$, we say that $\alpha \in \mathcal{G}(T,\mu)$ if $\alpha \in L^{\infty}(\mathbb{R}; [0,1])$ and $\forall t \in \mathbb{R}, \quad \int_{t}^{t+T} \alpha(s) ds \ge \mu.$
- G(T, μ) is shift-invariant.

Stability analysis

Application to a transport system

Relative controllability

Application to a transport system Persistence of excitation

- Persistently exciting (PE) signals: for $T \ge \mu > 0$, we say that $\alpha \in \mathcal{G}(T, \mu)$ if $\alpha \in L^{\infty}(\mathbb{R}; [0, 1])$ and $\forall t \in \mathbb{R}, \quad \int_{t}^{t+T} \alpha(s) ds \ge \mu.$
- $\mathfrak{G}(\mathcal{T},\mu)$ is shift-invariant.
- Introduced in the context of identification and adaptive control [Anderson; 1977].
- Much studied in finite-dimensional control systems [Chitour, Sigalotti; 2010], [Chitour, M., Sigalotti; 2013].

Stability analysis

Application to a transport system

Relative controllability

Application to a transport system Main result

Hypotheses:

- There exist $i, j \in \llbracket 1, N \rrbracket$ such that $\frac{L_i}{L_i} \notin \mathbb{Q}$.
- $|M|_1 \leq 1$ and $m_{ij} \neq 0$ for every $i, j \in \llbracket 1, N \rrbracket$.

Theorem

$$\begin{aligned} \forall T \geq \mu > 0, \ \exists C, \gamma > 0 \ s.t., \ \forall p \in [1, +\infty], \ \forall u_{i,0} \in L^p(0, L_i), \\ i \in \llbracket 1, N \rrbracket, \ and \ \forall \alpha_k \in \Im(T, \mu), \ k \in \llbracket 1, N_d \rrbracket, \ the \ corresponding \\ solution \ satisfies \\ \sum_{i=1}^N \|u_i(t)\|_{L^p(0, L_i)} \leq C e^{-\gamma t} \sum_{i=1}^N \|u_{i,0}\|_{L^p(0, L_i)}, \quad \forall t \geq 0. \end{aligned}$$

Stability analysis

Application to a transport system

Relative controllability

Application to a transport system Technique of the proof

• For
$$t \ge L_{\max}$$
:
 $u_i(t,0) = \sum_{j=1}^{N} m_{ij} u_j(t,L_j) = \sum_{j=1}^{N} m_{ij} e^{-\int_{t-L_j+a_j}^{t-L_j+b_j} \alpha_j(s) ds} u_j(t-L_j,0)$

Set x(t) = (u_i(t, 0))_{i∈[1,N]}. Then x satisfies the difference equation

$$x(t) = \sum_{k=1}^{N} A_k(t) x(t - L_k)$$

with

$$A_k(t) = \left(\delta_{jk} m_{ij} e^{-\int_{t-L_j+a_j}^{t-L_j+b_j} \alpha_j(s) ds}\right)_{i,j \in [\![1,N]\!]}$$

• It suffices to show that such difference equation is $(\widehat{\Xi}, L)$ -exponentially stable. We study the behavior of the coefficients $\Xi_{\mathbf{n},t}^{L,A}$ as $|\mathbf{n}|_1 \to +\infty$.

Stability analysis

Application to a transport system 0000000

Relative controllability

Application to a transport system Technique of the proof

Decomposition of the set \mathbb{N}^N .

Stability analysis 000000000000000 Application to a transport system 0000000

Relative controllability

Application to a transport system Technique of the proof

Decomposition of the set \mathbb{N}^N .

Stability analysis 000000000000000 Application to a transport system 0000000

Relative controllability

Application to a transport system Technique of the proof

Decomposition of the set \mathbb{N}^N .

Stability analysis 000000000000000 Application to a transport system

Relative controllability

Application to a transport system Technique of the proof

In $\mathfrak{N}_{c}(\rho)$: "box lemma"

Stability analysis 000000000000000 Application to a transport system

Relative controllability

Application to a transport system Technique of the proof

In $\mathfrak{N}_{c}(\rho)$: "box lemma"

Stability analysis 000000000000000 Application to a transport system

Relative controllability

Application to a transport system Technique of the proof

In $\mathfrak{N}_{c}(\rho)$: "box lemma"

Stability analysis 000000000000000 Application to a transport system

Relative controllability

Application to a transport system Technique of the proof

In $\mathfrak{N}_{c}(\rho)$: "box lemma"

Find
$$\eta \in (0,1)$$
 such that $e^{-\int_{t-L\cdot n+a_k}^{t-L\cdot n+b_k} \alpha_k(s)ds} \leq \eta$ "often enough"

Stability analysis

Application to a transport system

Relative controllability

Application to a transport system Technique of the proof

In $\mathfrak{N}_{c}(\rho)$: "box lemma"

Stability analysis

Application to a transport system

Relative controllability

Application to a transport system Technique of the proof

In $\mathfrak{N}_{c}(\rho)$: "box lemma"

 $\Longrightarrow \Xi^{L,A}_{\mathbf{n},t}$ decreases exponentially with **n** in $\mathfrak{N}_{c}(
ho)$

Stability analysis

Application to a transport system

Relative controllability

Application to a transport system Technique of the proof

In $\mathfrak{N}_{c}(\rho)$: "box lemma"

 $\implies \Xi_{\mathbf{n},t}^{L,A} \text{ decreases exponentially with } \mathbf{n} \text{ in } \mathfrak{N}_{c}(\rho)$ $\implies \text{ the solutions converge exponentially} \quad \blacksquare$

Stability of difference equations and applications to transport and wave propagation on networks

Stability analysis

Application to a transport system 0000000

Relative controllability $\bullet \circ \circ \circ$

Relative controllability Definition

$$\Sigma_{\text{contr}}$$
: $x(t) = \sum_{j=1}^{N} A_j x(t - \Lambda_j) + B u(t), \quad t \ge 0.$

Introduction
00000000

и х Stability analysis

Relative controllability 0000

Relative controllability Definition

$$\begin{split} \Sigma_{\text{contr}} : \quad x(t) &= \sum_{j=1}^N A_j x(t-\Lambda_j) + B u(t), \quad t \geq 0. \end{split}$$
 For every initial condition $x_0 : [-\Lambda_{\text{max}}, 0) \to \mathbb{C}^d$ and control $u : [0, T] \to \mathbb{C}^m$, Σ_{contr} admits a unique solution $x : [-\Lambda_{\text{max}}, T] \to \mathbb{C}^d$ (no regularity assumptions!).

Introduction
00000000

Stability analysis

Application to a transport system

Relative controllability 0000

Relative controllability Definition

$$\begin{split} \Sigma_{\text{contr}} : \quad x(t) &= \sum_{j=1}^{N} A_{j} x(t - \Lambda_{j}) + B u(t), \quad t \geq 0. \end{split}$$
 For every initial condition $x_{0} : [-\Lambda_{\max}, 0) \to \mathbb{C}^{d}$ and control $u : [0, T] \to \mathbb{C}^{m}, \ \Sigma_{\text{contr}}$ admits a unique solution $x : [-\Lambda_{\max}, T] \to \mathbb{C}^{d}$ (no regularity assumptions!).

Definition

П х

We say that Σ_{contr} is relatively controllable in time T > 0 if, for every $x_0 : [-\Lambda_{\max}, 0) \to \mathbb{C}^d$ and $x_1 \in \mathbb{C}^d$, there exists $u: [0, T] \to \mathbb{C}^m$ such that the unique solution x of Σ_{contr} with initial condition x_0 and control u satisfies $x(T) = x_1$.

Introduction
00000000

Stability analysis

Application to a transport system 0000000

Relative controllability

Relative controllability Explicit formula

Similarly to the stability analysis, we use an explicit formula for the solutions in order to characterize relative controllability.

Stability analysis

Application to a transport system 0000000

Relative controllability

Relative controllability Explicit formula

Similarly to the stability analysis, we use an explicit formula for the solutions in order to characterize relative controllability.

Lemma (Explicit solution)

Let
$$u : [0, T] \to \mathbb{C}^m$$
. The solution $x : [-\Lambda_{\max}, T] \to \mathbb{C}^d$ of Σ_{contr}
with zero initial condition and control u is, for $t \in [0, T]$,
 $x(t) = \sum_{\substack{[\mathbf{n}] \in \mathcal{Z} \\ \Lambda \cdot \mathbf{n} \leq t}} \widehat{\Xi}_{\mathbf{n}, t}^{L, \Lambda, A} Bu(t - \Lambda \cdot \mathbf{n}).$

Stability analysis

Application to a transport system 0000000

Relative controllability

Relative controllability Explicit formula

Similarly to the stability analysis, we use an explicit formula for the solutions in order to characterize relative controllability.

Lemma (Explicit solution)

Let
$$u : [0, T] \to \mathbb{C}^m$$
. The solution $x : [-\Lambda_{\max}, T] \to \mathbb{C}^d$ of Σ_{contr}
with zero initial condition and control u is, for $t \in [0, T]$,
 $x(t) = \sum_{\substack{[\mathbf{n}] \in \mathbb{Z} \\ \Lambda \cdot \mathbf{n} \le t}} \widehat{\Xi}_{\mathbf{n}}^{\Lambda, A} Bu(t - \Lambda \cdot \mathbf{n}).$

Stability analysis

Application to a transport system 0000000

Relative controllability

Relative controllability Explicit formula

Similarly to the stability analysis, we use an explicit formula for the solutions in order to characterize relative controllability.

Lemma (Explicit solution)

Let $u : [0, T] \to \mathbb{C}^m$. The solution $x : [-\Lambda_{\max}, T] \to \mathbb{C}^d$ of Σ_{contr} with zero initial condition and control u is, for $t \in [0, T]$, $x(t) = \sum_{\substack{[\mathbf{n}] \in \mathbb{Z} \\ \Lambda \cdot \mathbf{n} \le t}} \widehat{\Xi}_{\mathbf{n}}^{\Lambda, A} Bu(t - \Lambda \cdot \mathbf{n}).$

By linearity, solution with initial condition x_0 and control u is the sum of this formula with the previous one.

Stability analysis

Application to a transport system 0000000

Relative controllability $\circ \circ \bullet \circ$

Relative controllability Relative controllability criterion

Theorem (M.; 2016)

The following statements are equivalent:

• Σ_{contr} is relatively controllable in time T;

• Span
$$\left\{ \widehat{\Xi}_{[\mathbf{n}]}^{\Lambda,A} B w \mid \mathbf{n} \in \mathbb{N}^N, \ \Lambda \cdot \mathbf{n} \leq T, \ w \in \mathbb{C}^m \right\} = \mathbb{C}^d$$

Stability analysis

Application to a transport system 0000000

Relative controllability

Relative controllability Relative controllability criterion

Theorem (M.; 2016)

The following statements are equivalent:

• Σ_{contr} is relatively controllable in time T;

• Span
$$\left\{ \widehat{\Xi}_{[\mathbf{n}]}^{\Lambda,\mathcal{A}} B w \mid \mathbf{n} \in \mathbb{N}^{\mathcal{N}}, \ \Lambda \cdot \mathbf{n} \leq T, \ w \in \mathbb{C}^{m}
ight\} = \mathbb{C}^{d};$$

• $\exists \varepsilon_0 > 0$ such that, for every $\varepsilon \in (0, \varepsilon_0)$, $x_0 : [-\Lambda_{\max}, 0) \to \mathbb{C}^d$, and $x_1 : [0, \varepsilon] \to \mathbb{C}^d$, there exists $u : [0, T + \varepsilon] \to \mathbb{C}^m$ such that the solution x of Σ_{contr} with initial condition x_0 and control u satisfies $x(T + \cdot)|_{[0,\varepsilon]} = x_1$;

Stability of difference equations and applications to transport and wave propagation on networks

Stability analysis

Application to a transport system 0000000

Relative controllability

Relative controllability Relative controllability criterion

Theorem (M.; 2016)

The following statements are equivalent:

• Σ_{contr} is relatively controllable in time T;

• Span
$$\left\{ \widehat{\Xi}_{[\mathbf{n}]}^{\Lambda,A} B w \mid \mathbf{n} \in \mathbb{N}^N, \ \Lambda \cdot \mathbf{n} \leq T, \ w \in \mathbb{C}^m \right\} = \mathbb{C}^d;$$

- $\exists \varepsilon_0 > 0$ such that, for every $\varepsilon \in (0, \varepsilon_0)$, $x_0 : [-\Lambda_{\max}, 0) \to \mathbb{C}^d$, and $x_1 : [0, \varepsilon] \to \mathbb{C}^d$, there exists $u : [0, T + \varepsilon] \to \mathbb{C}^m$ such that the solution x of Σ_{contr} with initial condition x_0 and control u satisfies $x(T + \cdot)|_{[0,\varepsilon]} = x_1$;
- $\exists \varepsilon_0 > 0$ such that, for every $p \in [1, +\infty]$, $\varepsilon \in (0, \varepsilon_0)$, $x_0 \in L^p((-\Lambda_{\max}, 0), \mathbb{C}^d)$, and $x_1 \in L^p((0, \varepsilon), \mathbb{C}^d)$, there exists $u \in L^p((0, T + \varepsilon), \mathbb{C}^m)$ such that the solution x of Σ_{contr} with initial condition x_0 and control u satisfies $x \in L^p((-\Lambda_{\max}, T + \varepsilon), \mathbb{C}^d)$ and $x(T + \cdot)|_{[0,\varepsilon]} = x_1$.

Stability analysis

Application to a transport system 0000000

Relative controllability ○○○●

Relative controllability Relative controllability criterion

• Can also be generalized to other spaces (e.g., C^k).

- Relative controllability criterion
 - Can also be generalized to other spaces (e.g., C^k).
 - Generalizes Kalman criterion: for x(t) = Ax(t 1) + Bu(t), one has

Span
$$\left\{ \widehat{\Xi}_{\mathbf{n}}^{\Lambda,A} B w \mid \mathbf{n} \in \mathbb{N}^{N}, \Lambda \cdot \mathbf{n} \leq T, w \in \mathbb{C}^{m} \right\}$$

= Ran $\begin{pmatrix} B & AB & A^{2}B & \cdots & A^{\lfloor T \rfloor}B \end{pmatrix}$.

Theorem (M.; 2016)

• If Σ_{contr} is relatively controllable in some time T > 0, then it is also relatively controllable in time $T = (d - 1)\Lambda_{\text{max}}$.

Relative controllability criterion

- Can also be generalized to other spaces (e.g., \mathbb{C}^k).
- Generalizes Kalman criterion: for x(t) = Ax(t 1) + Bu(t), one has

Span
$$\left\{ \widehat{\Xi}_{\mathbf{n}}^{\Lambda,A} B w \mid \mathbf{n} \in \mathbb{N}^{N}, \Lambda \cdot \mathbf{n} \leq T, w \in \mathbb{C}^{m} \right\}$$

= Ran $\begin{pmatrix} B & AB & A^{2}B & \cdots & A^{\lfloor T \rfloor}B \end{pmatrix}$.

Theorem (M.; 2016)

- If Σ_{contr} is relatively controllable in some time T > 0, then it is also relatively controllable in time $T = (d 1)\Lambda_{\text{max}}$.
- If $\Lambda_1, \ldots, \Lambda_N$ are rationally independent, then Σ_{contr} is relatively controllable in some time T > 0 if and only if $\text{Span}\left\{\Xi_n^A Be_j \mid \mathbf{n} \in \mathbb{N}^N, \ |\mathbf{n}|_1 \leq d-1, \ j \in [\![1,m]\!]\right\} = \mathbb{C}^d.$

Introduction	Stability analysis	Application to a transport system	Relative controllability