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Motivations: Saint-Venant–Exner system

Open channel problem

Prismatic open channel

� rectangular cross-section
� losses are negligible

Ht + VHx + HVx = 0,
Vt + VVx + gHx + gBx = 0, x ∈ [0, 1], t ∈ [0,+∞),

Bt + aV 2Vx = 0.

H(x , t) - water level ; V (x , t) - water velocity ; B(x , t) - bathymetry ;
g - gravity constant; a - constant parameter on sediment porosity.
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The linearized system with respect to a space constant
steady-state (H?,V ?,B?) ish

v
b


t

+

V ? H? 0
g V ? g
0 aV ∗2 0

h
v
b


x

= 0.

Performing a change of variable, we get a hyperbolic system

Wt + ΛWx = 0,

with

Wk =

(
(V ?−λi )(V ?−λj )+gH?

)
h+H?λkv+gH?b

(λk−λi )(λk−λj ) ,

k 6= i 6= j ∈ {1, 2, 3},

and Λ = diag(λ1, λ2, λ3), see [Diagne, Bastin, Coron; 2012]
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• λ1 and λ3: velocity of the water flow
• λ2: velocity of the sediment motion

λ2 << |λ1|, λ2 << λ3.

Defining ε = λ2
λ3

and t̃ = λ2t, and a change of spatial variable
W ′

1(1− x , t) = W1(x , t), we obtain a singularly perturbed
hyperbolic system as follows

Wt̃ + Λ′Wx = 0,

with Λ′ = diag( |λ1|
ελ3
, 1, 1

ε ).
• Boundary conditions depend on the control
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What happens if ε is small in terms of the stability?

Could we design boundary controllers taking into account the
two-scale dynamics?

Since ε is small, the Courant Friedrichs Lewy condition asks that
∆x
∆t is very small.

Is it possible to scale the equations of the so-called singularly
perturbed system and to develop specific control theory.
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Outline

1 Singularly perturbed systems in finite-dimensional systems
linear ODE versus nonlinear ODE

Pedagogical purpose

2 Singularly perturbed hyperbolic systems
linear PDE but counter-example of the intuitive idea

3 Stability of singularly perturbed hyperbolic systems

4 Approximation result
Tikhonov theorem for linear hyperbolic systems

5 Further results on coupled ODE-PDE
only partial results extra work is (still) needed

6 Boundary control of the Saint-Venant–Exner system
application on some numerical simulations

7 Conclusion
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1 – What is known for ordinary differential equations?

{
ẏ(t) = Ay(t) + Bz(t)
εż(t) = Cy(t) + Dz(t)

with y(t) ∈ Rn, z(t) ∈ Rm, ε > 0 small
Formally we have by letting ε = 0 in z-equation

z = −D−1Cy

By replacing z by −D−1Cy in the y equation, we get the following
reduced system

ẏ = Ary

with Ar = A− BD−1C . By using the following change of variables
z(t/ε) = z(t) + D−1Cy(t) we get: εż = Dz + εD−1C (Ay + Bz)
Now using the following time-scale τ = t/ε and using (formally)
ε→ 0, the boundary layer system is

dz

dτ
= Dz
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Stability of reduced system and of boundary layer systems implies
the stability of the full system:

Proposition [Kokotović et al.; 1972]

If Ar and D have all eigenvalues in the (open) left-part of the
plane, then there exists ε∗ such that, for all ε ∈ (0, ε?],
the full system is exponentially stable.

Proof We write the dynamics into the coordinate (y , z̄):

d

dt

(
y(t)
z̄(τ)

)
=

(
Ay + Bz

1
εDz̄

)
=

(
Ar B
0 1

εD

)(
y(t)
z̄(τ)

)
and we conclude by letting ε sufficiently small �
False for nonlinear ODEs
Stability of reduced and boundary layer systems

6⇒ stability of the nonlinear ODE
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What about the approximation between the full system and the
”small” systems?
Tikhonov theorem:

Proposition [Kokotović et al., 1986]

If Ar and D have all eigenvalues in the (open) left-part of the
plane, then, given an initial condition, there exist a > 0 and ε∗

such that, for all t ≥ 0,

|y(t)− y(t)| ≤ aε (1)

|z(t) + D−1Cy(t)− z(t/ε)| ≤ aε (2)

Sketch of proof of (1) and (2):
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What about the approximation between the full system and the
”small” systems?
Tikhonov theorem:

Proposition [Kokotović et al., 1986]

If Ar and D have all eigenvalues in the (open) left-part of the
plane, then, given an initial condition, there exist a > 0 and ε∗

such that, for all t ≥ 0,

|y(t)− y(t)| ≤ aε (1)

|z(t) + D−1Cy(t)− z(t/ε)| ≤ aε (2)

Proof of (1): Recall that z̄(t/ε) = eDt/εz̄(0) and compute

d

dt
(y − ȳ) = Bz̄

thus we have (1)
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What about the approximation between the full system and the
”small” systems?
Tikhonov theorem:

Proposition [Kokotović et al., 1986]

If Ar and D have all eigenvalues in the (open) left-part of the
plane, then, given an initial condition, there exist a > 0 and ε∗

such that, for all t ≥ 0,

|y(t)− y(t)| ≤ aε (1)

|z(t) + D−1Cy(t)− z(t/ε)| ≤ aε (2)

Proof of (2): Easy computations give

d
dt (z̄(t/ε)− z(t)− D−1Cy(t))

= 1
εDz̄(t/ε)− 1

εCy(t)− 1
εDz(t)− D−1CAy(t)− D−1CBz(t)

= −1
εD(z̄(t/ε)− z(t)− D−1Cy(t))
−D−1CAy(t)− D−1CBz(t)

integrating and using y(t), z(t)→ 0, we have (2)
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2 – Singularly perturbed hyperbolic systems

The full system is given as follows

yt(x , t) + Λ1yx(x , t) = 0, y ∈ Rn

εzt(x , t) + Λ2zx(x , t) = 0, z ∈ Rm (3)

where ε > 0 and Λ1 and Λ2 are diagonal positive, x ∈ [0, 1], t > 0.

The boundary conditions are(
y(0, t)
z(0, t)

)
=

(
K11 K12

K21 K22

)(
y(1, t)
z(1, t)

)
, t ∈ [0,+∞), (4)

with K11 in Rn×n, K12 in Rn×m, K21 in Rm×n, K22 in Rm×m.

The initial conditions are(
y(x , 0)
z(x , 0)

)
=

(
y0(x)
z0(x)

)
, x ∈ [0, 1].
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Setting ε = 0 in the full system and assuming (Im − K22)
invertible, we get formally

yt(x , t) + Λ1yx(x , t) = 0, (5a)

zx(x , t) = 0. (5b)

Substituting (5b) into the full system’s boundary conditions
matrix, yields

z(., t) = (Im − K22)−1K21y(1, t),
y(0, t) = (K11 + K12(Im − K22)−1K21)y(1, t).
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The reduced subsystem is computed as

ȳt(x , t) + Λ1ȳx(x , t) = 0, x ∈ [0, 1], t ∈ [0,+∞), (6)

with the boundary condition

ȳ(0, t) = Kr ȳ(1, t), t ∈ [0,+∞), (7)

where Kr = K11 + K12(Im − K22)−1K21.

The initial condition is as the same as the full system

ȳ(x , 0) = y0(x), x ∈ [0, 1].
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Let us perform the following change of variable:
z̄(x , t) = z(x , t)− (Im − K22)−1K21y(1, t). Noting τ = t/ε and
making ε→ 0, the boundary layer subsystem is

z̄τ (x , τ) + Λ2z̄(x , τ) = 0 (8)

with the boundary condition

z̄(0, τ) = K22z̄(1, τ)

and the initial condition

z̄(x , 0) = z0(x)− (Im − K22)−1K21y(1, 0)
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(short) review of the literature on the boundary
stabilization of hyperbolic PDE

Many technics exist for one-scale linear hyperbolic system:

∂ty + Λ∂xy = 0 , x ∈ [0, 1], t ≥ 0
y(0, t) = Ky(1, t) , t ≥ 0

(9)

There are sufficient conditions on K so that (9) is Locally
Exponentially Stable in H2, or in C 1...
[Coron, Bastin, d’Andréa-Novel; 08]
[Coron, Vazquez, Krstic, Bastin; 13]
[CP, Winkin, Bastin; 08]
Notation:

‖K‖ = max{|Ky |, y ∈ Rn, |y | = 1}
ρ(K ) = inf{‖∆K∆−1‖, ∆ ∈ Dn,+}

[Coron et al; 08]: if ρ(K ) < 1 then the system (9) is Exp. Stable in
L2-norm, and in H2 norm
This sufficient condition is weaker that the one of [Li; 94].
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In other words

[Coron, Bastin, d’Andréa-Novel; 08]

If ρ(K ) < 1 then the system (9) is exp. stable in L2-norm
that is ∃ ω, C > 0 such that for all y0 ∈ L2(0, 1),

‖y(., t)‖L2(0,1) ≤ Ce−ωt‖y0‖L2(0,1) , ∀t ≥ 0.

Proof From ρ(K ) < 1, there exists a diagonal positive definite
matrix ∆ such that ‖∆G∆−1‖ < 1. Then, letting Q = ∆2Λ−1, we
have

ΛQ − K>QΛK > 0 (10)

Thus with a suitable µ > 0, letting V (y) =
∫ 1

0 e−µxy(x)>Qy(x)dx

V̇ = −2

∫ 1

0
e−µxyx(x)>Λ>Qy(x)dx

= −µ
∫ 1

0
e−µxy(x)>Λ>Qy(x)dx−[e−µxy(x)QΛy(x)]10

With (10), V is a Lyapunov function for (9). �
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If ρ(K ) < 1 then the system (9) is exp. stable in L2-norm
that is ∃ ω, C > 0 such that for all y0 ∈ L2(0, 1),

‖y(., t)‖L2(0,1) ≤ Ce−ωt‖y0‖L2(0,1) , ∀t ≥ 0.

Proof From ρ(K ) < 1, there exists a diagonal positive definite
matrix ∆ such that ‖∆G∆−1‖ < 1. Then, letting Q = ∆2Λ−1, we
have

ΛQ − K>QΛK > 0 (10)

Thus with a suitable µ > 0, letting V (y) =
∫ 1

0 e−µxy(x)>Qy(x)dx

V̇ = −2

∫ 1

0
e−µxyx(x)>Λ>Qy(x)dx

= −µ
∫ 1

0
e−µxy(x)>Λ>Qy(x)dx−[e−µxy(x)QΛy(x)]10

With (10), V is a Lyapunov function for (9). �
15/45 C. Prieur Valenciennes, July 2016



In other words

[Coron, Bastin, d’Andréa-Novel; 08]
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Remark It is also exp. stable in H2 norm
that is ∃ ω, C > 0 such that for all y0 ∈ H2(0, 1) satisfying some
compatibility conditions

‖y(., t)‖H2(0,1) ≤ Ce−ωt‖y0‖H2(0,1)∀t ≥ 0.

For the H2 norm, use

V (y) =

∫ 1

0
e−µx

(
y(x)>Q0y(x)+y ′(x)>Q1y

′(x)+y ′′(x)>Q2y
′′(x)

)
dx

as Lyapunov function.
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Proposition

ρ(K ) < 1 =⇒ the boundary layer and the reduced systems are
both exp. stable in L2 norm and in H2

Proof
• Use some algebraic computations to show that ρ(K22) < 1 and
ρ(Kr ) < 1
• Apply the previously recalled sufficient condition. �

It is useless since we are more interesting in the converse
implication

which is true for finite dimensional systems

but false in our case!!
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Stability of subsystems 6=⇒ Stability of full system

Exp. stability of the boundary layer system + exp. stability of the
reduced system
6=⇒
Exp. stability of the full system!
Indeed consider

∂ty + ∂xy = 0 , x ∈ [0, 1], t ≥ 0
ε∂tz + ∂xz = 0 , x ∈ [0, 1], t ≥ 0(

y(0, t)
z(0, t)

)
=

(
2.5 −1
1 0.5

)(
y(1, t)
z(1, t)

)
, t ≥ 0

(11)

Recall: [Coron et al., 2008]: The condition ρ(K ) < 1 is sufficient
for exp. stability but also necessary for n ≤ 5 for irrationally
independent velocities.
We may check that ρ(K ) > 1. Therefore, picking ε ∈ R \Q,
(11) is unstable.
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Stability of subsystems 6=⇒ Stability of full system (cont’d)

The reduced system

ȳt + ȳx = 0
ȳ(0, t) = 0.5ȳ(1, t)

and the boundary layer system

z̄τ + z̄x = 0
z̄(0, τ) = 0.5ȳ(1, τ)

are both exp. stable.
Therefore

Stability of subsystems 6=⇒ Stability of full system
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What should be added?

To ease the computations, assume y ∈ R, z ∈ R and Λ1 = Λ2 = 1.

Assumption #1

The reduced system (6) is exponentially stable in L2-norm.

Assumption #2

The boundary-layer system (8) is exponentially stable in L2-norm.

Assume moreover that

Assumption #3

Given 0 < d < 1, µ > 0 and ν > 0 such that e−µ > K 2
11,

e−µ >
(
K11 + K12K21

1−K22

)2
and e−ν > K 2

22, assume

a) (1− d)R1 − dK 2
21 > 0,

b) dR2 − (1− d)K 2
12 > 0,

c)
(
(1− d)R1 − dK 2

21

)(
dR2 − (1− d)K 2

12

)
−((1− d)R3 + dR4)2 > 0

where: R1 = e−µ − K 2
11, R2 = e−ν − K 2

22, R3 = K11K12, R4 = K21K22.
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Sufficient for the exp. stability of the full system

Theorem [Tang, CP, Girard; 2013]

Under Assumptions #1, #2, and #3, there exists ε? such that for
all 0 < ε < ε?, the full system is exp. stable in H2-norm. Moreover
it has the following Lyapunov function:

V (y , z) = (1− d)

∫ 1

0
e−µx(y2 + y2

x + y2
xx)dx

+d

∫ 1

0
e−νx

((
z − K21

1− K22
y(1)

)2

+ η1(ε)z2
x + η2(ε)z2

xx

)

where η1, η2 are positive functions of ε.
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Sketch of proof

First, let us decompose V (y , z) as V (y , z) = L1 + L2 + L3 with

L1 = (1− d)

∫ 1

0
e−µxy2dx + d

∫ 1

0
e−νx

(
z − K21

1− K22
y(1)

)2

dx ,

L2 = (1− d)

∫ 1

0
e−µxy2

x dx + dη1(ε)

∫ 1

0
e−νxz2

x dx ,

L3 = (1− d)

∫ 1

0
e−µxy2

xxdx + dη2(ε)

∫ 1

0
e−νxz2

xxdx

There are 4 steps in the proof:

Estimation of L̇1

Estimation of L̇2

Estimation of L̇3

Combining all computations
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Step #1: Estimation of L̇1

First use the dynamics and integrate by parts. We get

L̇1 = L11 + L12

with

L11 = −(1− d)
[
e−µxy2

]x=1

x=0
− d

ε

[
e−νx

(
z − K21

1− K22
y(1)

)2
]x=1

x=0

,

and

L12 = −(1− d)µ

∫ 1

0
e−µxy2dx

+

(
2dK21

1− K22

)∫ 1

0
e−νx

(
z − K21

1− K22
y(1)

)
yx(1)dx

−d

ε
ν

∫ 1

0
e−νx

(
z − K21

1− K22
y(1)

)2

dx .
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With the boundary conditions (4) and noting

z(1) =
(
z(1)− K21

1−K22
y(1)

)
+ K21

1−K22
y(1), it follows

L11 = −
(

y(1)
z(1)− K21

1−K22
y(1)

)T

M11

(
y(1)

z(1)− K21

1−K22
y(1)

)
with

M11 =

(
(1− d)m1 −(1− d)K2

−(1− d)m2
d
εR2 − (1− d)K 2

12

)
,

where m1, m2 are some values and R2 is defined in
Assumption #3. Due to Assumptions #1 and #2, m1 and R2 are
positive. Thus L11 ≤ 0 as soon as 0 < ε ≤ ε1 for a suitable ε1.

Therefore L̇1 ≤ L12
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Step #2: Estimation of L̇2

Differentiating (3) with respect to x , we have

yxt(x , t) + yxx(x , t) = 0,
εzxt(x , t) + zxx(x , t) = 0,

(12)

with the boundary conditions

yx(0, t) = K11yx(1, t) + 1
εK12zx(1, t),

zx(0, t) = εK21yx(1, t) + K22zx(1, t).
(13)

Compute the time derivative of the second term L2 along the
solutions to (12) and (13)

L̇2 = L21 + L22

with

L21 = −(1− d)[e−µxy2
x ]x=1

x=0 −
dη1(ε)

ε
[e−νxz2

x ]x=1
x=0,

L22 = −(1− d)µ

∫ 1

0
e−µxy2

x dx −
dνη1(ε)

ε

∫ 1

0
e−νxz2

x dx .
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Take η1(ε) = 1
ε , under the boundary conditions (13), it follows

L21 = −
(
yx(1)
zx(1)

)T

M21

(
yx(1)
zx(1)

)
,

with:

M21 =

(
(1− d)R1 − dK 2

21 − (1−d)R3

ε − dR4
ε

− (1−d)R3

ε − dR4
ε

dR2−(1−d)K2
12

ε2

)
,

where R1, R2, R3 and R4 are defined in Assumption #3.
Assumption #3 a) and b) give that both terms on the diagonal are
non-negative
Assumption #3 c) gives that the determinant is non-negative for
all ε

(the choice of η1(ε) was crucial for that)

Therefore L̇2 ≤ L22
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Step #3: Estimation of L̇3

Step 3: Differentiating (12) with respect to x , we have:

yxxt(x , t) + yxxx(x , t) = 0,
εzxxt(x , t) + zxxx(x , t) = 0,

(14)

with boundary conditions:

yxx(0, t) = G11yxx(1, t) + 1
ε2K12zxx(1, t),

zxx(0, t) = ε2K21yxx(1, t) + K22zxx(1, t).
(15)

Compute the time derivative of the third term L3 along the
solutions to (14) and (15)

L̇3 = L31 + L32

with

L31 = −(1− d)[e−µxy2
xx ]x=1

x=0 −
dη2(ε)

ε
[e−νxz2

xx ]x=1
x=0,

L32 = −(1− d)µ

∫ 1

0
e−µxy2

xxdx −
dνη2(ε)

ε

∫ 1

0
e−νxz2

xxdx .

27/45 C. Prieur Valenciennes, July 2016



Take η2(ε) = 1
ε3 , under the boundary conditions (15), it follows

L31 = −
(
yxx(1)
zxx (1)
ε

)T

M11

(
yxx(1)
zxx (1)
ε

)
.

with the same matrix M11 as in Step #1. Recall that, for suitable
0 < ε ≤ ε1, we have M11 > 0, thus L31 is non positive.

Therefore L̇3 ≤ L32
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Step #4: Combining all computations

Step 4: We obtain that

L̇ ≤ −(1− d)µ

∫ 1

0
e−µx(y2 + y2

x + y2
xx)dx

−dν

ε

∫ 1

0
e−νx

((
z − K21

1− K22
y(1)

)2

+
z2
x

ε
+

z2
xx

ε3

)

+

(
2dK21

1− K22

)∫ 1

0
e−νx

(
z − K21

1− K22
y(1)

)
yx(1)dx .

6 −
(

‖y‖H2

‖z − K21

1−K22
y(1)‖H2

)T

M4

(
‖y‖H2

‖z − K21

1−K22
y(1)‖H2

)
,

with

M4 =

(
(1− d)µe−µ −|

√
2dK21

1−K22
|

−|
√

2dK21
1−K22

| dν
ε e
−ν

)
.

We note that M4 > 0 for 0 < ε ≤ ε2 for a suitable ε2. With
ε? = min{ε1, ε2} we got the result. �
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4 – Approximation result

Let us state the Tikhonov theorem of linear hyperbolic systems

Theorem [Tang, CP, Girard; 2015]

If ρ(K ) < 1, then ∃ positive values ε?, C , C
′
, ω ∀y0 ∈ H2(0, 1)

satisfying the compatibility conditions y0(0) = Kry
0(1),

Λ1y
0
x (0) = KrΛ1y

0
x (1), and z0 = (I − K22)−1K21ȳ0(1), such that

∀0 < ε < ε? and ∀t > 0,

‖y(., t)− ȳ(., t)‖2
L2 ≤ Cεe−ωt‖ȳ0‖2

H2(0,1) (16)

‖z(., t)− (Im − K22)−1K21ȳ(1, t)‖2
L2 ≤ C

′
εe−ωt‖ȳ0‖2

H2(0,1) (17)

Inequality (16) is an approximation of the slow dynamics
Inequality (17) is an approximation of the fast dynamics
Under the assumption ρ(K ) < 1, all systems are exp. stable.
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Sketch of Proof

Let η = y − ȳ , and δ = z − (Im − K22)−1K21ȳ(1, .). Computing
the difference of the full system with the reduced and boundary
layer systems it holds

ηt + Λ1ηx = 0
εδt + Λ2δx = ε(Im − K22)−1K21Λ1ȳx(1, .)(

η(0, t)
δ(0, t)

)
= K

(
η(1, t)
δ(1, t)

)
We are going to bound the source term, and to deduce some
properties on η and δ.
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By trace inequality, ∀t ≥ 0,

‖ȳx(1, t)‖ ≤
√

2‖ȳ(., t)‖H2(0,1)

and since ρ(K ) < 1, we have ρ(Kr ) < 1 and thus, there exist Cr

and α such that

‖ȳ(., t)2‖H2(0,1) ≤ Cre
−αt‖ȳ0‖2

H2(0,1)

Let us consider the function V (η, δ) =
∫ 1

0 e−µx(η>Qη+ εδ>Pδ)dx .
Selecting P and Q in a suitable way, we get

V̇ ≤ −γV + εβ‖ȳx(1, t)‖2

≤ −γV + εβCre
−αt‖ȳ0‖2

H2(0,1)

And then use the comparison principle and η(t = 0) = 0. �
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5 – Further results on coupled PDE-ODE

Coupled dynamics: fast PDE with ODE:
ẏ(t) = Ay(t) + Bz(1, t)
εzt + Λz = 0
z(0, t) = K1z(1, t) + K2y(t),

with y(t) ∈ Rn and z(x , t) ∈ Rm, ε > 0 small, A, B... are matrices

Potential application:
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The reduced system is

˙̄y(t) = (A + BKr )ȳ(t)

with Kr = (Im)K1)−1K2

The boundary layer system is

z̄t(x , τ) + Λz(x , τ) = 0
z(0, τ) = K1z(1, τ)

with τ = t/ε.
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Assumption #1

The boundary-layer system is so that all eigenvalues of A + BKr

are in the (open) left-part plane.

Assumption #2

The reduced system is so that ρ(K1) < 1.

Theorem

Under Assumptions #1 and #2, the full system is exp. stable in L2

norm for ε > 0 sufficiently small

Nice case!

Proof: V (y , z) = y>Py +
∫ 1

0 e−µx(z − Kry)>Q(z − Kry)dx
where P is a pos. definite matrix and Q is a diagonal pos. definite
matrix.

35/45 C. Prieur Valenciennes, July 2016



PDE with fast ODE?

What happens with fast dynamics in the boundary conditions?
Can we approximate the fast boundary condition by a static law?
Consider a hyperbolic PDE coupled with a fast ODE:

εż = Az + By(1)
yt + Λyx = 0
y(0, t) = K1y(1, t) + K2z(t),
z(0) = z0

y(x , 0) = y0(x),

with y(x , t) ∈ Rn, z(t) ∈ Rm, ε > 0 is small, A, B... are matrices
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The reduced system is
ȳt(x , t) + Λȳx(x , t) = 0
ȳ(0, t) = Kr ȳ(1, t)
ȳ(x , 0) = y0(x)

with Kr = K1 − K2A
−1B.

The boundary layer system is{
dz̄(τ)
dτ = Az̄(τ)

z̄(0) = z0 + A−1By0(1)

with z̄ = z + A−1By(1).
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Stability analysis for sub-systems

Assumption #1

The reduced system is so that ρ(Kr ) < 1.

Assumption #2

The boundary-layer system is so that all eigenvalues of A are in the
(open) left-part plane.

Conjecture

Assumptions #1 and #2 6=⇒ the exp. stability of the full dynamics

As in the PDE-PDE case!
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To do that consider
εż(t) = −0.1z(t)− y(1)
yt(x , t) + yx(x , t) = 0
y(0, t) = 2y(1, t) + 0.2z(t)

(18)

Assumptions #1 and #2 hold.
The reduced system and the boundary layer system are both exp.
stable.
But the full dynamics seems to be unstable
(there exists a solution which diverges on numerical simulations)

Proof of the unstability for (18)?
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Assumption #3

∃ P symmetric definite positive matrix, Q diagonal definite
positive and µ > 0 such that

QΛ− KrQΛKr > 0(
e−µQΛ− K>1 QΛK1 −K>1 QΛK2 − B>P
−K>2 QΛK1 − PB −(A>P + PA)− K>2 QΛK2

)
Assumption #3 implies

Assumption #1 on reduced system

Assumption #2 on boundary layer system

ρ(K1) < 1 on a the y -component of the full system
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Sufficient stability condition and Tikhonov theorem

Theorem

Under Assumption #3, the full system is exp. stable in L2 norm
for ε > 0 sufficiently small

Theorem

Under Assumption #3, ∃ C , ω ε? such that ∀0 < ε < ε?, ∀y0 in
H2(0, 1) satisfying the compatibility condition and for all z0 ∈ Rm,
it holds, ∀t ≥ 0,

‖y(., t)− ȳ(., t)‖2
L2(0,1) ≤ εCe

−ωt(‖ȳ0‖2
H2(0,1) + |z0 + A−1Bȳ0|2)

Main lines of proof:

consider the error system

see ȳx(1, t) as a perturbation

use H2 Lyapunov function
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6 – Application to the Saint-Venant–Exner system

The Saint-Venant–Exner system may be rewritten as
εW1t̃ + λ1

λ2
W1x = 0

W2t̃ + W2x = 0
εW3t̃ + W3x = 0

(19)

with t̃ = λ2t and ε = λ2/λ3.
The boundary conditions are W1(0, t̃)

W2(0, t̃)
W3(0, t̃)

 =

 0 k12 k13

k21 0 0
ξ(k21) 0 0

 W1(1, t̃)
W2(1, t̃)
W3(1, t̃)


for ξ(k21) = − [(λ1−V ?)2−gH?]+k21[(λ2−V ?)2−gH?]

(λ3−V ?)2−gH?
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The reduced system is{
W 2t̃ + W 2x = 0

W 2(0, t̃) = KrW 2(1, t̃)
(20)

with Kr = k12k21
1−k13ξ(k21) . We were able to find control gains ki such

that

ρ(K ) < 1 and thus the full system is exp. stable

Kr = 0 and thus the slow dynamics converge to the
equilibrium in finite-time

This makes the full system converging as fast as we can.
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Simulations on linearized Saint-Venant-Exner model

ε = 6× 10−6. Numerical scheme may be quite difficult but we
know that we could use the subystems

W 2 of (20) with Kr = 0 W2 of (19) with same control

Both graphs are roughly the same.

The finite time of convergence estimated is T = 1
λ2

which is
close to the numerically computed finite time.

44/45 C. Prieur Valenciennes, July 2016



Conclusion

Sufficient stability condition and Tikhonov theorem for linear
hyperbolic systems (PDE-PDE and ODE-PDE)

Boundary control synthesis of a class of linear hyperbolic
systems based on the singular perturbation method.

Slow dynamics has been stabilized in finite time.

Boundary control design has been achieved for a linearized
Saint-Venant–Exner system.

Future works

Extend this work to systems of balance laws.

Consider other PDEs:
quasilinear hyperbolic system, or parabolic equations?

Thank you for your attention
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