Singularly perturbed hyperbolic systems

Christophe PRIEUR

CNRS, Gipsa-lab, Grenoble, France

Stability of non-conservative systems 4th-7th July 2016, Université de Valenciennes

Motivations: Saint-Venant-Exner system

- Open channel problem

Prismatic open channel
\diamond rectangular cross-section
\diamond losses are negligible

$$
\begin{aligned}
H_{t}+V H_{x}+H V_{x} & =0, \\
V_{t}+V V_{x}+g H_{x}+g B_{x} & =0, \quad x \in[0,1], \quad t \in[0,+\infty), \\
B_{t}+a V^{2} V_{x} & =0 .
\end{aligned}
$$

$H(x, t)$ - water level ; $V(x, t)$ - water velocity ; $B(x, t)$ - bathymetry ; g - gravity constant; a - constant parameter on sediment porosity.

The linearized system with respect to a space constant steady-state $\left(H^{\star}, V^{\star}, B^{\star}\right)$ is

$$
\left(\begin{array}{l}
h \\
v \\
b
\end{array}\right)_{t}+\left(\begin{array}{ccc}
V^{\star} & H^{\star} & 0 \\
g & V^{\star} & g \\
0 & a V^{* 2} & 0
\end{array}\right)\left(\begin{array}{l}
h \\
v \\
b
\end{array}\right)_{x}=0
$$

Performing a change of variable, we get a hyperbolic system

$$
W_{t}+\Lambda W_{x}=0
$$

with

$$
W_{k}=\frac{\left(\left(V^{\star}-\lambda_{i}\right)\left(V^{\star}-\lambda_{j}\right)+g H^{\star}\right) h+H^{\star} \lambda_{k} v+g H^{\star} b}{\left(\lambda_{k}-\lambda_{i}\right)\left(\lambda_{k}-\lambda_{j}\right)},
$$

and $\Lambda=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right)$, see [Diagne, Bastin, Coron; 2012]

- λ_{1} and λ_{3} : velocity of the water flow
- λ_{2} : velocity of the sediment motion

$$
\lambda_{2} \ll\left|\lambda_{1}\right|, \quad \lambda_{2} \ll \lambda_{3} .
$$

Defining $\varepsilon=\frac{\lambda_{2}}{\lambda_{3}}$ and $\tilde{t}=\lambda_{2} t$, and a change of spatial variable $W_{1}^{\prime}(1-x, t) \stackrel{ }{=} W_{1}(x, t)$, we obtain a singularly perturbed hyperbolic system as follows

$$
W_{\tilde{t}}+\Lambda^{\prime} W_{x}=0
$$

with $\Lambda^{\prime}=\operatorname{diag}\left(\frac{\left|\lambda_{1}\right|}{\varepsilon \lambda_{3}}, 1, \frac{1}{\varepsilon}\right)$.

- Boundary conditions depend on the control

What happens if ε is small in terms of the stability?
Could we design boundary controllers taking into account the two-scale dynamics?

Since ε is small, the Courant Friedrichs Lewy condition asks that $\frac{\Delta x}{\Delta t}$ is very small.

Is it possible to scale the equations of the so-called singularly perturbed system and to develop specific control theory.

Outline

1 Singularly perturbed systems in finite-dimensional systems linear ODE versus nonlinear ODE

> Pedagogical purpose

2 Singularly perturbed hyperbolic systems
linear PDE but counter-example of the intuitive idea
3 Stability of singularly perturbed hyperbolic systems
4 Approximation result
Tikhonov theorem for linear hyperbolic systems
5 Further results on coupled ODE-PDE only partial results extra work is (still) needed
6 Boundary control of the Saint-Venant-Exner system application on some numerical simulations
7 Conclusion

1 - What is known for ordinary differential equations?

$$
\left\{\begin{aligned}
\dot{y}(t) & =A y(t)+B z(t) \\
\varepsilon \dot{z}(t) & =C y(t)+D z(t)
\end{aligned}\right.
$$

with $y(t) \in \mathbb{R}^{n}, z(t) \in \mathbb{R}^{m}, \varepsilon>0$ small
Formally we have by letting $\varepsilon=0$ in z-equation

$$
z=-D^{-1} C y
$$

By replacing z by $-D^{-1} C y$ in the y equation, we get the following reduced system

$$
\dot{\bar{y}}=A_{r} \bar{y}
$$

with $A_{r}=A-B D^{-1} C$. By using the following change of variables $\bar{z}(t / \varepsilon)=z(t)+D^{-1} C y(t)$ we get: $\varepsilon \dot{\bar{z}}=D \bar{z}+\varepsilon D^{-1} C(A y+B z)$ Now using the following time-scale $\tau=t / \varepsilon$ and using (formally) $\varepsilon \rightarrow 0$, the boundary layer system is

$$
\frac{d \bar{z}}{d \tau}=D \bar{z}
$$

Stability of reduced system and of boundary layer systems implies the stability of the full system:

Proposition [Kokotović et al.; 1972]

If A_{r} and D have all eigenvalues in the (open) left-part of the plane, then there exists ε^{*} such that, for all $\varepsilon \in\left(0, \varepsilon^{\star}\right]$, the full system is exponentially stable.

Proof We write the dynamics into the coordinate (y, \bar{z}) :

$$
\frac{d}{d t}\binom{y(t)}{\bar{z}(\tau)}=\binom{A y+B z}{\frac{1}{\varepsilon} D \bar{z}}
$$

and we conclude by letting ε sufficiently small

Stability of reduced system and of boundary layer systems implies the stability of the full system:

Proposition [Kokotović et al.; 1972]

If A_{r} and D have all eigenvalues in the (open) left-part of the plane, then there exists ε^{*} such that, for all $\varepsilon \in\left(0, \varepsilon^{\star}\right]$, the full system is exponentially stable.

Proof We write the dynamics into the coordinate (y, \bar{z}) :

$$
\begin{aligned}
\frac{d}{d t}\binom{y(t)}{\bar{z}(\tau)} & =\binom{A y+B z}{\frac{1}{\varepsilon} D \bar{z}} \\
& =\left(\begin{array}{cc}
A_{r} & B \\
0 & \frac{1}{\varepsilon} D
\end{array}\right)\binom{y(t)}{\bar{z}(\tau)}
\end{aligned}
$$

and we conclude by letting ε sufficiently small

Stability of reduced and boundary layer systems

Stability of reduced system and of boundary layer systems implies the stability of the full system:

Proposition [Kokotović et al.; 1972]

If A_{r} and D have all eigenvalues in the (open) left-part of the plane, then there exists ε^{*} such that, for all $\varepsilon \in\left(0, \varepsilon^{\star}\right]$, the full system is exponentially stable.

Proof We write the dynamics into the coordinate (y, \bar{z}) :

$$
\begin{aligned}
\frac{d}{d t}\binom{y(t)}{\bar{z}(\tau)} & =\binom{A y+B z}{\frac{1}{\varepsilon} D \bar{z}} \\
& =\left(\begin{array}{cc}
A_{r} & B \\
0 & \frac{1}{\varepsilon} D
\end{array}\right)\binom{y(t)}{\bar{z}(\tau)}
\end{aligned}
$$

and we conclude by letting ε sufficiently small
False for nonlinear ODEs
Stability of reduced and boundary layer systems
\nRightarrow stability of the nonlinear ODE

What about the approximation between the full system and the "small" systems?
Tikhonov theorem:

Proposition [Kokotović et al., 1986]

If A_{r} and D have all eigenvalues in the (open) left-part of the plane, then, given an initial condition, there exist $a>0$ and ε^{*} such that, for all $t \geq 0$,

$$
\begin{gather*}
|y(t)-\bar{y}(t)| \leq a \varepsilon \tag{1}\\
\left|z(t)+D^{-1} C \bar{y}(t)-\bar{z}(t / \varepsilon)\right| \leq a \varepsilon \tag{2}
\end{gather*}
$$

Sketch of proof of (1) and (2):

What about the approximation between the full system and the "small" systems?

Tikhonov theorem:

Proposition [Kokotović et al., 1986]

If A_{r} and D have all eigenvalues in the (open) left-part of the plane, then, given an initial condition, there exist $a>0$ and ε^{*} such that, for all $t \geq 0$,

$$
\begin{gather*}
|y(t)-\bar{y}(t)| \leq a \varepsilon \tag{1}\\
\left|z(t)+D^{-1} C \bar{y}(t)-\bar{z}(t / \varepsilon)\right| \leq a \varepsilon \tag{2}
\end{gather*}
$$

Proof of (1): Recall that $\bar{z}(t / \varepsilon)=e^{D t / \varepsilon} \bar{z}(0)$ and compute

$$
\frac{d}{d t}(y-\bar{y})=B \bar{z}
$$

thus we have (1)

What about the approximation between the full system and the "small" systems?

Tikhonov theorem:

Proposition [Kokotović et al., 1986]
If A_{r} and D have all eigenvalues in the (open) left-part of the plane, then, given an initial condition, there exist $a>0$ and ε^{*} such that, for all $t \geq 0$,

$$
\begin{gather*}
|y(t)-\bar{y}(t)| \leq a \varepsilon \tag{1}\\
\left|z(t)+D^{-1} C \bar{y}(t)-\bar{z}(t / \varepsilon)\right| \leq a \varepsilon \tag{2}
\end{gather*}
$$

Proof of (2): Easy computations give

$$
\begin{gathered}
\frac{d}{d t}\left(\bar{z}(t / \varepsilon)-z(t)-D^{-1} C y(t)\right) \\
=\frac{1}{\varepsilon} D \bar{z}(t / \varepsilon)-\frac{1}{\varepsilon} C y(t)-\frac{1}{\varepsilon} D z(t)-D^{-1} C A y(t)-D^{-1} C B z(t) \\
=-\frac{1}{\varepsilon} D\left(\bar{z}(t / \varepsilon)-z(t)-D^{-1} C y(t)\right) \\
-D^{-1} C A y(t)-D^{-1} C B z(t)
\end{gathered}
$$

integrating and using $y(t), z(t) \rightarrow 0$, we have (2)

2 - Singularly perturbed hyperbolic systems

The full system is given as follows

$$
\begin{array}{rlrl}
y_{t}(x, t)+\Lambda_{1} y_{x}(x, t) & =0, & & y \in \mathbb{R}^{n} \tag{3}\\
\varepsilon z_{t}(x, t)+\Lambda_{2} z_{x}(x, t) & =0, & z \in \mathbb{R}^{m}
\end{array}
$$

where $\varepsilon>0$ and Λ_{1} and Λ_{2} are diagonal positive, $x \in[0,1], t \geqslant 0$.
The boundary conditions are

$$
\binom{y(0, t)}{z(0, t)}=\left(\begin{array}{ll}
K_{11} & K_{12} \tag{4}\\
K_{21} & K_{22}
\end{array}\right)\binom{y(1, t)}{z(1, t)}, t \in[0,+\infty)
$$

with K_{11} in $\mathbb{R}^{n \times n}, K_{12}$ in $\mathbb{R}^{n \times m}, K_{21}$ in $\mathbb{R}^{m \times n}, K_{22}$ in $\mathbb{R}^{m \times m}$.
The initial conditions are

$$
\binom{y(x, 0)}{z(x, 0)}=\binom{y^{0}(x)}{z^{0}(x)}, \quad x \in[0,1] .
$$

Setting $\varepsilon=0$ in the full system and assuming ($I_{m}-K_{22}$) invertible, we get formally

$$
\begin{align*}
y_{t}(x, t)+\Lambda_{1} y_{x}(x, t) & =0, \tag{5a}\\
z_{x}(x, t) & =0 . \tag{5b}
\end{align*}
$$

Substituting (5b) into the full system's boundary conditions matrix, yields

$$
\begin{aligned}
z(., t) & =\left(I_{m}-K_{22}\right)^{-1} K_{21} y(1, t), \\
y(0, t) & =\left(K_{11}+K_{12}\left(I_{m}-K_{22}\right)^{-1} K_{21}\right) y(1, t)
\end{aligned}
$$

The reduced subsystem is computed as

$$
\begin{equation*}
\bar{y}_{t}(x, t)+\Lambda_{1} \bar{y}_{x}(x, t)=0, x \in[0,1], t \in[0,+\infty) \tag{6}
\end{equation*}
$$

with the boundary condition

$$
\begin{equation*}
\bar{y}(0, t)=K_{r} \bar{y}(1, t), t \in[0,+\infty) \tag{7}
\end{equation*}
$$

where $K_{r}=K_{11}+K_{12}\left(I_{m}-K_{22}\right)^{-1} K_{21}$.
The initial condition is as the same as the full system

$$
\bar{y}(x, 0)=y^{0}(x), \quad x \in[0,1] .
$$

Let us perform the following change of variable:
$\bar{z}(x, t)=z(x, t)-\left(I_{m}-K_{22}\right)^{-1} K_{21} y(1, t)$. Noting $\tau=t / \varepsilon$ and making $\varepsilon \rightarrow 0$, the boundary layer subsystem is

$$
\begin{equation*}
\bar{z}_{\tau}(x, \tau)+\Lambda_{2} \bar{z}(x, \tau)=0 \tag{8}
\end{equation*}
$$

with the boundary condition

$$
\bar{z}(0, \tau)=K_{22} \bar{z}(1, \tau)
$$

and the initial condition

$$
\bar{z}(x, 0)=z_{0}(x)-\left(I_{m}-K_{22}\right)^{-1} K_{21} y(1,0)
$$

(short) review of the literature on the boundary stabilization of hyperbolic PDE

Many technics exist for one-scale linear hyperbolic system:

$$
\begin{gather*}
\partial_{t} y+\Lambda \partial_{x} y=0, \quad x \in[0,1], \quad t \geq 0 \\
y(0, t)=K y(1, t), \quad t \geq 0 \tag{9}
\end{gather*}
$$

There are sufficient conditions on K so that (9) is Locally Exponentially Stable in H^{2}, or in $C^{1} \ldots$
[Coron, Bastin, d'Andréa-Novel; 08]
[Coron, Vazquez, Krstic, Bastin; 13]
[CP, Winkin, Bastin; 08]
Notation:

[Coron et al; 08]: if $\rho(K)<1$ then the system (9) is Exp. Stable in L^{2}-norm, and in H^{2} norm This sufficient condition is weaker that the one of [Li; 94]

(short) review of the literature on the boundary

 stabilization of hyperbolic PDEMany technics exist for one-scale linear hyperbolic system:

$$
\begin{gather*}
\partial_{t} y+\Lambda \partial_{x} y=0, \quad x \in[0,1], \quad t \geq 0 \\
y(0, t)=K y(1, t), \quad t \geq 0 \tag{9}
\end{gather*}
$$

There are sufficient conditions on K so that (9) is Locally Exponentially Stable in H^{2}, or in $C^{1} \ldots$
[Coron, Bastin, d'Andréa-Novel; 08]
[Coron, Vazquez, Krstic, Bastin; 13]
[CP, Winkin, Bastin; 08]
Notation:

$$
\begin{gathered}
\|K\|=\max \left\{|K y|, \quad y \in \mathbb{R}^{n},|y|=1\right\} \\
\rho(K)=\inf \left\{\left\|\Delta K \Delta^{-1}\right\|, \Delta \in \mathcal{D}_{n,+}\right\}
\end{gathered}
$$

[Coron et al; 08]: if $\rho(K)<1$ then the system (9) is Exp. Stable in L^{2}-norm, and in H^{2} norm
This sufficient condition is weaker that the one of [Li; 94].

In other words
[Coron, Bastin, d'Andréa-Novel; 08]
If $\rho(K)<1$ then the system (9) is exp. stable in L^{2}-norm that is $\exists \omega, C>0$ such that for all $y_{0} \in L^{2}(0,1)$,

$$
\|y(., t)\|_{L^{2}(0,1)} \leq C e^{-\omega t}\left\|y_{0}\right\|_{L^{2}(0,1)}, \forall t \geq 0
$$

Proof From $\rho(K)<1$, there exists a diagonal positive definite matrix Δ such that $\left\|\Delta G \Delta^{-1}\right\|<1$. Then, letting $Q=\Delta^{2} \Lambda^{-1}$, we have

Thus with a suitable $\mu>0$, letting $V(y)=\int_{0}^{1} e^{-\mu x} y(x)^{\top} Q y(x) d x$

In other words
[Coron, Bastin, d'Andréa-Novel; 08]
If $\rho(K)<1$ then the system (9) is exp. stable in L^{2}-norm that is $\exists \omega, C>0$ such that for all $y_{0} \in L^{2}(0,1)$,

$$
\|y(., t)\|_{L^{2}(0,1)} \leq C e^{-\omega t}\left\|y_{0}\right\|_{L^{2}(0,1)}, \forall t \geq 0
$$

Proof From $\rho(K)<1$, there exists a diagonal positive definite matrix Δ such that $\left\|\Delta G \Delta^{-1}\right\|<1$.

Thus with a suitable $\mu>0$, letting $V(y)=\int_{0}^{1} e^{-\mu x} y(x)^{\top} Q v(x) d x$

In other words
[Coron, Bastin, d'Andréa-Novel; 08]
If $\rho(K)<1$ then the system (9) is exp. stable in L^{2}-norm that is $\exists \omega, C>0$ such that for all $y_{0} \in L^{2}(0,1)$,

$$
\|y(., t)\|_{L^{2}(0,1)} \leq C e^{-\omega t}\left\|y_{0}\right\|_{L^{2}(0,1)}, \forall t \geq 0
$$

Proof From $\rho(K)<1$, there exists a diagonal positive definite matrix Δ such that $\left\|\Delta G \Delta^{-1}\right\|<1$. Then, letting $Q=\Delta^{2} \Lambda^{-1}$, we have

$$
\begin{equation*}
\Lambda Q-K^{\top} Q \wedge K>0 \tag{10}
\end{equation*}
$$

Thus with a suitable $\mu>0$, letting $V(y)=\int_{0}^{1} e^{-\mu x} y(x)^{\top} Q y(x) d x$

In other words

[Coron, Bastin, d'Andréa-Novel; 08]

If $\rho(K)<1$ then the system (9) is exp. stable in L^{2}-norm that is $\exists \omega, C>0$ such that for all $y_{0} \in L^{2}(0,1)$,

$$
\|y(., t)\|_{L^{2}(0,1)} \leq C e^{-\omega t}\left\|y_{0}\right\|_{L^{2}(0,1)}, \forall t \geq 0
$$

Proof From $\rho(K)<1$, there exists a diagonal positive definite matrix Δ such that $\left\|\Delta G \Delta^{-1}\right\|<1$. Then, letting $Q=\Delta^{2} \Lambda^{-1}$, we have

$$
\begin{equation*}
\Lambda Q-K^{\top} Q \wedge K>0 \tag{10}
\end{equation*}
$$

Thus with a suitable $\mu>0$, letting $V(y)=\int_{0}^{1} e^{-\mu x} y(x)^{\top} Q y(x) d x$

$$
\begin{aligned}
\dot{V} & =-2 \int_{0}^{1} e^{-\mu x} y_{x}(x)^{\top} \Lambda^{\top} Q y(x) d x \\
& =-\mu \int_{0}^{1} e^{-\mu x} y(x)^{\top} \Lambda^{\top} Q y(x) d x-\left[e^{-\mu x} y(x) Q \Lambda y(x)\right]_{0}^{1}
\end{aligned}
$$

With (10), V is a Lyapunov function for (9).

Remark It is also exp. stable in H^{2} norm that is $\exists \omega, C>0$ such that for all $y_{0} \in H^{2}(0,1)$ satisfying some compatibility conditions

$$
\|y(., t)\|_{H^{2}(0,1)} \leq C e^{-\omega t}\left\|y_{0}\right\|_{H^{2}(0,1)} \forall t \geq 0
$$

Remark It is also exp. stable in H^{2} norm that is $\exists \omega, C>0$ such that for all $y_{0} \in H^{2}(0,1)$ satisfying some compatibility conditions

$$
\|y(., t)\|_{H^{2}(0,1)} \leq C e^{-\omega t}\left\|y_{0}\right\|_{H^{2}(0,1)} \forall t \geq 0
$$

For the H^{2} norm, use
$V(y)=\int_{0}^{1} e^{-\mu x}\left(y(x)^{\top} Q_{0} y(x)+y^{\prime}(x)^{\top} Q_{1} y^{\prime}(x)+y^{\prime \prime}(x)^{\top} Q_{2} y^{\prime \prime}(x)\right) d x$
as Lyapunov function.

Proposition

$\rho(K)<1 \Longrightarrow$ the boundary layer and the reduced systems are both exp. stable in L^{2} norm and in H^{2}

Proof

- Use some algebraic computations to show that $\rho\left(K_{22}\right)<1$ and $\rho\left(K_{r}\right)<1$
- Apply the previously recalled sufficient condition.

It is useless since we are more interesting in the converse implication

Proposition

$\rho(K)<1 \Longrightarrow$ the boundary layer and the reduced systems are both exp. stable in L^{2} norm and in H^{2}

Proof

- Use some algebraic computations to show that $\rho\left(K_{22}\right)<1$ and $\rho\left(K_{r}\right)<1$
- Apply the previously recalled sufficient condition.

It is useless since we are more interesting in the converse implication
which is true for finite dimensional systems
but false in our case!!

Stability of subsystems \nRightarrow Stability of full system

Exp. stability of the boundary layer system + exp. stability of the reduced system
\nRightarrow
Exp. stability of the full system!
Indeed consider

Recall: [Coron et al., 2008]: The condition $\rho(K)<1$ is sufficient for exp. stability but also necessary for $n \leq 5$ for irrationally independent velocities.
We may check that $\rho(K)>1$. Therefore, picking $\varepsilon \in \mathbb{R} \backslash \mathbb{Q}$,

Stability of subsystems \nRightarrow Stability of full system

Exp. stability of the boundary layer system + exp. stability of the reduced system
\nRightarrow
Exp. stability of the full system!
Indeed consider

$$
\begin{gather*}
\partial_{t} y+\partial_{x} y=0, \quad x \in[0,1], t \geq 0 \\
\varepsilon \partial_{t} z+\partial_{x} z=0, \quad x \in[0,1], t \geq 0 \\
\binom{y(0, t)}{z(0, t)}=\left(\begin{array}{cc}
2.5 & -1 \\
1 & 0.5
\end{array}\right)\binom{y(1, t)}{z(1, t)}, \quad t \geq 0 \tag{11}
\end{gather*}
$$

Recall: [Coron et al., 2008]: The condition $\rho(K)<1$ is sufficient for exp. stability but also necessary for $n \leq 5$ for irrationally independent velocities.
We may check that $\rho(K)>1$. Therefore, picking $\varepsilon \in \mathbb{R} \backslash \mathbb{Q}$,

Stability of subsystems \nRightarrow Stability of full system

Exp. stability of the boundary layer system + exp. stability of the reduced system
\nRightarrow
Exp. stability of the full system!
Indeed consider

$$
\begin{gather*}
\partial_{t} y+\partial_{x} y=0, \quad x \in[0,1], t \geq 0 \\
\varepsilon \partial_{t} z+\partial_{x} z=0, \quad x \in[0,1], t \geq 0 \\
\binom{y(0, t)}{z(0, t)}=\left(\begin{array}{cr}
2.5 & -1 \\
1 & 0.5
\end{array}\right)\binom{y(1, t)}{z(1, t)}, \quad t \geq 0 \tag{11}
\end{gather*}
$$

Recall: [Coron et al., 2008]: The condition $\rho(K)<1$ is sufficient for exp. stability but also necessary for $n \leq 5$ for irrationally independent velocities.
We may check that $\rho(K)>1$. Therefore, picking $\varepsilon \in \mathbb{R} \backslash \mathbb{Q}$,

Stability of subsystems \nRightarrow Stability of full system

Exp. stability of the boundary layer system + exp. stability of the reduced system
\nRightarrow
Exp. stability of the full system!
Indeed consider

$$
\begin{gather*}
\partial_{t} y+\partial_{x} y=0, \quad x \in[0,1], t \geq 0 \\
\varepsilon \partial_{t} z+\partial_{x} z=0, \quad x \in[0,1], t \geq 0 \\
\binom{y(0, t)}{z(0, t)}=\left(\begin{array}{cr}
2.5 & -1 \\
1 & 0.5
\end{array}\right)\binom{y(1, t)}{z(1, t)}, \quad t \geq 0 \tag{11}
\end{gather*}
$$

Recall: [Coron et al., 2008]: The condition $\rho(K)<1$ is sufficient for exp. stability but also necessary for $n \leq 5$ for irrationally independent velocities.
We may check that $\rho(K)>1$. Therefore, picking $\varepsilon \in \mathbb{R} \backslash \mathbb{Q}$, (11) is unstable.

Stability of subsystems \nRightarrow Stability of full system (cont'd)

The reduced system

$$
\begin{gathered}
\bar{y}_{t}+\bar{y}_{x}=0 \\
\bar{y}(0, t)=0.5 \bar{y}(1, t)
\end{gathered}
$$

and the boundary layer system

$$
\begin{gathered}
\bar{z}_{\tau}+\bar{z}_{x}=0 \\
\bar{z}(0, \tau)=0.5 \bar{y}(1, \tau)
\end{gathered}
$$

are both exp. stable.
Therefore
Stability of subsystems $\not \Longrightarrow$ Stability of full system

What should be added?

To ease the computations, assume $y \in \mathbb{R}, z \in \mathbb{R}$ and $\Lambda_{1}=\Lambda_{2}=1$.

Assumption \#1

The reduced system (6) is exponentially stable in L^{2}-norm.

Assumption \#2

The boundary-layer system (8) is exponentially stable in L^{2}-norm.
Assume moreover that

What should be added?

To ease the computations, assume $y \in \mathbb{R}, z \in \mathbb{R}$ and $\Lambda_{1}=\Lambda_{2}=1$.

Assumption \#1

The reduced system (6) is exponentially stable in L^{2}-norm.

Assumption \#2

The boundary-layer system (8) is exponentially stable in L^{2}-norm.
Assume moreover that

Assumption \#3

Given $0<d<1, \mu>0$ and $\nu>0$ such that $e^{-\mu}>K_{11}^{2}$, $e^{-\mu}>\left(K_{11}+\frac{K_{12} K_{21}}{1-K_{22}}\right)^{2}$ and $e^{-\nu}>K_{22}^{2}$, assume

What should be added?

To ease the computations, assume $y \in \mathbb{R}, z \in \mathbb{R}$ and $\Lambda_{1}=\Lambda_{2}=1$.

Assumption \#1

The reduced system (6) is exponentially stable in L^{2}-norm.

Assumption \#2

The boundary-layer system (8) is exponentially stable in L^{2}-norm.
Assume moreover that

Assumption \#3

Given $0<d<1, \mu>0$ and $\nu>0$ such that $e^{-\mu}>K_{11}^{2}$, $e^{-\mu}>\left(K_{11}+\frac{K_{12} K_{21}}{1-K_{22}}\right)^{2}$ and $e^{-\nu}>K_{22}^{2}$, assume
a) $(1-d) R_{1}-d K_{21}^{2} \geqslant 0$,
b) $d R_{2}-(1-d) K_{12}^{2} \geqslant 0$,
c) $\left((1-d) R_{1}-d K_{21}^{2}\right)\left(d R_{2}-(1-d) K_{12}^{2}\right)-\left((1-d) R_{3}+d R_{4}\right)^{2} \geqslant 0$ where: $R_{1}=e^{-\mu}-K_{11}^{2}, R_{2}=e^{-\nu}-K_{22}^{2}, R_{3}=K_{11} K_{12}, R_{4}=K_{21} K_{22}$.

Sufficient for the exp. stability of the full system

Theorem [Tang, CP, Girard; 2013]

Under Assumptions \#1, \#2, and \#3, there exists ε^{\star} such that for all $0<\varepsilon<\varepsilon^{\star}$, the full system is exp. stable in H^{2}-norm.
it has the following Lyapunov function:

where η_{1}, η_{2} are positive functions of

Sufficient for the exp. stability of the full system

Theorem [Tang, CP, Girard; 2013]

Under Assumptions \#1, \#2, and \#3, there exists ε^{\star} such that for all $0<\varepsilon<\varepsilon^{\star}$, the full system is exp. stable in H^{2}-norm. Moreover it has the following Lyapunov function:

$$
\begin{aligned}
& V(y, z)=(1-d) \int_{0}^{1} e^{-\mu x}\left(y^{2}+y_{x}^{2}+y_{x x}^{2}\right) d x \\
+ & d \int_{0}^{1} e^{-\nu x}\left(\left(z-\frac{K_{21}}{1-K_{22}} y(1)\right)^{2}+\eta_{1}(\varepsilon) z_{x}^{2}+\eta_{2}(\varepsilon) z_{x x}^{2}\right)
\end{aligned}
$$

where η_{1}, η_{2} are positive functions of ε.

Sketch of proof

First, let us decompose $V(y, z)$ as $V(y, z)=L_{1}+L_{2}+L_{3}$ with

$$
\begin{aligned}
& L_{1}=(1-d) \int_{0}^{1} e^{-\mu x} y^{2} d x+d \int_{0}^{1} e^{-\nu x}\left(z-\frac{K_{21}}{1-K_{22}} y(1)\right)^{2} d x \\
& L_{2}=(1-d) \int_{0}^{1} e^{-\mu x} y_{x}^{2} d x+d \eta_{1}(\varepsilon) \int_{0}^{1} e^{-\nu x} z_{x}^{2} d x \\
& L_{3}=(1-d) \int_{0}^{1} e^{-\mu x} y_{x x}^{2} d x+d \eta_{2}(\varepsilon) \int_{0}^{1} e^{-\nu x} z_{x x}^{2} d x
\end{aligned}
$$

There are 4 steps in the proof:

- Estimation of \dot{L}_{1}
- Estimation of \dot{L}_{2}
- Estimation of \dot{L}_{3}
- Combining all computations

Step \#1: Estimation of \dot{L}_{1}

First use the dynamics and integrate by parts. We get

$$
\dot{L_{1}}=L_{11}+L_{12}
$$

with

$$
L_{11}=-(1-d)\left[e^{-\mu x} y^{2}\right]_{x=0}^{x=1}-\frac{d}{\varepsilon}\left[e^{-\nu x}\left(z-\frac{K_{21}}{1-K_{22}} y(1)\right)^{2}\right]_{x=0}^{x=1}
$$ and

$$
\begin{aligned}
L_{12}= & -(1-d) \mu \int_{0}^{1} e^{-\mu x} y^{2} d x \\
& +\left(\frac{2 d K_{21}}{1-K_{22}}\right) \int_{0}^{1} e^{-\nu x}\left(z-\frac{K_{21}}{1-K_{22}} y(1)\right) y_{x}(1) d x \\
& -\frac{d}{\varepsilon} \nu \int_{0}^{1} e^{-\nu x}\left(z-\frac{K_{21}}{1-K_{22}} y(1)\right)^{2} d x .
\end{aligned}
$$

With the boundary conditions (4) and noting
$z(1)=\left(z(1)-\frac{K_{21}}{1-K_{22}} y(1)\right)+\frac{K_{21}}{1-K_{22}} y(1)$, it follows

$$
L_{11}=-\binom{y(1)}{z(1)-\frac{K_{21}}{1-K_{22}} y(1)}^{T} M_{11}\binom{y(1)}{z(1)-\frac{K_{21}}{1-K_{22}} y(1)}
$$

with

$$
M_{11}=\left(\begin{array}{cc}
(1-d) m_{1} & -(1-d) K_{2} \\
-(1-d) m_{2} & \frac{d}{\varepsilon} R_{2}-(1-d) K_{12}^{2}
\end{array}\right)
$$

where m_{1}, m_{2} are some values and R_{2} is defined in
Assumption \#3. Due to Assumptions \#1 and \#2, m_{1} and R_{2} are positive. Thus $L_{11} \leq 0$ as soon as $0<\varepsilon \leq \varepsilon_{1}$ for a suitable ε_{1}.

Therefore $\dot{L}_{1} \leq L_{12}$

Step \#2: Estimation of \dot{L}_{2}

Differentiating (3) with respect to x, we have

$$
\begin{align*}
y_{x t}(x, t)+y_{x x}(x, t) & =0 \tag{12}\\
\varepsilon z_{x t}(x, t)+z_{x x}(x, t) & =0
\end{align*}
$$

with the boundary conditions

$$
\begin{align*}
& y_{x}(0, t)=K_{11} y_{x}(1, t)+\frac{1}{\varepsilon} K_{12} z_{x}(1, t), \tag{13}\\
& z_{x}(0, t)=\varepsilon K_{21} y_{x}(1, t)+K_{22} z_{x}(1, t)
\end{align*}
$$

Compute the time derivative of the second term L_{2} along the solutions to (12) and (13)

$$
\dot{L_{2}}=L_{21}+L_{22}
$$

with

$$
\begin{aligned}
& L_{21}=-(1-d)\left[e^{-\mu x} y_{x}^{2}\right]_{x=0}^{x=1}-\frac{d \eta_{1}(\varepsilon)}{\varepsilon}\left[e^{-\nu x} z_{x}^{2}\right]_{x=0}^{x=1} \\
& L_{22}=-(1-d) \mu \int_{0}^{1} e^{-\mu x} y_{x}^{2} d x-\frac{d \nu \eta_{1}(\varepsilon)}{\varepsilon} \int_{0}^{1} e^{-\nu x} z_{x}^{2} d x
\end{aligned}
$$

Take $\eta_{1}(\varepsilon)=\frac{1}{\varepsilon}$, under the boundary conditions (13), it follows

$$
L_{21}=-\binom{y_{x}(1)}{z_{x}(1)}^{T} M_{21}\binom{y_{x}(1)}{z_{x}(1)},
$$

with:

$$
M_{21}=\left(\begin{array}{cc}
(1-d) R_{1}-d K_{21}^{2} & -\frac{(1-d) R_{3}}{\varepsilon}-\frac{d R_{4}}{\varepsilon} \\
-\frac{(1-d) R_{3}}{\varepsilon}-\frac{d R_{4}}{\varepsilon} & \frac{d R_{2}-(1-d) K_{12}^{2}}{\varepsilon^{2}}
\end{array}\right),
$$

where R_{1}, R_{2}, R_{3} and R_{4} are defined in Assumption \#3.
Assumption \#3 a) and b) give that both terms on the diagonal are non-negative
Assumption \#3 c) gives that the determinant is non-negative for all ε
(the choice of $\eta_{1}(\varepsilon)$ was crucial for that)
Therefore $\dot{L}_{2} \leq L_{22}$

Step \#3: Estimation of \dot{L}_{3}

Step 3: Differentiating (12) with respect to x, we have:

$$
\begin{align*}
y_{x x t}(x, t)+y_{x x x}(x, t) & =0 \tag{14}\\
\varepsilon z_{x x t}(x, t)+z_{x x x}(x, t) & =0
\end{align*}
$$

with boundary conditions:

$$
\begin{align*}
y_{x x}(0, t) & =G_{11} y_{x x}(1, t)+\frac{1}{\varepsilon^{2}} K_{12} z_{x x}(1, t), \tag{15}\\
z_{x x}(0, t) & =\varepsilon^{2} K_{21} y_{x x}(1, t)+K_{22} z_{x x}(1, t)
\end{align*}
$$

Compute the time derivative of the third term L_{3} along the solutions to (14) and (15)

$$
\dot{L_{3}}=L_{31}+L_{32}
$$

with

$$
\begin{aligned}
& L_{31}=-(1-d)\left[e^{-\mu x} y_{x x}^{2}\right]_{x=0}^{x=1}-\frac{d \eta_{2}(\varepsilon)}{\varepsilon}\left[e^{-\nu x} z_{x x}^{2}\right]_{x=0}^{x=1} \\
& L_{32}=-(1-d) \mu \int_{0}^{1} e^{-\mu x} y_{x x}^{2} d x-\frac{d \nu \eta_{2}(\varepsilon)}{\varepsilon} \int_{0}^{1} e^{-\nu x} z_{x x}^{2} d x
\end{aligned}
$$

Take $\eta_{2}(\varepsilon)=\frac{1}{\varepsilon^{3}}$, under the boundary conditions (15), it follows

$$
L_{31}=-\binom{y_{x x}(1)}{\frac{z_{x x}(1)}{\varepsilon}}^{T} M_{11}\binom{y_{x x}(1)}{\frac{z_{x x}(1)}{\varepsilon}} .
$$

with the same matrix M_{11} as in Step \#1. Recall that, for suitable $0<\varepsilon \leq \varepsilon_{1}$, we have $M_{11} \geqslant 0$, thus L_{31} is non positive.

Therefore $\dot{L}_{3} \leq L_{32}$

Step \#4: Combining all computations

Step 4: We obtain that

$$
\begin{aligned}
\dot{L} \leq & -(1-d) \mu \int_{0}^{1} e^{-\mu x}\left(y^{2}+y_{x}^{2}+y_{x x}^{2}\right) d x \\
& -\frac{d \nu}{\varepsilon} \int_{0}^{1} e^{-\nu x}\left(\left(z-\frac{K_{21}}{1-K_{22}} y(1)\right)^{2}+\frac{z_{X}^{2}}{\varepsilon}+\frac{z_{X x}^{2}}{\varepsilon^{3}}\right) \\
& +\left(\frac{2 d K_{21}}{1-K_{22}}\right) \int_{0}^{1} e^{-\nu x}\left(z-\frac{K_{21}}{1-K_{22}} y(1)\right) y_{x}(1) d x . \\
\leqslant & -\left(\left\|z-\frac{\|y\|_{K^{2}}}{1-K_{22}} y(1)\right\|_{H^{2}}\right)^{T} M_{4}\left(\left\|z-\frac{\|y\|_{H^{2}}}{1-K_{22}}{ }^{2}(1)\right\|_{H^{2}}\right),
\end{aligned}
$$

with

$$
M_{4}=\left(\begin{array}{cc}
(1-d) \mu e^{-\mu} & -\left|\frac{\sqrt{2} d K_{21}}{1-K_{22}}\right| \\
-\left|\frac{\sqrt{2} d K_{21}}{1-K_{22}}\right| & \frac{d \nu}{\varepsilon} e^{-\nu}
\end{array}\right) .
$$

We note that $M_{4}>0$ for $0<\varepsilon \leq \varepsilon_{2}$ for a suitable ε_{2}. With $\varepsilon^{\star}=\min \left\{\varepsilon_{1}, \varepsilon_{2}\right\}$ we got the result.

4 - Approximation result

Let us state the Tikhonov theorem of linear hyperbolic systems

Theorem [Tang, CP, Girard; 2015]

If $\rho(K)<1$, then \exists positive values $\varepsilon^{\star}, C, C^{\prime}, \omega \forall y^{0} \in H^{2}(0,1)$ satisfying the compatibility conditions $y^{0}(0)=K_{r} y^{0}(1)$, $\Lambda_{1} y_{x}^{0}(0)=K_{r} \Lambda_{1} y_{x}^{0}(1)$, and $z^{0}=\left(I-K_{22}\right)^{-1} K_{21} \bar{y}_{0}(1)$, such that $\forall 0<\varepsilon<\varepsilon^{\star}$ and $\forall t \geqslant 0$,

$$
\begin{gather*}
\|y(., t)-\bar{y}(., t)\|_{L^{2}}^{2} \leq C \varepsilon e^{-\omega t}\left\|\bar{y}_{0}\right\|_{H^{2}(0,1)}^{2} \tag{16}\\
\left\|z(., t)-\left(I_{m}-K_{22}\right)^{-1} K_{21} \bar{y}(1, t)\right\|_{L^{2}}^{2} \leq C^{\prime} \varepsilon e^{-\omega t}\left\|\bar{y}_{0}\right\|_{H^{2}(0,1)}^{2} \tag{17}
\end{gather*}
$$

Inequality (16) is an approximation of the slow dynamics Inequality (17) is an approximation of the fast dynamics Under the assumption $\rho(K)<1$, all systems are exp. stable.

Sketch of Proof

Let $\eta=y-\bar{y}$, and $\delta=z-\left(I_{m}-K_{22}\right)^{-1} K_{21} \bar{y}(1,$.$) . Computing$ the difference of the full system with the reduced and boundary layer systems it holds

$$
\begin{gathered}
\eta_{t}+\Lambda_{1} \eta_{x}=0 \\
\varepsilon \delta_{t}+\Lambda_{2} \delta_{x}=\varepsilon\left(I_{m}-K_{22}\right)^{-1} K_{21} \Lambda_{1} \bar{y}_{x}(1, .) \\
\binom{\eta(0, t)}{\delta(0, t)}=K\binom{\eta(1, t)}{\delta(1, t)}
\end{gathered}
$$

We are going to bound the source term, and to deduce some properties on η and δ.

By trace inequality, $\forall t \geq 0$,

$$
\left\|\bar{y}_{x}(1, t)\right\| \leq \sqrt{2}\|\bar{y}(., t)\|_{H^{2}(0,1)}
$$

and since $\rho(K)<1$, we have $\rho\left(K_{r}\right)<1$ and thus, there exist C_{r} and α such that

$$
\left\|\bar{y}(., t)^{2}\right\|_{H^{2}(0,1)} \leq C_{r} e^{-\alpha t}\left\|\bar{y}_{0}\right\|_{H^{2}(0,1)}^{2}
$$

Let us consider the function $V(\eta, \delta)=\int_{0}^{1} e^{-\mu x}\left(\eta^{\top} Q \eta+\varepsilon \delta^{\top} P \delta\right) d x$. Selecting P and Q in a suitable way, we get

$$
\begin{aligned}
\dot{V} & \leq-\gamma V+\varepsilon \beta\left\|\bar{y}_{x}(1, t)\right\|^{2} \\
& \leq-\gamma V+\varepsilon \beta C_{r} e^{-\alpha t}\left\|\bar{y}_{0}\right\|_{H^{2}(0,1)}^{2}
\end{aligned}
$$

And then use the comparison principle and $\eta(t=0)=0$.

5 - Further results on coupled PDE-ODE

Coupled dynamics: fast PDE with ODE:

$$
\left\{\begin{array}{l}
\dot{y}(t)=A y(t)+B z(1, t) \\
\varepsilon z_{t}+\Lambda z=0 \\
z(0, t)=K_{1} z(1, t)+K_{2} y(t)
\end{array}\right.
$$

with $y(t) \in \mathbb{R}^{n}$ and $z(x, t) \in \mathbb{R}^{m}, \varepsilon>0$ small, $A, B \ldots$ are matrices
Potential application:

The reduced system is

$$
\dot{\bar{y}}(t)=\left(A+B K_{r}\right) \bar{y}(t)
$$

with $\left.K_{r}=\left(I_{m}\right) K_{1}\right)^{-1} K_{2}$
The boundary layer system is

$$
\begin{aligned}
& \bar{z}_{t}(x, \tau)+\Lambda z(x, \tau)=0 \\
& z(0, \tau)=K_{1} z(1, \tau)
\end{aligned}
$$

with $\tau=t / \varepsilon$.

Assumption \#1

The boundary-layer system is so that all eigenvalues of $A+B K_{r}$ are in the (open) left-part plane.

Assumption \#2

The reduced system is so that $\rho\left(K_{1}\right)<1$.

Theorem

Under Assumptions \#1 and \#2, the full system is exp. stable in L^{2} norm for $\varepsilon>0$ sufficiently small

Nice case!
Proof: $\quad V(y, z)=y^{\top} P y+\int_{0}^{1} e^{-\mu x}\left(z-K_{r} y\right)^{\top} Q\left(z-K_{r} y\right) d x$ where P is a pos. definite matrix and Q is a diagonal pos. definite matrix.

PDE with fast ODE?

What happens with fast dynamics in the boundary conditions? Can we approximate the fast boundary condition by a static law? Consider a hyperbolic PDE coupled with a fast ODE:
with $y(x, t) \in \mathbb{R}^{n}, z(t) \in \mathbb{R}^{m}, \varepsilon>0$ is small, $A, B \ldots$ are matrices

PDE with fast ODE?

What happens with fast dynamics in the boundary conditions?
Can we approximate the fast boundary condition by a static law? Consider a hyperbolic PDE coupled with a fast ODE:

$$
\left\{\begin{array}{l}
\varepsilon \dot{z}=A z+B y(1) \\
y_{t}+\Lambda y_{x}=0 \\
y(0, t)=K_{1} y(1, t)+K_{2} z(t) \\
z(0)=z_{0} \\
y(x, 0)=y_{0}(x)
\end{array}\right.
$$

with $y(x, t) \in \mathbb{R}^{n}, z(t) \in \mathbb{R}^{m}, \varepsilon>0$ is small, $A, B \ldots$ are matrices

The reduced system is

$$
\left\{\begin{array}{l}
\bar{y}_{t}(x, t)+\Lambda \bar{y}_{x}(x, t)=0 \\
\bar{y}(0, t)=K_{r} \bar{y}(1, t) \\
\bar{y}(x, 0)=y_{0}(x)
\end{array}\right.
$$

with $K_{r}=K_{1}-K_{2} A^{-1} B$.
The boundary layer system is

$$
\left\{\begin{array}{l}
\frac{d \bar{z}(\tau)}{d \tau}=A \bar{z}(\tau) \\
\bar{z}(0)=z_{0}+A^{-1} B y_{0}(1)
\end{array}\right.
$$

with $\bar{z}=z+A^{-1} B y(1)$.

Stability analysis for sub-systems

Assumption \#1

The reduced system is so that $\rho\left(K_{r}\right)<1$.

Assumption \#2

The boundary-layer system is so that all eigenvalues of A are in the (open) left-part plane.

Conjecture

Assumptions \#1 and $\# 2 \nRightarrow$ the exp. stability of the full dynamics
As in the PDE-PDE case!

To do that consider

$$
\left\{\begin{array}{l}
\varepsilon \dot{z}(t)=-0.1 z(t)-y(1) \tag{18}\\
y_{t}(x, t)+y_{x}(x, t)=0 \\
y(0, t)=2 y(1, t)+0.2 z(t)
\end{array}\right.
$$

Assumptions \#1 and \#2 hold.
The reduced system and the boundary layer system are both exp. stable.
But the full dynamics seems to be unstable (there exists a solution which diverges on numerical simulations)

Proof of the unstability for (18)?

Assumption \#3

$\exists P$ symmetric definite positive matrix, Q diagonal definite positive and $\mu>0$ such that

$$
\begin{gathered}
Q \wedge-K_{r} Q \wedge K_{r}>0 \\
\left(\begin{array}{cc}
e^{-\mu} Q \wedge-K_{1}^{\top} Q \wedge K_{1} & -K_{1}^{\top} Q \wedge K_{2}-B^{\top} P \\
-K_{2}^{\top} Q \wedge K_{1}-P B & -\left(A^{\top} P+P A\right)-K_{2}^{\top} Q \wedge K_{2}
\end{array}\right)
\end{gathered}
$$

Assumption \#3 implies

- Assumption \#1 on reduced system
- Assumption \#2 on boundary layer system
- $\rho\left(K_{1}\right)<1$ on a the y-component of the full system

Sufficient stability condition and Tikhonov theorem

Theorem

Under Assumption \#3, the full system is exp. stable in L^{2} norm for $\varepsilon>0$ sufficiently small

Theorem

Under Assumption \#3, $\exists C, \omega \varepsilon^{\star}$ such that $\forall 0<\varepsilon<\varepsilon^{\star}, \forall y_{0}$ in $H^{2}(0,1)$ satisfying the compatibility condition and for all $z_{0} \in \mathbb{R}^{m}$, it holds, $\forall t \geq 0$,

$$
\|y(., t)-\bar{y}(., t)\|_{L^{2}(0,1)}^{2} \leq \varepsilon C e^{-\omega t}\left(\left\|\bar{y}_{0}\right\|_{H^{2}(0,1)}^{2}+\left|z_{0}+A^{-1} B \bar{y}_{0}\right|^{2}\right)
$$

Main lines of proof:

- consider the error system
- see $\bar{y}_{x}(1, t)$ as a perturbation
- use H^{2} Lyapunov function

6 - Application to the Saint-Venant-Exner system

The Saint-Venant-Exner system may be rewritten as

$$
\left\{\begin{array}{c}
\varepsilon W_{1 \tilde{t}}+\frac{\lambda_{1}}{\lambda_{2}} W_{1 x}=0 \tag{19}\\
W_{2 \tilde{t}}+W_{2 x}=0 \\
\varepsilon W_{3 \tilde{t}}+W_{3 x}=0
\end{array}\right.
$$

with $\tilde{t}=\lambda_{2} t$ and $\varepsilon=\lambda_{2} / \lambda_{3}$.
The boundary conditions are

$$
\left(\begin{array}{l}
W_{1}(0, \tilde{t}) \\
W_{2}(0, \tilde{t}) \\
W_{3}(0, \tilde{t})
\end{array}\right)=\left(\begin{array}{ccc}
0 & k_{12} & k_{13} \\
k_{21} & 0 & 0 \\
\xi\left(k_{21}\right) & 0 & 0
\end{array}\right)\left(\begin{array}{l}
W_{1}(1, \tilde{t}) \\
W_{2}(1, \tilde{t}) \\
W_{3}(1, \tilde{t})
\end{array}\right)
$$

for $\xi\left(k_{21}\right)=-\frac{\left[\left(\lambda_{1}-V^{\star}\right)^{2}-g H^{\star}\right]+k_{21}\left[\left(\lambda_{2}-V^{\star}\right)^{2}-g H^{\star}\right]}{\left(\lambda_{3}-V^{\star}\right)^{2}-g H^{\star}}$

The reduced system is

$$
\left\{\begin{array}{c}
\bar{W}_{2 \tilde{t}}+\bar{W}_{2 x}=0 \tag{20}\\
\bar{W}_{2}(0, \tilde{t})=K_{r} \bar{W}_{2}(1, \tilde{t})
\end{array}\right.
$$

with $K_{r}=\frac{k_{12} k_{21}}{1-k_{13} \xi\left(k_{21}\right)}$. We were able to find control gains k_{i} such that

- $\rho(K)<1$ and thus the full system is exp. stable
- $K_{r}=0$ and thus the slow dynamics converge to the equilibrium in finite-time
This makes the full system converging as fast as we can.

Simulations on linearized Saint-Venant-Exner model

$\varepsilon=6 \times 10^{-6}$. Numerical scheme may be quite difficult but we know that we could use the subystems

Solution of \bar{W}_{2}.

\bar{W}_{2} of (20) with $K_{r}=0$

Solution of W2

W_{2} of (19) with same control

- Both graphs are roughly the same.
- The finite time of convergence estimated is $T=\frac{1}{\lambda_{2}}$ which is close to the numerically computed finite time.

Conclusion

- Sufficient stability condition and Tikhonov theorem for linear hyperbolic systems (PDE-PDE and ODE-PDE)
- Boundary control synthesis of a class of linear hyperbolic systems based on the singular perturbation method.
- Slow dynamics has been stabilized in finite time.
- Boundary control design has been achieved for a linearized Saint-Venant-Exner system.

Future works

- Extend this work to systems of balance laws.
- Consider other PDEs:
quasilinear hyperbolic system, or parabolic equations?

Thank you for your attention

Conclusion

- Sufficient stability condition and Tikhonov theorem for linear hyperbolic systems (PDE-PDE and ODE-PDE)
- Boundary control synthesis of a class of linear hyperbolic systems based on the singular perturbation method.
- Slow dynamics has been stabilized in finite time.
- Boundary control design has been achieved for a linearized Saint-Venant-Exner system.

Future works

- Extend this work to systems of balance laws.
- Consider other PDEs:
quasilinear hyperbolic system, or parabolic equations?

Thank you for your attention

