Stability for a Transmission Problem in Thermoviscoelasticity

Reinhard Racke

University of Konstanz

Conference on Stability of Non-Conservative Systems Valenciennes, July 4-7, 2016

Introduction		Strong	Polynomial	
00000				

Joint work with: Jaime E. Muñoz Rivera

Introduction $0 \bullet 0000$	Non-exponential 0000000	Polynomial 0000	Remarks 0
Setting			

$$\Omega_2 \subset \Omega_1 \subset \mathbb{R}^d$$

 Ω_2 : purely elastic material. Ω_1 : thermoviscoelastic material.

$$u_{tt} + E_1 u + \beta E_1 u_t + \nabla \theta = 0 \quad \text{in} \quad \Omega_1 \times (0, \infty), \qquad (1)$$

$$\theta_t - \Delta \theta + \operatorname{div} u_t = 0 \quad \text{in} \quad \Omega_1 \times (0, \infty), \qquad (2)$$

$$\rho_2 v_{tt} + E_2 u = 0 \quad \text{in} \quad \Omega_2 \times (0, \infty), \qquad (3)$$

where

$$E_j := -\mu_j \Delta - (\mu_j + \delta_j) \nabla \operatorname{div}, \quad j = 1, 2.$$

Introduction 000000	Non-exponential 0000000	Polynomial 0000	
Setting			

Transmission conditions on the interface $\Gamma_1 = \partial \Omega_2$:

$$u = v \text{ on } \Gamma_1 \times (0, \infty),$$
 (4)

$$\partial_{\nu}^{E_1} u + \theta \nu + \beta \partial_{\nu}^{E_1} u_t = \partial_{\nu}^{E_2} v \quad \text{on} \quad \Gamma_1 \times (0, \infty), \qquad (5)$$

where

$$\partial_{\nu}^{E_j} = -\mu_j \partial_{\nu} - (\mu_j + \delta_j) \nu \operatorname{div},$$

and

$$\partial_{\nu} = \nu \nabla.$$

Introduction 000000	Non-exponential 0000000	Polynomial 0000	
Setting			

Additional boundary conditions on Γ_1 and on $\Gamma_0 = \partial \Omega_1 \setminus \Gamma_1$:

$$u = 0, \quad \theta = 0 \quad \text{on} \quad \Gamma_0 \times (0, \infty), \quad (6)$$

$$\partial_{\nu} \theta = 0 \quad \text{on} \quad \Gamma_1 \times (0, \infty). \quad (7)$$

Initial conditions,

$$u(\cdot, 0) = u^{0}, \quad u_{t}(\cdot, 0) = u^{1}, \quad \theta(\cdot, 0) = \theta^{0} \quad \text{in} \quad \Omega_{1}, \quad (8)$$
$$v(\cdot, 0) = v^{0}, \quad v_{t}(\cdot, 0) = v^{1} \quad \text{in} \quad \Omega_{2}. \quad (9)$$

$\begin{array}{c} \text{Introduction} \\ \text{000000} \end{array}$	Well-posed 0	Non-exponential 0000000	Polynomial 0000	Remarks 0
Compariso	on			

Results hold if the elastic operator E_1 is replaced by the scalar Laplace operator.

Exponential stability is given if

- The Kelvin-Voigt damping $\beta \Delta u_t$ is replaced by βu_t , or
- the wave equation $u_{tt} u_{xx} \beta u_{xxt}$ is replaced by $u_{tt} + u_{xxxx} + u_{xxxxt}$, i.e., E_1 is replaced by ∂_x^4 .

Introduction 00000		Non-exponential 0000000	Polynomial 0000	
Applicatio	ons			

Applications are given for the optimal design of materials in creating damping effects in

– noise reduction in cars and airplanes,

– bridges.

Introduction 000000	Well-posed ●	Non-exponential 0000000	Polynomial 0000	
Well-pose	dness			

$$W := (u, v, u_t, v_t, \theta)'$$

leads to a semigroup

$$S(t) = e^{\mathcal{A}t}, \qquad t \ge 0,$$

on the Hilbert space

$$\mathcal{H} = \{ (u, v) \in \left(H^1(\Omega_1) \right)^d \times \left(H^1(\Omega_2) \right)^d | u = 0 \text{ on } \Gamma_0, u = v \text{ on } \Gamma_1 \} \times \left(L^2(\Omega_1) \right)^d \times \left(L^2(\Omega_2) \right)^d \times L^2(\Omega_1).$$

 ${\mathcal A}$ is dissipative.

Introduction	Well-posed	Non-exponential	Polynomial	Remarks
000000	0	●000000	0000	0
Theorem				

$$(e^{\mathcal{A}t})_{t\geq 0}$$
 is not exponentially stable.

Idea of the proof:

• Consider a related semigroup

$$S_0(t) = e^{\mathcal{A}_0 t}$$
 with essential radius $r_{ess}(S_0) \ge 1$.

• Show for
$$t_0 > 0$$
:

$$S(t_0) - S_0(t_0)$$
 is compact.

• Then

$$r_{ess}(S) = r_{ess}(S_0) \ge 1.$$

• Then $S(t) \ge 1$.

Introduction 000000		Non-exponential o●ooooo	Polynomial 0000	
Weyl's the	eorem			

Background: Weyl's theorem on compact perturbations of essential spectra:

$$B_1 - B_2 \text{ compact } \Longrightarrow \sigma_{ess}(B_1) = \sigma_{ess}(B_2).$$

Introduction 000000		Non-exponential 00●0000	Polynomial 0000	
General c	ase			

 $\emptyset \nsubseteq \mathcal{H}_2 \subset \mathcal{H}_1$

Hilbert spaces.

$$P:\mathcal{H}_1\longrightarrow\mathcal{H}_2$$

orthogonal projection.

$$S_j = (S_j(t))_{t \ge 0}$$

 C_0 -semigroup on \mathcal{H}_j , for j = 1, 2.

Assumption CP: There is $t_0 > 0$ such that for $t \ge t_0$ we have (i) $r_{ess}(S_2(t)) \ge 1$, (ii) $S_1(t) - S_2(t) : \mathcal{H}_2 \longrightarrow \mathcal{H}_1$ is compact.

Introduction	Well-posed	Non-exponential	Polynomial	Remarks
000000	o	0000000	0000	0
General of	case			

If Assumption CP holds, S_1 is not exponentially stable.

Proof:

$$1 \leq r_{ess}(S_2(t)P) = r_{ess}(S_1(t)P) \leq ||S_1(t)P||_{\mathcal{H}_1} \\ \leq ||S_1(t)||_{\mathcal{H}_1}.$$

Introduction 000000		Non-exponential 0000000	Polynomial 0000	
Associated	d semigrou	${ m up} S_0$		

$$\widetilde{u}_{tt} + E_1 \widetilde{u} + \beta E_1 \widetilde{u}_t + \nabla \widetilde{\theta} = 0 \quad \text{in} \quad \Omega_1 \times (0, \infty), \quad (10) \widetilde{\theta}_t - \Delta \widetilde{\theta} + \text{div} \, \widetilde{u}_t = 0 \quad \text{in} \quad \Omega_1 \times (0, \infty), \quad (11)$$

with boundary conditions

$$\widetilde{u} = 0, \quad \widetilde{\theta} = 0 \qquad \text{on} \quad (\Gamma_0 \cup \Gamma_1) \times (0, \infty),$$
 (12)

as well as

$$\widetilde{v}_{tt} + E_2 \widetilde{v} = 0 \quad \text{in} \quad \Omega_2 \times (0, \infty),$$
(13)

with boundary conditions

$$\widetilde{v} = 0$$
 on $\Gamma_1 \times (0, \infty)$, (14)

plus initial conditions.

This uncoupled system defines S_0 resp. \mathcal{A}_0 on the Hilbert space

$$\mathcal{H}_0 := \left(H_0^1(\Omega_1)\right)^d \times \left(H_0^1(\Omega_2)\right)^d \times \left(L^2(\Omega_1)\right)^d \times \left(L^2(\Omega_2)\right)^d \times L^2(\Omega_1).$$

It is energy conserving in the v-variable, hence $r_{ess}(S_0) \ge 1$. Choose

$$\mathcal{H}_1 := \mathcal{H}, \ \mathcal{H}_2 := (\{0\})^d \times (H_0^1(\Omega_2))^d \times (\{0\})^d \times (L^2(\Omega_2))^d \times \{0\}$$

and

$$S_1 := S, \ S_2 := S_{0/\mathcal{H}_2}.$$

Previous theorem applies. Prove compactness!

Introduction	Well-posed	Non-exponential	Polynomial	Remarks
000000	o	000000●	0000	0
Compact	ness			

Use

Lemma

$$w_{tt} + E_2 w = f$$
 in $\Omega_1 \times (0, T)$

and

w = 0 on $\Gamma_1 \times (0, T)$.

implies

$$\int_{0}^{T} \int_{\Gamma_{1}} |\partial_{\nu}w|^{2} + |\operatorname{div}w|^{2} \, do \, ds \leq \\ C_{T} \left(\int_{0}^{T} \int_{\Omega_{2}} |w_{t}|^{2} + |\nabla w|^{2} + |f|^{2} \, dx \, ds + \\ \int_{\Omega_{2}} |w_{t}(\cdot, 0)|^{2} + |\nabla w(\cdot, 0)|^{2} \, dx \right).$$

Introduction	Well-posed	Non-exponential	Strong	Polynomial	Remarks
000000	0	0000000	•	0000	0
Strong sta	ability				

$$\forall \Phi^0 \in \mathcal{H}: \ e^{\mathcal{A}t} \phi^0 \to 0 \qquad \text{ as } t \to \infty.$$

PROOF: Show

$$i\mathbb{R} \subset \rho(\mathcal{A})$$

by contradiction. Use: Unique continuation principle for isotropic elasticity.

Introduction 000000		Non-exponential 0000000		Polynomial ●000			
Polynomial stability							

The semigroup $(e^{t\mathcal{A}})_{t\geq 0}$ decays polynomially of order at least $\frac{1}{3}$, i.e. $\exists C > 0 \ \exists t_0 > 0 \ \forall t \geq t_0 \ \forall \Phi^0 \in D(\mathcal{A}) :$ $\|e^{t\mathcal{A}}\Phi_0\|_{\mathcal{H}} \leq C t^{-\frac{1}{3}} \|\mathcal{A}\Phi^0\|_{\mathcal{H}}.$

Introduction 000000		Non-exponential 0000000	Polynomial o●oo	
Steps of the	ne proof			

Lemma

The following characterizations (15) and (16), for a semigroup in a Hilbert space \mathcal{H}_1 with generator \mathcal{A}_1 , are equivalent, where the parameters $\alpha, \beta \geq 0$ are fixed:

$$\exists C > 0 \ \exists \lambda_0 > 0 \ \forall \lambda \in \operatorname{Re}, \ |\lambda| \ge \lambda_0 \ \forall F \in D(\mathcal{A}_1^{\alpha}) :$$
$$\| (i\lambda - \mathcal{A}_1)^{-1} F \|_{\mathcal{H}} \le C |\lambda|^{\beta} \| \mathcal{A}_1^{\alpha} F \|_{\mathcal{H}}, \tag{15}$$
$$\exists C > 0 \ \exists t_0 > 0 \ \forall t \ge t_0 \ \forall \Phi^0 \in D(\mathcal{A}_1) :$$
$$\| e^{t\mathcal{A}_1} \Phi_0 \|_{\mathcal{H}} \le C t^{-\frac{1}{\alpha + \beta}} \| \mathcal{A}_1 \Phi^0 \|_{\mathcal{H}}. \tag{16}$$

It is shown that (15) holds with $\alpha = 1$, $\beta = 2$.

Introduction 000000		Non-exponential 0000000	Polynomial 00●0	
Steps of the	he proof			

Let
$$(i\lambda - \mathcal{A}) \Phi = F = (f_1, f_2, f_3, f_4, f_5)' \in D(\mathcal{A})$$
. Denoting $\Phi = (u, v, U, V, \theta)'$:

$$i\lambda u - U = f_1, \qquad (17)$$

$$i\lambda v - V = f_2, \qquad (18)$$

$$i\lambda U + E_1 u + \beta E_1 U + \nabla \theta = f_3, \qquad (19)$$

$$i\lambda V + E_2 v = f_4, \qquad (20)$$

$$i\lambda\theta - \Delta\theta + \operatorname{div} U = f_5.$$
 (21)

Introduction 000000		Non-exponential 0000000	Polynomial 000●	
Steps of the	ne proof			

Estimates for u, U, θ are easy because of the dissipativity. For v, V: One needs to estimate normal and tangential derivatives on Γ_0 .

It appears from the transmission conditions:

$$\|f_2\|_{H^{\frac{3}{2}}(\Gamma_1)} \le C \|f_2\|_{H^2(\Omega_2)} \le C \|\mathcal{A}F\|_{\mathcal{H}}. \qquad (\alpha = 1)$$

Powers of $|\lambda|$ ($\beta = 2$) arise through the differential equations.

Introduction	Well-posed	Non-exponential	Polynomial	Remarks
000000	0	0000000	0000	•
Remarks				

- Results hold if the temperature is neglected or the equations of elasticity are replaced by the wave equation.
- The inverse of ${\mathcal A}$ is expected to be non-compact.