Spectral analysis of the Schrödinger operator on binary tree-shaped networks and applications.

Virginie Régnier, LAMAV, University of Valenciennes, France, with Denis Mercier, LAMAV, University of Valenciennes, France, and Kaïs Ammari, Faculty of Sciences, Monastir, Tunisia.

- Motivation: stabilization i.e. can the solution of our evolution problem be guided to a desired final configuration, asymptotically in time?
- If possible, does the energy decrease to zero or to a positive value? Polynomially? Exponentially? The decay rate depends on the spectrum.

Virginie Régnier, LAMAV, University of Valenciennes, France,

Structure of the talk

Interstation of the system: abstract setting and well-posedness

- The tree-shaped network
- O The problem
- Operation of the second sec
- Spectral analysis
 - In the conservative and dissipative operators
 - O The iterative approach to get the spectrum
 - The eigenvalues with their multiplicity
- Energy decreasing (using a Riesz basis)

Virginie Régnier, LAMAV, University of Valenciennes, France,

A binary tree-shaped network

Virginie Régnier, LAMAV, University of Valenciennes, France,

$$\frac{\partial u_{\bar{\alpha}}}{\partial t}(x,t) + i \frac{\partial^2 u_{\bar{\alpha}}}{\partial x^2}(x,t) = 0, \quad 0 < x < 1, \ t > 0, \ \bar{\alpha} \in I,$$
(1)

$$i u(1,t) + \frac{\partial u}{\partial x}(1,t) = 0, \ u_{\bar{\alpha}}(0,t) = 0, \ \bar{\alpha} \in I_{Dir}, \ t > 0,$$

$$(2)$$

$$u_{\bar{\alpha}\circ(\beta)}(1,t) = u_{\bar{\alpha}}(0,t), \quad t > 0, \ \beta = 1, 2, \ \bar{\alpha} \in I_{Int},$$
(3)

$$\sum_{\beta=1}^{2} \frac{\partial u_{\bar{\alpha}\circ(\beta)}}{\partial x}(1,t) = \frac{\partial u_{\bar{\alpha}}}{\partial x}(0,t), \quad t > 0, \ \bar{\alpha} \in I_{Int},$$
(4)

$$u_{\bar{\alpha}}(x,0) = (u_{\bar{\alpha}})_0(x), \quad 0 < x < 1, \ \bar{\alpha} \in I,$$
(5)

where $u_{\bar{\alpha}} : [0,1] \times (0,+\infty) \to IR, \ \bar{\alpha} \in I$, is the transverse displacement of the edge $e_{\bar{\alpha}}$.

In our example, $I_{Dir} := \{(1,1), (1,2), (2,1), (2,2)\}$, $I_{Int} := \{\emptyset, (1), (2)\}$ and $I := I_{Dir} \cup I_{Int}$.

Virginie Régnier, LAMAV, University of Valenciennes, France,

Abstract setting (1)

The space $H:=\prod_{ar{lpha}\in I}L^2(0,1)$ is equipped with the inner product

$$< \underline{u}, \underline{\widetilde{u}} >_{H} := \sum_{\overline{\alpha} \in I} \int_{0}^{1} u_{\overline{\alpha}}(x) \, \overline{\widetilde{u}}_{\overline{\alpha}}(x) \, dx.$$
 (6)

The previous system is reformulated as the first order evolution equation:

$$\underline{u}'(t) = \mathcal{A}_d \underline{u}(t), \text{ with } \underline{u}(0) = \underline{u}_0, \tag{7}$$

where the operator $\mathcal{A}_d : \mathcal{D}(\mathcal{A}_d) \subset H \to H$ is

$$\mathcal{A}_d \underline{u} := (-i \,\partial_x^2 u_{\bar{\alpha}})_{\bar{\alpha} \in I},$$

 $\mathcal{D}(\mathcal{A}_d) := \left\{ \underline{u} \in \prod_{\bar{\alpha} \in J} H^2(0,1) \, : \underline{u} \text{ satisfies (8), (9) and (10) hereafter} \right\}.$

Virginie Régnier, LAMAV, University of Valenciennes, France,

Abstract setting (2)

$$i u(1) + \frac{du}{dx}(1) = 0, \ u_{\bar{\alpha}}(0) = 0, \ \bar{\alpha} \in I_{Dir},$$
 (8)

$$u_{\bar{\alpha}\circ(\beta)}(1) = u_{\bar{\alpha}}(0), \ \beta = 1, 2, \tag{9}$$

$$\sum_{\beta=1}^{2} \frac{du_{\bar{\alpha}\circ(\beta)}}{dx}(1) = \frac{du_{\bar{\alpha}}}{dx}(0), \quad \bar{\alpha} \in I_{Int}.$$
 (10)

The natural energy E(t) of a solution $\underline{u} = (u_{\bar{\alpha}})_{\bar{\alpha} \in I}$ is:

$$E(t) := \frac{1}{2} \sum_{\bar{\alpha} \in I} \int_{0}^{1} |u_{\bar{\alpha}}(x, t)|^{2} dx.$$
 (11)

It is proved to be a non-increasing function of the variable t.

Virginie Régnier, LAMAV, University of Valenciennes, France,

Existence and uniqueness of the solution

(i) For an initial datum $\underline{u}_0 \in H$, there exists a unique solution $\underline{u} \in C([0, +\infty), H)$ to the latter problem. Moreover, if $\underline{u}_0 \in \mathcal{D}(\mathcal{A}_d)$, then

$$\underline{u} \in C([0, +\infty), \mathcal{D}(\mathcal{A}_d)) \cap C^1([0, +\infty), H).$$

(ii) The solution \underline{u} with initial datum in $\mathcal{D}(\mathcal{A}_d)$ satisfies the dissipation law:

$$E'(t) = -|u(1,t)|^2 \le 0,$$
 (12)

Virginie Régnier, LAMAV, University of Valenciennes, France,

How to solve a first order evolution equation in finite dimension (1)

If A is a square matrix of order N on C and if A is skew-Hermitian (i.e. $A^* = -A$), the eigenvalues λ_i are all purely imaginary and their geometric multiplicity is equal to the algebraic multiplicity. The matrix A is unitarily similar to a diagonal matrix.

The solution of x'(t) = Ax(t), with $x(0) = x^0$, is:

$$x(t) = e^{At} x^0 = \sum_{1 \le i \le N} e^{\lambda_i \cdot t} x_i^0 \phi_i, \ \forall \ t > 0$$
(13)

where $x^0 = \sum_{1 \le i \le N} x_i^0 \phi_i$ is the decomposition of x^0 in the orthonormal basis $(\phi_i)_i$ of the eigenfunctions. The solution satisfies: $\forall t > 0$,

$$\|x(t)\|^{2} = \sum_{1 \le i \le N} \left| e^{\lambda_{i} \cdot t} \right|^{2} \cdot |x_{i}^{0}|^{2} \cdot \|\phi_{i}\|^{2} = \|x^{0}\|^{2},$$
(14)

Virginie Régnier, LAMAV, University of Valenciennes, France,

More generally, the minimal polynomial of A is: $\pi_A(X) = \prod_{i=1}^r (X - \lambda_i)^{s_i}$. The matrix A is similar to a block diagonal matrix where each block is a Jordan block.

Thus the solution of the previous first order evolution equation becomes

$$x(t) = e^{At} x^{0} = \sum_{\substack{1 \le i \le r \\ 0 \le k \le |J_{\lambda_{i}}| - 1}} e^{\lambda_{i} \cdot t} t^{k} v_{i,k}, \ \forall \ t > 0,$$
(15)

where $v_{i,k}$ belongs to $Ker[(A - \lambda_i)^{s_i}]$ (characteristic space).

To get the estimate for $||x(t)||^2$, we need to know more about the algebraic and geometric multiplicity of each eigenvalue.

Virginie Régnier, LAMAV, University of Valenciennes, France,

Conservative and dispersive operators

Let us come back to our problem. The conservative operator, associated to the dispersive operator \mathcal{A}_d is called $\mathcal{A}_0 : \mathcal{D}(\mathcal{A}_0) \subset H \to H$. It is:

$$\mathcal{A}_0\underline{u} := (-i\,\partial_x^2 u_{\bar{\alpha}})_{\bar{\alpha}\in I}$$

$$\mathcal{D}(\mathcal{A}_0) := \left\{ \underline{u} \in \prod_{\bar{\alpha} \in I} H^2(0,1) \, : \underline{u} \text{ satisfies (16), (9) and (10)} \right\}.$$

where the following condition (16) replaces the dissipative condition (8):

$$\frac{du}{dx}(1) = 0, \ u_{\bar{\alpha}}(0) = 0, \ \bar{\alpha} \in I_{Dir}.$$
(16)

The operator \mathcal{A}_0 is skew-adjoint. Thus the energy of the solution of the first order evolution equation $\underline{u}'(t) = \mathcal{A}_0 \underline{u}$, with $\underline{u}(0) = \underline{u}_0$ satisfies $E(t) = E(0), \forall t > 0.$

Virginie Régnier, LAMAV, University of Valenciennes, France,

- Necessity to localize the spectrum: since A_d is dissipative, its eigenvalues have a negative real part. But they are not in finite number and can tend to the imaginary axis.
- Do some eigenvalues lie on the imaginary axis? Can we get information on the multiplicity of the eigenvalues (in both senses: algebraic and geometric)?
- Can we obtain a decomposition similar to (15)?
- Yes, if we view A_d as a perturbation of A_0 and apply a reformulation of Guo's version of Bari Theorem to prove that some eigenfunctions of the operator A_d form a Riesz basis of the subspace they span.

Virginie Régnier, LAMAV, University of Valenciennes, France,

- A basis $\{f_n\}$ for a Hilbert space H is a Riesz basis for H if it is equivalent to some (and therefore every) orthonormal basis for H. By "equivalent", we mean there exists a topological isomorphism $S : H \to H$ such that $\{Sf_n\}$ is an orthonormal basis of H.
- In particular, an orthonormal basis of a Hilbert space is a Riesz basis.
- To prove that some eigenfunctions of the operator A_d form a Riesz basis of the subspace they span, we need the eigenfunctions of A_d to be quadratically close to those of A_0 , except from a finite number of eigenfunctions. It is the assumption of Bari Theorem.
- We use an iterative strategy to get the required information on the spectrum of \mathcal{A}_d .

Virginie Régnier, LAMAV, University of Valenciennes, France,

The eigenvalue problem: $\lambda = i\omega^2$ ($\omega \in \mathbb{C}^*$) is an eigenvalue of \mathcal{A}_d with associated eigenvector $\phi \in \mathcal{D}(\mathcal{A}_d)$ if and only if ϕ satisfies the transmission and boundary conditions (8), (9) and (10) and

$$\mathcal{A}_{d}\underline{\phi} = (-i\,\partial_{x}^{2}\phi_{\bar{\alpha}})_{\bar{\alpha}\in I} = i\omega^{2}(\phi_{\bar{\alpha}})_{\bar{\alpha}\in I} \Leftrightarrow \ \forall \ \bar{\alpha}\in I, \partial_{x}^{2}\phi_{\bar{\alpha}} = -\omega^{2}\phi_{\bar{\alpha}}$$

Introducing the vector $F_{\bar{\alpha}}(x) := \begin{pmatrix} \phi_{\bar{\alpha}}(x) \\ \partial_x \phi_{\bar{\alpha}}(x) \end{pmatrix}$ to reduce the order of the eigenvalue problem as well as $M(\omega) := \begin{pmatrix} 0 & 1 \\ -\omega^2 & 0 \end{pmatrix}$, it becomes: $(EP): F'_{\bar{\alpha}}(x) = M(\omega)F_{\bar{\alpha}}(x)$ on $(0,1), \forall \bar{\alpha} \in I$.

Virginie Régnier, LAMAV, University of Valenciennes, France,

The iterative strategy used to get the spectrum in the case n = 2 (2)

Thus
$$F_{\bar{\alpha}}(x) = e^{M(\omega)x} F_{\bar{\alpha}}(0)$$
 where $e^{M(\omega)x} = \begin{pmatrix} \cos(\omega x) & \frac{\sin(\omega x)}{\omega} \\ -\omega \sin(\omega x) & \cos(\omega x) \end{pmatrix}$

For simplicity, the computations to establish the characteristic equation are presented in the case $I_{Dir} = \{(1,1); (1,2); (2,1); (2,2)\}.$

The Dirichlet condition at the leaves of the tree implies $F_{\bar{\alpha}}(0) = \begin{pmatrix} 0 \\ \partial_x \phi_{\bar{\alpha}}(0) \end{pmatrix}$

for
$$\bar{\alpha} \in I_{Dir}$$
. Then $F_{\bar{\alpha}}(1) = e^{M(\omega)}F_{\bar{\alpha}}(0)$ i.e. $F_{\bar{\alpha}}(1) = \phi'_{\bar{\alpha}}(0) \begin{pmatrix} \frac{\sin(\omega)}{\omega} \\ \cos(\omega) \end{pmatrix}$, for

 $\bar{\alpha} \in I_{Dir}$ and $\omega \neq 0$.

Now the continuity at the interior vertices \mathcal{O}_1 and \mathcal{O}_2 implies:

$$\phi_{j,1}'(0) \cdot \frac{\sin(\omega)}{\omega} = \phi_{j,2}'(0) \cdot \frac{\sin(\omega)}{\omega} \text{ for } j = 1 \text{ and } j = 2.$$
 (17)

Virginie Régnier, LAMAV, University of Valenciennes, France,

The iterative strategy used to get the spectrum in the case n = 2 (3)

Either $\omega = k\pi$ with $k \in \mathbb{Z}^*$ (first family of eigenvalues) or the following condition is imposed:

$$\phi'_{j,1}(0) = \phi'_{j,2}(0) \text{ for } j = 1 \text{ and } j = 2.$$
 (18)

Then the second transmission condition at the interior vertices O_1 and O_2 (condition (10)) implies, for j = 1 and j = 2:

$$F_{j}(0) = \phi_{j,1}'(0) \begin{pmatrix} \frac{\sin(\omega)}{\omega} \\ 2\cos(\omega) \end{pmatrix} \text{ and thus } F_{j}(1) = \phi_{j,1}'(0) \begin{pmatrix} 3\cos(\omega)\frac{\sin(\omega)}{\omega} \\ -\sin^{2}(\omega) + 2\cos^{2}(\omega) \end{pmatrix}$$

It follows from the continuity at the vertex \mathcal{O} : either $\omega = \frac{\pi}{2} + k\pi$, $k \in \mathbb{Z}$ (second family of eigenvalues) or

$$\phi_{1,1}'(0) = \phi_{2,1}'(0). \tag{19}$$

Virginie Régnier, LAMAV, University of Valenciennes, France,

Either $\omega = k\pi, k \in \mathbb{Z}^*$, or $\omega = (\pi/2) + k\pi, k \in \mathbb{Z}$, or (18) and (19) are imposed. Thus

$$\phi'_{1,1}(0) = \phi'_{1,2}(0) = \phi'_{2,1}(0) = \phi'_{2,2}(0) =: v.$$
 (20)

The "eigenvector" $F_{\bar{\alpha}}$ for $\bar{\alpha}$ in I_{Dir} is: $F_{\bar{\alpha}}(x) := \begin{pmatrix} 0 \\ \partial_x \phi_{\bar{\alpha}}(0) \end{pmatrix} = v \begin{pmatrix} 0 \\ 1 \end{pmatrix}$. Thus the dimension of the corresponding eigenspace is one i.e. the geometric

multiplicity of these eigenvalues is one.

Virginie Régnier, LAMAV, University of Valenciennes, France,

The spectrum in the case n = 2 (2)

- The geometric multiplicity of $k\pi$ is $2^n 1$ for both A_0 and A_d (3 pour n = 2).
- The geometric multiplicity of $(\pi/2) + k\pi$ is equal to: $\frac{1}{3}2^n + \frac{2}{3}$ if n is even and $\frac{1}{3}(2^n - 2)$ if n is odd for \mathcal{A}_0 (2 pour n = 2). It is $\frac{1}{3}(2^n - 1)$ if n is even and $\frac{1}{3}(2^n - 2)$ if n is odd for \mathcal{A}_d (1 pour n = 2).

Virginie Régnier, LAMAV, University of Valenciennes, France,

We know that $F_1(1) = F_2(1)$ (it comes from (19)) and have their expression. Applying the second transmission condition at the vertex \mathcal{O} , leads to multiplying the second component of $F_1(1)$ by the number 2. Then $F(1) = e^{M(\omega)}F(0)$. It is: $F(1) := v \left(\begin{array}{c} \frac{\sin(\omega)}{\omega} \left(7 \frac{\cos^2(\omega)}{\omega} - 2 \sin^2(\omega) \right) \\ \cos(\omega) \left(4 \cos^2(\omega) - 5 \sin^2(\omega) \right) \end{array} \right).$

The condition at the root of the tree leads to:

$$i\epsilon \frac{\sin(\omega)}{\omega} \left(7 \frac{\cos^2(\omega)}{\omega} - 2\sin^2(\omega) \right) + \cos(\omega) \left(4\cos^2(\omega) - 5\sin^2(\omega) \right) = 0 \quad (21)$$

where $\epsilon = 0$ for the conservative operator and $\epsilon = 1$ for the dissipative operator.

Virginie Régnier, LAMAV, University of Valenciennes, France

Using Euler's formula with $z := e^{2i\omega}$, the characteristic equation (21) with $\epsilon = 0$ is:

$$(z+1)(4(z+1)^2+5(z-1)^2)=0 \Leftrightarrow 9z^3+7z^2+7z+9=0.$$
 (22)

The roots of this polynomial give the (algebraically) simple eigenvalues of the conservative operator $\mathcal{A}_{0}.$

Virginie Régnier, LAMAV, University of Valenciennes, France,

The eigenvalues in the case n = 2

- For both the conservative and dissipative operators, the purely imaginary eigenvalues: iω² = ik²π², k ∈ Z^{*} and iω² = i[(π/2) + kπ]², k ∈ Z.
- For the conservative operator A_0 , the values $\lambda = i\omega^2$, where $z := e^{2i\omega}$ satisfies $P_{A,2}(z) = 0$, with $P_{A,2}(z) := 9z^3 + 7z^2 + 7z + 9$.
- For the dissipative operator \mathcal{A}_d , the values $\lambda = i\omega^2$, where $z := e^{2i\omega}$ satisfies $P_{A,2}(z) + \frac{1}{\omega}P_{B,2}(z) = 0$, with $P_{A,2}(z) := 9z^3 + 7z^2 + 7z + 9$ and $P_{B,2}(z) := 9z^3 + z^2 - z - 9$.

Virginie Régnier, LAMAV, University of Valenciennes, France,

Let σ be the spectrum of the dissipative operator \mathcal{A}_d , then $\sigma = \sigma_1 \cup \sigma_2 \cup \tilde{\sigma_2}$, where

$$\begin{split} \sigma_1 &= \{i(k\pi)^2 : k \in \mathbb{Z}^*\} \cup \left\{i\left(k\pi + \frac{\pi}{2}\right)^2 : k \in \mathbb{Z}\right\}\\ \tilde{\sigma_2} &= \{(\lambda_k)_{k \in S} : S \text{ is finite, } \Re(\lambda_k) < 0\}\\ \sigma_2 &= \{i(\omega_{j,k})^2 : j = 1, 2, 3, k \in \mathbb{Z}, |k| \ge k_0\}, k_0 \text{ being an integer} \end{split}$$

Moreover

$$\Re(i(\omega_{j,k})^2) < 0, \ \forall i(\omega_{j,k})^2 \in \sigma_2$$

and the following asymptotic behaviour holds:

$$i(\omega_{j,k})^{2} = i\left(k^{2}\pi^{2} + k\pi \arg(z_{A,j}^{(2)}) + \frac{(\arg(z_{A,j}^{(2)}))^{2}}{4}\right) + 2\pi\gamma_{j} + o(1)$$
(23)

Virginie Régnier, LAMAV, University of Valenciennes, France,

Localization of the eigenvalues of the dispersive operator in the case n = 2 (2)

where γ_j is the real negative number defined by: $\gamma_j = -\frac{P_{B,2}(z_{A,j}^{(2)})}{2\pi z_{A,j}^{(2)}(P_{A,2})'(z_{A,j}^{(2)})}$. The polynomial $P_{A,2}$ admits 3 distinct complex roots $z_{A,j}^{(2)} \neq 1, j = 1, 2, 3$ with modulus equal to 1. They are:

$$z_{A,1}^{(2)}=-1=e^{i\pi},\; z_{A,2}^{(2)}=rac{1}{9}(1-4i\sqrt{5})=e^{-i\arctan(4\sqrt{5})},\; z_{A,3}^{(2)}=e^{i\arctan(4\sqrt{5})}.$$

Then the set σ_2 has two vertical asymptots:

$$\Re(\lambda)=2\pi\gamma_1=-\frac{4}{5},\ \Re(\lambda)=2\pi\gamma_2=2\pi\gamma_3=-\frac{3}{5}.$$

At last, numerically the eigenvalue of A_d with the largest real part is $\lambda \approx -0.37459 + 0.873125i$.

Virginie Régnier, LAMAV, University of Valenciennes, France,

The spectrum for n = 2

Theorem

Let E(t) and H be defined as in the introduction. Let H_1 (respectively H_2) be the subspace of H spanned by the $\underline{\psi}^1(\omega, \cdot)$'s (resp. $\underline{\psi}^2(\omega, \cdot)$'s), which are the normalized (in H) eigenfunctions of \mathcal{A}_d associated to the eigenvalues $i\omega^2$ in σ_1 (resp. $\sigma_2 \cup \tilde{\sigma_2}$).

• H_1 is orthogonal to H_2 .

● Let \underline{u}_0 in H and \underline{u}_0^1 its orthogonal projection onto H_1 . Then E(t)decreases to $E_1(0) := \|\underline{u}_0^1\|_H^2$ when t tends to $+\infty$. More precisely there exists a constant C > 0 such that $E(t) \le E_1(0) + Ce^{-2\beta t}E_2(0)$ where $-\beta := \sup_{\{i\omega^2 \in (\sigma_2 \cup \sigma_2)\}} \Re(i\omega^2) < 0$.

Virginie Régnier, LAMAV, University of Valenciennes, France,

Energy decreasing (sketch of the proof)

After it has been proved that the $\underline{\psi}^2(\omega, \cdot)$'s form a Riesz basis of H_2 and since the $\underline{\psi}^1(\omega, \cdot)$'s form an orthonormal basis of H_1 , the initial condition $\underline{u}_0 := ((u_{\bar{\alpha}})_{\bar{\alpha} \in I})_0$ is written as a sum of two terms:

$$\underline{u}_{0} := \underline{u}_{0}^{1} + \underline{u}_{0}^{2} = \sum_{i\omega^{2} \in \sigma_{1}} \underline{u}_{0}^{1}(\omega, \cdot) \underline{\psi}^{1}(\omega, \cdot) + \sum_{i\omega^{2} \in (\sigma_{2} \cup \tilde{\sigma}_{2})} \underline{u}_{0}^{2}(\omega, \cdot) \underline{\psi}^{2}(\omega, \cdot).$$

The solution of the boundary value problem given in the introduction is: $u(t) = e^{A_d t} \underline{u}_0 := \underline{u}^1(t) + \underline{u}^2(t).$ The energy, defined in the introduction, by (11) is: $E(t) = E_1(t) + E_2(t)$ (since H_1 is orthogonal to H_2), with, for any $t \ge 0$:

$$E_{1}(t) := \left\|\underline{u}^{1}\right\|_{H_{1}}^{2} = \sum_{i\omega^{2} \in \sigma_{1}} \left\|\underline{u}_{0}^{1}(\omega, \cdot)\right\|_{H_{1}}^{2} |e^{i\omega^{2}t}|^{2} = E_{1}(0)$$

since σ_1 contains only purely imaginary eigenvalues.

Virginie Régnier, LAMAV, University of Valenciennes, France,

The set σ_2 contains the "large" eigenvalues, which have an algebraic multiplicity equal to 1, due to Rouché's Theorem.

The algebraic multiplicity of an eigenvalue in $\tilde{\sigma}_2$ (the finite set of the "small" eigenvalues) is also one. This is a consequence of the proof of Bari's Theorem (as it is given in a paper by Abdallah/Mercier/Nicaise). Now, since the $\psi^2(\omega, \cdot)$'s form a Riesz basis of H_2 , there exists C > 0, such that, for any $t \ge 0$:

$$egin{split} \mathcal{E}_2(t) &:= \left\Vert \underline{u}^2(t)
ight\Vert_{\mathcal{H}_2}^2 \leq C \sum_{i\omega^2 \in ec{\sigma}_2 \cup \sigma_2} \left\Vert \underline{u}_0^2(\omega,\cdot)
ight\Vert_{\mathcal{H}_2}^2 |e^{i\omega^2 t}|^2 \end{split}$$

Virginie Régnier, LAMAV, University of Valenciennes, France,

The set σ_2 has at most (n + 1) vertical asymptots: $Re(\lambda) = 2\pi\gamma_j$, with $j \in \{1, \ldots, n + 1\}$. Define j_0 by $2\pi\gamma_{j_0} := \sup_{\{j \in \{1, \ldots, n+1\}\}} (2\pi\gamma_j) < 0$. Thus, if ω is such that $i\omega^2 \in \sigma_2$:

$$|e^{i\omega^2 t}|^2 \leq e^{2\pi\gamma_{j_0} t}.$$

Since $\tilde{\sigma}_2$ is a finite set, the real part of $i\omega^2$ is bounded from above by $-\alpha < 0$ if $i\omega^2 \in \tilde{\sigma}_2$. Thus, if ω is such that $i\omega^2 \in \tilde{\sigma}_2$:

$$|e^{i\omega^2 t}|^2 \le e^{-2\alpha t}.$$

Hence the result, where $-\beta$ is the maximum between $2\pi\gamma_{j_0}$ and -2α . For $n = 2, -2\beta = -0.74918$ is the energy decay rate.

Virginie Régnier, LAMAV, University of Valenciennes, France,

- dependence of β on n
- generalization to a non-binary tree-shaped network...

Virginie Régnier, LAMAV, University of Valenciennes, France,

- Multistructures: F. Ali Mehmeti, J. von Below, J. Lagnese, G. Leugering, G. Lumer, S. Nicaise, E.J.P.G. Schmidt...
- Stabilization on networks: K. Ammari, C. Castro, A. Haraux, M. Jellouli, M. Khenissi, V. Komornik, D. Mercier, M. Mehrenberger, M. Tucsnak, J. Valein, G.Q. Xu, Y. Zhang, E. Zuazua...
- Control and stabilization of Schrödinger equations: K. Beauchard, J.M. Coron...
- Riesz bases: B.Z. Guo.

Virginie Régnier, LAMAV, University of Valenciennes, France,