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Introduction

Motivation: stabilization i.e. can the solution of our evolution problem be

guided to a desired final configuration, asymptotically in time?

If possible, does the energy decrease to zero or to a positive value?

Polynomially? Exponentially? The decay rate depends on the spectrum.
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Structure of the talk

1 The system: abstract setting and well-posedness

1 The tree-shaped network
2 The problem
3 Comparison with the finite dimensional case

2 Spectral analysis

1 The conservative and dissipative operators
2 The iterative approach to get the spectrum
3 The eigenvalues with their multiplicity

3 Energy decreasing (using a Riesz basis)
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A binary tree-shaped network
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The schrödinger operator

∂uᾱ
∂t

(x , t) + i
∂2uᾱ
∂x2

(x , t) = 0, 0 < x < 1, t > 0, ᾱ ∈ I , (1)

i u(1, t) +
∂u

∂x
(1, t) = 0, uᾱ(0, t) = 0, ᾱ ∈ IDir , t > 0, (2)

uᾱ◦(β)(1, t) = uᾱ(0, t), t > 0, β = 1, 2, ᾱ ∈ IInt , (3)

2∑
β=1

∂uᾱ◦(β)

∂x
(1, t) =

∂uᾱ
∂x

(0, t), t > 0, ᾱ ∈ IInt , (4)

uᾱ(x , 0) = (uᾱ)0 (x), 0 < x < 1, ᾱ ∈ I , (5)

where uᾱ : [0, 1]× (0,+∞)→ IR, ᾱ ∈ I , is the transverse displacement of the

edge eᾱ.

In our example, IDir := {(1, 1), (1, 2), (2, 1), (2, 2)}, IInt := {∅, (1), (2)} and

I := IDir ∪ IInt .
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Abstract setting (1)

The space H :=
∏
ᾱ∈I L

2(0, 1) is equipped with the inner product

< u, ũ >H :=
∑
ᾱ∈I

∫ 1

0

uᾱ(x) ¯̃uᾱ(x) dx . (6)

The previous system is reformulated as the first order evolution equation:

u′(t) = Adu(t),with u(0) = u0, (7)

where the operator Ad : D(Ad) ⊂ H → H is

Adu := (−i ∂2
xuᾱ)ᾱ∈I ,

D(Ad) :=

{
u ∈

∏
ᾱ∈I

H2(0, 1) : u satisfies (8), (9) and (10) hereafter

}
.
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Abstract setting (2)

i u(1) +
du

dx
(1) = 0, uᾱ(0) = 0, ᾱ ∈ IDir , (8)

uᾱ◦(β)(1) = uᾱ(0), β = 1, 2, (9)

2∑
β=1

duᾱ◦(β)

dx
(1) =

duᾱ
dx

(0), ᾱ ∈ IInt . (10)

The natural energy E(t) of a solution u = (uᾱ)ᾱ∈I is:

E(t) :=
1

2

∑
ᾱ∈I

∫ 1

0

|uᾱ(x , t)|2 dx . (11)

It is proved to be a non-increasing function of the variable t.
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Existence and uniqueness of the solution

(i) For an initial datum u0 ∈ H, there exists a unique solution

u ∈ C([0, +∞), H) to the latter problem. Moreover, if u0 ∈ D(Ad), then

u ∈ C([0, +∞), D(Ad)) ∩ C 1([0, +∞), H).

(ii) The solution u with initial datum in D(Ad) satisfies the dissipation law:

E ′(t) = −
∣∣u(1, t)

∣∣2 ≤ 0, (12)
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How to solve a first order evolution equation in finite dimension (1)

If A is a square matrix of order N on lC and if A is skew-Hermitian (i.e.

A∗ = −A), the eigenvalues λi are all purely imaginary and their geometric

multiplicity is equal to the algebraic multiplicity. The matrix A is unitarily

similar to a diagonal matrix.

The solution of x ′(t) = Ax(t), with x(0) = x0, is:

x(t) = eAtx0 =
∑

1≤i≤N

eλi ·tx0
i φi , ∀ t > 0 (13)

where x0 =
∑

1≤i≤N x0
i φi is the decomposition of x0 in the orthonormal basis

(φi )i of the eigenfunctions.

The solution satisfies: ∀ t > 0,

‖x(t)‖2 =
∑

1≤i≤N

∣∣∣eλi ·t
∣∣∣2 · |x0

i |2 · ‖φi‖2 = ‖x0‖2, (14)
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How to solve a first order evolution equation in finite dimension (2)

More generally, the minimal polynomial of A is: πA(X ) =
∏r

i=1(X − λi )
si . The

matrix A is similar to a block diagonal matrix where each block is a Jordan

block.

Thus the solution of the previous first order evolution equation becomes

x(t) = eAtx0 =
∑

1≤i≤r
0≤k≤|Jλi

|−1

eλi ·ttkvi,k , ∀ t > 0, (15)

where vi,k belongs to Ker [(A− λi )
si ] (characteristic space).

To get the estimate for ‖x(t)‖2, we need to know more about the algebraic and

geometric multiplicity of each eigenvalue.
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Conservative and dispersive operators

Let us come back to our problem. The conservative operator, associated to the

dispersive operator Ad is called A0 : D(A0) ⊂ H → H. It is:

A0u := (−i ∂2
xuᾱ)ᾱ∈I ,

D(A0) :=

{
u ∈

∏
ᾱ∈I

H2(0, 1) : u satisfies (16), (9) and (10)

}
.

where the following condition (16) replaces the dissipative condition (8):

du

dx
(1) = 0, uᾱ(0) = 0, ᾱ ∈ IDir . (16)

The operator A0 is skew-adjoint. Thus the energy of the solution of the first

order evolution equation u′(t) = A0u,with u(0) = u0 satisfies

E(t) = E(0), ∀ t > 0.
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The difficulties of our problem

Necessity to localize the spectrum: since Ad is dissipative, its eigenvalues

have a negative real part. But they are not in finite number and can tend

to the imaginary axis.

Do some eigenvalues lie on the imaginary axis? Can we get information on

the multiplicity of the eigenvalues (in both senses: algebraic and

geometric)?

Can we obtain a decomposition similar to (15)?

Yes, if we view Ad as a perturbation of A0 and apply a reformulation of

Guo’s version of Bari Theorem to prove that some eigenfunctions of the

operator Ad form a Riesz basis of the subspace they span.
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The technique we choose: Riesz basis

A basis {fn} for a Hilbert space H is a Riesz basis for H if it is equivalent

to some (and therefore every) orthonormal basis for H. By ”equivalent”,

we mean there exists a topological isomorphism S : H → H such that

{Sfn} is an orthonormal basis of H.

In particular, an orthonormal basis of a Hilbert space is a Riesz basis.

To prove that some eigenfunctions of the operator Ad form a Riesz basis

of the subspace they span, we need the eigenfunctions of Ad to be

quadratically close to those of A0, except from a finite number of

eigenfunctions. It is the assumption of Bari Theorem.

We use an iterative strategy to get the required information on the

spectrum of Ad .
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The iterative strategy used to get the spectrum in the case n = 2 (1)

The eigenvalue problem: λ = iω2 (ω ∈ lC∗) is an eigenvalue of Ad with

associated eigenvector φ ∈ D(Ad) if and only if φ satisfies the transmission and

boundary conditions (8), (9) and (10) and

Adφ = (−i ∂2
xφᾱ)ᾱ∈I = iω2(φᾱ)ᾱ∈I ⇔ ∀ ᾱ ∈ I , ∂2

xφᾱ = −ω2φᾱ.

Introducing the vector Fᾱ(x) :=

(
φᾱ(x)

∂xφᾱ(x)

)
to reduce the order of the

eigenvalue problem as well as M(ω) :=

(
0 1

−ω2 0

)
, it becomes:

(EP) : F ′ᾱ(x) = M(ω)Fᾱ(x) on (0, 1), ∀ᾱ ∈ I .

Virginie Régnier, LAMAV, University of Valenciennes, France, with Denis Mercier, LAMAV, University of Valenciennes, France, and Käıs Ammari, Faculty of Sciences, Monastir, Tunisia.Spectral analysis of the Schrödinger operator on binary tree-shaped networks and applications.



15

The iterative strategy used to get the spectrum in the case n = 2 (2)

Thus Fᾱ(x) = eM(ω)xFᾱ(0) where eM(ω)x =

 cos(ωx)
sin(ωx)

ω
−ω sin(ωx) cos(ωx)

.

For simplicity, the computations to establish the characteristic equation are

presented in the case IDir = {(1, 1); (1, 2); (2, 1); (2, 2)}.

The Dirichlet condition at the leaves of the tree implies Fᾱ(0) =

(
0

∂xφᾱ(0)

)
for ᾱ ∈ IDir . Then Fᾱ(1) = eM(ω)Fᾱ(0) i.e. Fᾱ(1) = φ′ᾱ(0)

 sin(ω)

ω
cos(ω)

, for

ᾱ ∈ IDir and ω 6= 0.

Now the continuity at the interior vertices O1 and O2 implies:

φ′j,1(0) · sin(ω)

ω
= φ′j,2(0) · sin(ω)

ω
for j = 1 and j = 2. (17)
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The iterative strategy used to get the spectrum in the case n = 2 (3)

Either ω = kπ with k ∈ ZZ∗ (first family of eigenvalues) or the following

condition is imposed:

φ′j,1(0) = φ′j,2(0) for j = 1 and j = 2. (18)

Then the second transmission condition at the interior vertices O1 and O2

(condition (10)) implies, for j = 1 and j = 2:

Fj(0) = φ′j,1(0)

 sin(ω)

ω
2 cos(ω)

 and thus Fj(1) = φ′j,1(0)

 3 cos(ω)
sin(ω)

ω
− sin2(ω) + 2 cos2(ω)

 .

It follows from the continuity at the vertex O: either ω =
π

2
+ kπ, k ∈ ZZ

(second family of eigenvalues) or

φ′1,1(0) = φ′2,1(0). (19)
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The spectrum in the case n = 2

Either ω = kπ, k ∈ ZZ∗, or ω = (π/2) + kπ, k ∈ ZZ, or (18) and (19) are

imposed. Thus

φ′1,1(0) = φ′1,2(0) = φ′2,1(0) = φ′2,2(0) =: v . (20)

The ”eigenvector” Fᾱ for ᾱ in IDir is: Fᾱ(x) :=

(
0

∂xφᾱ(0)

)
= v

(
0

1

)
.

Thus the dimension of the corresponding eigenspace is one i.e. the geometric

multiplicity of these eigenvalues is one.
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The spectrum in the case n = 2 (2)

The geometric multiplicity of kπ is 2n − 1 for both A0 and Ad (3 pour

n = 2).

The geometric multiplicity of (π/2) + kπ is equal to:
1

3
2n +

2

3
if n is even

and
1

3
(2n − 2) if n is odd for A0 (2 pour n = 2).

It is
1

3
(2n − 1) if n is even and

1

3
(2n − 2) if n is odd for Ad (1 pour n = 2).
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How to determine the simple eigenvalues of A0 and Ad?

We know that F1(1) = F2(1) (it comes from (19)) and have their expression.

Applying the second transmission condition at the vertex O, leads to

multiplying the second component of F1(1) by the number 2. Then

F (1) = eM(ω)F (0). It is:

F (1) := v

 sin(ω)

ω

(
7

cos2(ω)

ω
− 2 sin2(ω)

)
cos(ω)

(
4 cos2(ω)− 5 sin2(ω)

)
.

The condition at the root of the tree leads to:

iε
sin(ω)

ω

(
7

cos2(ω)

ω
− 2 sin2(ω)

)
+ cos(ω)

(
4 cos2(ω)− 5 sin2(ω)

)
= 0 (21)

where ε = 0 for the conservative operator and ε = 1 for the dissipative operator.
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How to determine the simple eigenvalues of A0 and Ad? (2)

Using Euler’s formula with z := e2iω, the characteristic equation (21) with

ε = 0 is:

(z + 1)(4(z + 1)2 + 5(z − 1)2) = 0⇔ 9z3 + 7z2 + 7z + 9 = 0. (22)

The roots of this polynomial give the (algebraically) simple eigenvalues of the

conservative operator A0.
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The eigenvalues in the case n = 2

For both the conservative and dissipative operators, the purely imaginary

eigenvalues: iω2 = ik2π2, k ∈ ZZ∗ and iω2 = i [(π/2) + kπ]2, k ∈ ZZ.

For the conservative operator A0, the values λ = iω2, where z := e2iω

satisfies PA,2(z) = 0, with PA,2(z) := 9z3 + 7z2 + 7z + 9.

For the dissipative operator Ad , the values λ = iω2, where z := e2iω

satisfies PA,2(z) +
1

ω
PB,2(z) = 0, with PA,2(z) := 9z3 + 7z2 + 7z + 9 and

PB,2(z) := 9z3 + z2 − z − 9.
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Localization of the eigenvalues of the dispersive operator in the case n = 2

Let σ be the spectrum of the dissipative operator Ad , then σ = σ1 ∪ σ2 ∪ σ̃2,

where

σ1 = {i(kπ)2 : k ∈ ZZ∗} ∪
{
i
(
kπ + π

2

)2
: k ∈ ZZ

}
σ̃2 = {(λk)k∈S : S is finite, <(λk) < 0}
σ2 = {i(ωj,k)2 : j = 1, 2, 3, k ∈ ZZ, |k| ≥ k0}, k0 being an integer.

Moreover

<(i(ωj,k)2) < 0, ∀i(ωj,k)2 ∈ σ2

and the following asymptotic behaviour holds:

i(ωj,k)2 = i

(
k2π2 + kπ arg(z

(2)
A,j ) +

(arg(z
(2)
A,j ))2

4

)
+ 2πγj + o(1) (23)
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Localization of the eigenvalues of the dispersive operator in the case n = 2
(2)

where γj is the real negative number defined by: γj = −
PB,2(z

(2)
A,j )

2πz
(2)
A,j (PA,2)′(z

(2)
A,j )

.

The polynomial PA,2 admits 3 distinct complex roots z
(2)
A,j 6= 1, j = 1, 2, 3 with

modulus equal to 1. They are:

z
(2)
A,1 = −1 = e iπ, z

(2)
A,2 =

1

9
(1− 4i

√
5) = e−i arctan(4

√
5), z

(2)
A,3 = e i arctan(4

√
5).

Then the set σ2 has two vertical asymptots:

<(λ) = 2πγ1 = −4

5
, <(λ) = 2πγ2 = 2πγ3 = −3

5
.

At last, numerically the eigenvalue of Ad with the largest real part is

λ ≈ −0.37459 + 0.873125i .
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The spectrum for n = 2
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Energy decreasing

Theorem

Let E(t) and H be defined as in the introduction. Let H1 (respectively

H2) be the subspace of H spanned by the ψ1(ω, ·)’s (resp. ψ2(ω, ·)’s),

which are the normalized (in H) eigenfunctions of Ad associated to the

eigenvalues iω2 in σ1 (resp. σ2 ∪ σ̃2).

1 H1 is orthogonal to H2.

2 Let u0 in H and u1
0 its orthogonal projection onto H1. Then E(t)

decreases to E1(0) := ‖u1
0‖

2
H when t tends to +∞. More precisely

there exists a constant C > 0 such that

E(t) ≤ E1(0) + Ce−2βtE2(0)

where −β := sup{iω2∈(σ2∪σ̃2)} <(iω2) < 0.
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Energy decreasing (sketch of the proof)

After it has been proved that the ψ2(ω, ·)’s form a Riesz basis of H2 and since

the ψ1(ω, ·)’s form an orthonormal basis of H1, the initial condition

u0 :=
(
(uᾱ)ᾱ∈I

)
0

is written as a sum of two terms:

u0 := u1
0 + u2

0 =
∑

iω2∈σ1

u1
0(ω, ·)ψ1(ω, ·) +

∑
iω2∈(σ2∪σ̃2)

u2
0(ω, ·)ψ2(ω, ·).

The solution of the boundary value problem given in the introduction is:

u(t) = eAd tu0 := u1(t) + u2(t).

The energy, defined in the introduction, by (11) is: E(t) = E1(t) + E2(t) (since

H1 is orthogonal to H2), with, for any t ≥ 0:

E1(t) := ‖u1‖2
H1

=
∑

iω2∈σ1

∥∥∥u1
0(ω, ·)

∥∥∥2

H1

|e iω
2t |2 = E1(0)

since σ1 contains only purely imaginary eigenvalues.
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Energy decreasing (sketch of the proof (2))

The set σ2 contains the ”large” eigenvalues, which have an algebraic

multiplicity equal to 1, due to Rouché’s Theorem.

The algebraic multiplicity of an eigenvalue in σ̃2 (the finite set of the ”small”

eigenvalues) is also one. This is a consequence of the proof of Bari’s Theorem

(as it is given in a paper by Abdallah/Mercier/Nicaise). Now, since the

ψ2(ω, ·)’s form a Riesz basis of H2, there exists C > 0, such that, for any t ≥ 0:

E2(t) := ‖u2(t)‖2
H2
≤ C

∑
iω2∈σ̃2∪σ2

∥∥∥u2
0(ω, ·)

∥∥∥2

H2

|e iω
2t |2.
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Energy decreasing (sketch of the proof (3))

The set σ2 has at most (n + 1) vertical asymptots: Re(λ) = 2πγj , with

j ∈ {1, . . . , n + 1}. Define j0 by 2πγj0 := sup{j∈{1,...,n+1}}(2πγj) < 0. Thus, if

ω is such that iω2 ∈ σ2:

|e iω
2t |2 ≤ e2πγj0 t .

Since σ̃2 is a finite set, the real part of iω2 is bounded from above by −α < 0 if

iω2 ∈ σ̃2. Thus, if ω is such that iω2 ∈ σ̃2:

|e iω
2t |2 ≤ e−2αt .

Hence the result, where −β is the maximum between 2πγj0 and −2α.

For n = 2, −2β = −0.74918 is the energy decay rate.
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Open questions

dependence of β on n

generalization to a non-binary tree-shaped network...
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