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Photo-Acoustic effect

Photo-Acoustic effect (Bell, 1880) : can we hear the
light or can we see the sound ?

I Laser pulse

I Heat the absorbers

I Thermoelastic expansion of
the absorbers

I Propagation of the acoustic
wave in the tissue

I Detection of the acoustic
waves at the boundary
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Photo-Acoustic effect

I In diffusive regime, optical radiation (laser) is modeled by :{
−∇ · Da(x)∇u + µa(x)u = 0 x ∈ Ω
u = g x ∈ ∂Ω

I Acoustic propagation is modeled by :
∂2p(x,t)
∂t2

− c2(x)∆p(x, t) = 0 x ∈ Rn, t ∈ R+

p(x, 0) = µa(x)u(x) x ∈ Rn

∂p
∂t (x, 0) = 0 x ∈ Rn

I Measurements : p(x , t) x ∈ ∂Ω, t ∈ (0,T ].
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Photo-Acoustic : inversion
Inversion :
p(x, t) x ∈ ∂Ω, t ∈ (0,T ] −→ (Da(x), µa(x), c(x)) , x ∈ Ω.

Two steps inversion :
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Photo-Acoustic : inversion

Two steps : acoustic inversion and optic inversion



Photo-Acoustic : the physicists point of view
Usually the physicists assume that c(x) is constant and stop at
the first step : why ?

In fact the image p(x, 0) = µa(x)u(x) has in general the same
singularities as µa(x).

I µa, Da et c are piecewise constants.

I Ω =]− 1, 1[2 and measurements on
∂Ω× (0,T ).

I laser excitations : g1(x , y) = x + 4.
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Photo-Acoustic : the physicists point of view

The drawbacks of the physicists approach :
I the approach also fails to provide the correct values of the

absorption parameter.
I to distinguish between the singularities of the speed and the

initial pressure
Acoustic inversion with g1(x) and white noise of 5% :

L2 error= 0.20 L2 error = 0.07



Photo-Acoustic : the mathematicians point of view
Most of the mathematical works reconstruct the speed-initial
pressure and the optical parameters separately.

I acoustic inversion : M. Bergounioux, P. Kuchment, L.
Kunyansky, L. Qian, P. Stefanov, G. Uhlmann, ...
- assuming the speed a constant, to determine the initial
pressure
- assuming the speed is known, to reconstruct the initial
pressure
- assuming the speed is close to a constant to recover the
perturbation in the speed and the initial pressure

I optic inversion : G. Alessandrini, S. Arridge, H. Ammari, G.
Bal, Y. Capdebosq, J. Schotland, O. Scherzer, Ber, K. Ren,...
- assuming the internal data without critical points to recover
the optical parameters
- weighted stability estimates and general cases without
assumption on the absence of critical points



Photo-Acoustic : the mathematicians point of view
acoustic inversion : Time Reversal -Neumann Series
Define Λ by Λp(x, 0) = p(x, t)|∂Ω

∂2v(x,t)
∂t2

− c2(x)∆v(x, t) = 0 x ∈ Ω, t ∈ (0,T )
v(x,T ) = ϕT x ∈ Ω
∂v
∂t (x,T ) = 0 x ∈ Ω
v(x, t) = p(x, t) x ∈ ∂Ω, t ∈ (0,T ),

where {
−∆ϕT (x) = 0 x ∈ Ω,
ϕT (x) = p(x,T ) x ∈ ∂Ω,

Define Ap(x, t)|∂Ω = v(x, 0), x ∈ Ω.

Theorem (Uhlmann-Stefanov)
Let Ω be non-trapping, and assume T > T0. Then AΛ = Id − K ,
where K is a compact operator satisfying ‖K‖ < 1.



Photo-Acoustic : the mathematicians point of view

optic inversion : Unique Continuation
Assume that

Hj(x) = µa(x)uj(x), x ∈ Ω j = 1, 2,

are given, where uj , j = 1, 2, are the laser intensities generated by
two different illuminations gj , j = 1, 2.

Theorem (Alessandrini 15)

If ‖Hj − H̃j‖L2(Ω) ≤ ε and ‖Da − D̃a‖L∞(∂Ω) ≤ ε′, then

‖Da − D̃a‖L2(Ω) + ‖µa − µ̃a‖L2(Ω) ≤ C (ε+ ε′)δ,

where C and δ ∈ (0, 1) do not depend on ε and ε′.



Photo-Acoustic : the mathematicians point of view
The guidelines of the proof [G. Alessandrini and al. (2015)] :

I Let V = u2
u1

= H2
H1

is a solution to [Bal-Uhlmann (2010)]
−∇ ·


σ(x)︷ ︸︸ ︷

Da(x)u2
1 ∇V

 = 0 x ∈ Ω

V = η x ∈ ∂Ω.

There exists C > 0 so that, for any σ, σ̃ ∈ E2[G. Alessandrini
(1986)],

‖(σ − σ̃)|∇V |2‖L1(Ω) ≤ C
(
‖V − Ṽ ‖1/3L2(Ω) + ‖σ − σ̃‖L∞(∂Ω)

)
.

I There exist C > 0 and c > 0, so that, for any V ∈ S,

Cr c ≤ ‖∇V ‖L2(B(x0,r)), x0 ∈ Ωr0 , 0 < r < r0.

I 1
u1

is the solution to{
−∇ · (σ∇W ) = −H1 x ∈ Ω
W = 1

g1
x ∈ ∂Ω.
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Photo-Acoustic penetration depth
The main limitation of PA imaging is the limited penetration depth
when high resolution is desired.
For a resolution of < 1mm, only 5 ∼ 6 cm-penetration can be
achieved.
FUJIFILM VisualSonics commercial products : photo-acoustic
penetration depth is 1cm.
Nevertheless, PA imaging still provides excellent
penetration-to-resolution ratio.
Recall that the optical resolution can be achieved with a
penetration depth of only 1mm !

A photo-acoustic imaging device



Photo-Acoustic : a realistic model
-Let Ω = (0, L)× (0,H) be the domain occupied by the sample.
- Let Γm = (0, L)× {y = H} be the accessible part of the sample
and Γ0 = (0, L)× {y = 0}.
- Assume c(y) ≥ cm > 0 to be a known smooth function that only
depends on the vertical variable y .
-Assume Da(y) ≥ D0 > 0 and µa(y) ≥ µ0 > 0 are smooth
functions that depend only on the vertical variable y .



Photo-Acoustic : a realistic model
I The propagation of the optical wave in the sample is modeled

by the following diffusion equation
−∇ · Da(y)∇u(x) + µa(y)u(x) = 0 x ∈ Ω,
u(x) = g(x) x ∈ Γm,
u(x) = 0 x ∈ Γ0,
u(0, y) = u(L, y) y ∈ (0,H),

I The pressure wave p(x, t) generated by the photoacoustic
effect satisfies
∂ttp(x, t) = c2(y)∆p(x, t) x ∈ Ω, t ≥ 0,
∂νp(x, t) + β∂tp(x, t) = 0 x ∈ Γm, t ≥ 0,
p(x, t) = 0 x ∈ Γ0, t ≥ 0,
p((0, y), t) = p((L, y), t) y ∈ (0,H), t ≥ 0,
p(x, 0) = f0(x) = µ(y)u(x), ∂tp(x, 0) = f1(x), x ∈ Ω,

where β > 0 is the damping coefficient related to the reflexion
by the transducers,

I Measurements : p(x, t) x ∈ Γm, t ∈ (0,T ].
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Photo-Acoustic : a realistic model

Notice that in the first model of photo-acoustic imaging f0(x) is
given by µa(y)u(x) and f1 = 0 inside Ω.

Here f1(x) is considered as the correction of the photo-acoustic
effect at the interface Γm, and is assumed to satisfy

∆f1(x) = 0, x ∈ Ω,
f1(x) = − 1

β∂ν f0(x) x ∈ Γm,

f1(x) = 0 x ∈ Γ0,
f1(0, y) = f1(L, y) y ∈ (0,H).

(1)

Assume that c(y) is given, our objective is to reconstruct µa(y)
and D(y) for y ∈ (0,H) from the data p(x, t), x ∈ Γm, t ∈ (0,T ].

p(x, t), x ∈ Γm, t ∈ (0,T ] −→ (µa(y),D(y)), y ∈ (0,H).



Photo-Acoustic : a realistic model
Let

OM = {(D, µ) ∈ C 2([0,H])2; D > D0, µ > µ0; ‖µ‖C2 , ‖D‖C2 ≤ M},

where D0 > 0, µ0 > 0 and M > max(D0, µ0) are fixed real
constants.

Let ϕk(x), k ∈ N, be the Fourier orthonormal real basis of L2(0, L)
satisfying −ϕ′′k(y) = λ2

kϕk(y), with λk = 2kπ
L .

Let (D, µa), (D̃, µ̃a) in OM and c(y) ∈W 1,∞(0,H) with
0 < cm ≤ c−2(y) and set θ =

√
‖c−2‖L∞ .

Let ki , i = 1, 2 be two distinct integers, and denote uki , i = 1, 2
and ũki , i = 1, 2 the solutions to the system for gi = ϕki , i = 1, 2,
with coefficients (D, µa) and (D̃, µ̃a) respectively.

Assume that D(H) = D̃(H), D ′(H) = D̃ ′(H), and k1 < k2, and k1
is large enough.



Theorem (Ren-T)
Then for T > 2θH, δa ∈ (0, 1

8 ) and δd ∈ (0, 1
12 ), there exist two

constants Ca,Cd > 0, such that the following stability estimates hold.∫ H

0
|µa − µ̃a|(y)dy ≤

Ca

(
2∑

i=1

∫ T

0

(
CM

T − 2θH
+ β

)
‖∂tpi − ∂t p̃i‖2L2(Γm) + ‖∂xpi − ∂x p̃i‖2L2(Γm)dt

)δa
,

and ∫ H

0
|D − D̃|(y)dy ≤

Cd

(
2∑

i=1

∫ T

0

(
CM

T − 2θH
+ β

)
‖∂tpi − ∂t p̃i‖2L2(Γm) + ‖∂xpi − ∂x p̃i‖2L2(Γm)dt

)δd
,

where

CM = He
∫ H
0 c2(s)|∂y (c−2(s))|ds(c−2(H) + β2).



Photo-Acoustic : the first step
Theorem (Ren-T)

Assume that c(y) ∈W 1,∞(0, 1) with 0 < cm ≤ c−2(y). Let
θ =

√
‖c−2‖L∞ and T > 2θH. Then∫

Ω
|∇f0(x)|2dx ≤

(
CM

T − 2θH
+ β

)∫ T

0
‖∂tp(x, t)‖2L2(Γm)dt

+

∫ T

0
‖∂xp(x, t)‖2L2(Γm)dt,

∫
Ω
c−2(y)|f1(x)|2dx ≤

(
CM

T − 2θH
+ β

)∫ T

0
‖∂tp(x, t)‖2L2(Γm)dt

+

∫ T

0
‖∂xp(x, t)‖2L2(Γm)dt,

with

CM = He
∫ H
0 c2(s)|∂y (c−2(s))|ds(c−2(H) + β2).



Photo-Acoustic : the first step
Since fj(x) is L-periodic in the y variable, it has the following
discrete Fourier decomposition

fj(x , y) =
∑
k∈N

fjk(y)ϕk(x) (x , y) ∈ Ω,

where ϕk(x), k ∈ N, is the orthonormal real basis of L2(0, L).

The pressure is L-periodic in the y variable, it also has the following
discrete Fourier decomposition

p(x , y , t) =
∑
k∈N

pk(y , t)ϕk(x) (x , y) ∈ Ω, t > 0,

where pk(y , t) satisfy
1

c2(y)
∂ttp(y , t) = ∂yyp(y , t)− λ2

kp(y , t), y ∈ (0,H), t ≥ 0,
∂yp(H, t) + β∂tp(H, t) = 0 t ≥ 0,
p(0, t) = 0 t ≥ 0,
p(y , 0) = f0k(y), ∂tp(y , 0) = f1k(y), y ∈ (0,H),



Lemma

Let θ =
√
‖c−2‖L∞ and assume T > 2θH. Then

λ2
k

∫ H

0
|f0k(y)|2dy ≤

(
CM

T − 2θH
+ β

)∫ T

0
|∂tpk(H, t)|2dt

+λ2
k

∫ T

0
|pk(H, t)|2dt,

∫ H

0
c−2(y)|f1k(y)|2 + |f ′0k(y)|2dy ≤(

CM

T − 2θH
+ β

)∫ T

0
|∂tpk(H, t)|2dt + λ2

k

∫ T

0
|pk(H, t)|2dt,

for k ∈ N∗.

The proof is based on techniques developed in R. Dager and E. Zuazua.
Wave propagation, observation and control in 1d flexible multi-structures.
Springer Science & Business Media, 2006.



Photo-Acoustic : the second step

Since u(x) is L-periodic in the y variable, it has the following
discrete Fourier decomposition

u(x , y) =
∑
k∈N

uk(y)ϕk(x) (x , y) ∈ Ω,

where ϕk(x), k ∈ N, is the orthonormal real basis of L2(0, L). The
real function uk(y) satisfies the following one dimensional elliptic
equation{
− (D(y)u′(y))′ + (µa(y) + λ2

kD(y))u(y) = 0 y ∈ (0,H),
u(H) = gk , u(0) = 0,

where gk is the Fourier coefficient of g in the same basis, that is

g(x) =
∑
k∈N

gkϕk(x) x ∈ (0, L).



Photo-Acoustic : the second step

Let hi (y) = µa(y)uki (y),, and hi (y) = µ̃a(y)ũki (y), i = 1, 2.

Theorem (Ren-T)

For δa ∈ (0, 1
4) and δd ∈ (0, 1

6), there exist two constants Ca > 0
and and Cd > 0 that only depends on (µ0,D0, k1, k2,M, L,H)
respectively such that the following stability estimates hold.∫ H

0
|µa − µ̃a|(y)dy ≤ Ca

(
‖h1 − h̃1‖C1 + ‖h2 − h̃2‖C1

)δa
,

and∫ H

0
|D − D̃|(y)dy ≤ Cd

(
‖h1 − h̃1‖C1 + ‖h2 − h̃2‖C1

)δd
.



Conclusion and remarks

We derived global stability estimates for the reconstruction of the
optical parameters from measurement of the acoustic waves on the
boundary.
The results show that the two steps of the inversion are stable if we
consider parameters that only depend on the vertical variable to the
boundary where the measurements are taken.

I to reconstruct also the speed c(y) (we need further
measurements).

I to generalize the results to dimension three (it can be reduced
to a 2D problem).

I to consider the case where β is a function of x (supported at
the position of the transducers).

I to propose an algorithm that solve both inversions.



Thanks !


