State estimation for linear age-structured population diffusion models

Karim Ramdani, Marius Tucsnak and Julie Valein

Valenciennes, Stability of non-conservative systems July 5, 2016

The problem in a glance

A classical model for age-space structured populations is given by

$$
\begin{array}{ll}
\frac{\partial p}{\partial t}(a, x, t)+\frac{\partial p}{\partial a}(a, x, t) & \\
\quad=-\mu(a) p(a, x, t)+k \Delta p(a, x, t), & a \in\left(0, a^{*}\right), x \in \Omega, t>0 \\
p(a, x, t)=0, & a \in\left(0, a^{*}\right), x \in \partial \Omega, t>0 \\
p(a, x, 0)=p_{0}(a, x), & a \in\left(0, a^{*}\right), x \in \Omega, \\
p(0, x, t)=\int_{0}^{a^{*}} \beta(a) p(a, t, x) \mathrm{d} a, & x \in \Omega, t>0 .
\end{array}
$$

- $p(a, x, t)$: distribution density of the population of age a at spatial position x at time t;
- a^{*} : maximal life expectancy;
- k : diffusion coefficient;
- $\mu(a), \beta(a)$: death and birth rates (independent of x);

The problem in a glance

Figure: Typical birth and death rates.

The problem in a glance

Estimation problem
Knowing the output $y(t):=\left.p\right|_{\left(a_{1}, a_{2}\right) \times \mathcal{O}}$ (but assuming that p_{0} is unknown), estimate $p(a, x, T)$ for all $a \in\left(0, a^{*}\right)$ and $x \in \Omega$, as $T \rightarrow+\infty$.

The problem in a glance

$$
\left\{\begin{array}{l}
\dot{p}(t)=A p(t), \\
p(0)=p_{0}, \\
y(t)=C p(t), \quad t \in(0, T) \\
\hline
\end{array}\right.
$$

where $C \in \mathcal{L}(X, Y), Y:=L^{2}\left(\left(a_{1}, a_{2}\right) \times \mathcal{O}\right)$ is defined by

$$
C \varphi:=\left.\varphi\right|_{\left(a_{1}, a_{2}\right) \times \mathcal{O}} \text { for all } \varphi \in X
$$

We introduce the Luenberger observer

$$
\left\{\begin{array}{l}
\dot{\hat{p}}(t)=A \hat{p}(t)+L(C \hat{p}(t)-y(t)), \quad t \in(0, T) \\
\hat{p}(0)=0
\end{array}\right.
$$

where $L \in \mathcal{L}(Y, X)$ is a linear operator to be defined.
Then the error $e:=\hat{p}-p$ satisfies

$$
\left\{\begin{array}{l}
\dot{e}(t)=(A+L C) e(t), \quad t \in(0, T) \\
e(0)=-p_{0} .
\end{array}\right.
$$

The problem in a glance

Goal

Find L such that $e^{t(A+L C)}$ exponentially stable (detectability).

The problem in a glance

Goal

Find L such that $e^{t(A+L C)}$ exponentially stable (detectability).

How?

Spectrum of A : an infinite number of stable modes and a finite number of unstable modes.

Design an infinite dimensional Luenberger observer via a finite dimensional stabilizing operator.

Selective bibliography

- Population Dynamics
- Semigroup properties: Song et al., Chan, Guo, Li et al., Langlais, Walker
- Controllability problems: Ainseba, Anita, lannelli, Langlais, Echarroudi, Maniar, Traoré, Kavian
- Inverse problems: Traoré, Rundell, Di Blasio, Lorenzi, Perasso, Picart
- Numerical aspects: Lopez, Trigiante, Milner, Kim, Huyer, Ayati, Dupont, Pelovska, Gerardo-Giorda
- State Space Splitting
- Abstract setting: Russel, Triggiani, Jacobson \& Nett, Jacob \& Zwart
- Stabilization of PDE: Barbu \& Triggiani, Raymond et al., Badra \& Takahashi

Outline

(1) Spectral properties of the operator
(2) Detectability
(3) Application: observer design for populations dynamics
(4) Numerical results

Outline

(1) Spectral properties of the operator
(2) Detectability
(3) Application: observer design for populations dynamics

4 Numerical results

The model

$$
\begin{cases}\frac{\partial p}{\partial t}(a, x, t)=-\frac{\partial p}{\partial a}(a, x, t) & \\ \quad-\mu(a) p(a, x, t)+k \Delta p(a, x, t), & a \in\left(0, a^{*}\right), x \in \Omega, t>0 \\ p(a, x, t)=0, & a \in\left(0, a^{*}\right), x \in \partial \Omega, t>0 \\ p(a, x, 0)=p_{0}(a, x), & a \in\left(0, a^{*}\right), x \in \Omega \\ p(0, x, t)=\int_{0}^{a^{*}} \beta(a) p(a, t, x) \mathrm{d} a, & x \in \Omega, t>0\end{cases}
$$

Assumptions

Typical assumptions on the birth and death rates β and μ :

- $\beta \in L^{\infty}\left(0, a^{*}\right), \beta \geqslant 0$ a.e. in $\left(0, a^{*}\right)$;
- $\mu \in L_{\text {loc }}^{1}\left(0, a^{*}\right), \mu \geqslant 0$ a.e. in $\left(0, a^{*}\right)$ and

$$
\lim _{a \rightarrow a^{*}} \int_{0}^{a} \mu(s) \mathrm{d} s=+\infty
$$

We also introduce the function

$$
\Pi(a):=\exp \left(-\int_{0}^{a} \mu(s) \mathrm{d} s\right)
$$

which represents the probability to survive at age $a>0$. In particular

$$
\lim _{a \rightarrow a^{*}} \Pi(a)=0
$$

First order formulation

We introduce the Hilbert space $X:=L^{2}\left(\left(0, a^{*}\right) \times \Omega\right)$ and let A be defined by:

$$
\begin{aligned}
\mathcal{D}(A)= & \left\{\varphi \in X \cap L^{2}\left(\left(0, a^{*}\right), H_{0}^{1}(\Omega)\right) \left\lvert\,-\frac{\partial \varphi}{\partial a}-\mu \varphi+k \Delta \varphi \in X\right. ;\right. \\
& \left.\varphi(a, \cdot)\right|_{\partial \Omega}=0 \text { for almost all } a \in\left(0, a^{*}\right) ; \\
& \left.\varphi(0, x)=\int_{0}^{a^{*}} \beta(a) \varphi(a, x) \text { d } a \text { for almost all } x \in \Omega\right\} \\
& A \varphi=-\frac{\partial \varphi}{\partial a}-\mu \varphi+k \Delta \varphi, \quad \forall \varphi \in \mathcal{D}(A) .
\end{aligned}
$$

Well-posedness

The population dynamics problem reads then

$$
\left\{\begin{array}{l}
\dot{p}(t)=A p(t), \quad t>0 \\
p(0)=p_{0}
\end{array}\right.
$$

Theorem (Chan and Guo, 1989)

- A is the infinitesimal generator of a $C_{0}-$ semigroup $e^{t A}$ on X.
- If $p_{0} \in X$, there exists a unique solution $p \in C([0, \infty), X)$.
- If $p_{0} \in \mathcal{D}(A)$, there exists a unique solution $p \in C([0, \infty), \mathcal{D}(A)) \cap C^{1}([0, \infty), X)$.

Diffusion free model

McKendrick-Von Foerster model (1959) describes the diffusion free case ($k=0$) :

$$
\left\{\begin{aligned}
\frac{\partial p}{\partial t}(a, t) & =-\frac{\partial p}{\partial a}(a, t)-\mu(a) p(a, t), & & a \in\left(0, a^{*}\right), t>0 \\
p(a, 0) & =p_{0}(a), & & a \in\left(0, a^{*}\right) \\
p(0, t) & =\int_{0}^{a^{*}} \beta(a) p(a, t) \mathrm{d} a, & & t>0 .
\end{aligned}\right.
$$

Diffusion free model

The population operator A_{0} corresponding to the above system is defined as follows

$$
\begin{gathered}
\mathcal{D}\left(A_{0}\right)=\left\{\varphi \in L^{2}\left(0, a^{*}\right) \left\lvert\,-\frac{\mathrm{d} \varphi}{\mathrm{~d} a}-\mu \varphi \in L^{2}\left(0, a^{*}\right)\right.\right. \\
\left.\varphi(0)=\int_{0}^{a^{*}} \beta(a) \varphi(a) \mathrm{d} a\right\} \\
A_{0} \varphi=-\frac{\mathrm{d} \varphi}{\mathrm{~d} a}-\mu \varphi, \quad \forall \varphi \in \mathcal{D}\left(A_{0}\right)
\end{gathered}
$$

Then the McKendrick-Von Foerster model reads then

$$
\left\{\begin{array}{l}
\dot{p}(t)=A_{0} p(t), \quad t>0 \\
p(0)=p_{0}
\end{array}\right.
$$

Diffusion free model

Theorem (Song et al., 1982)
(1) A_{0} has compact resolvent and its spectrum is constituted of a countable (infinite) set of isolated eigenvalues with finite algebraic multiplicity.
(2) The eigenvalues $\left(\lambda_{n}^{0}\right)_{n \geqslant 1}$ of A_{0} (counted without multiplicity) the (complex) solutions of the characteristic equation

$$
F(\lambda):=\int_{0}^{a^{*}} \beta(a) \Pi(a) e^{-\lambda a} \mathrm{~d} a=1
$$

(3) The eigenvalues $\left(\lambda_{n}^{0}\right)_{n \geqslant 1}$ are of geometric multiplicity one:

$$
\varphi_{n}^{0}(a)=e^{-\lambda_{n}^{0} a} \Pi(a)=e^{-\lambda_{n}^{0} a-\int_{0}^{a} \mu(s) \mathrm{d} s}
$$

(1) Every vertical strip of the complex plane contains a finite number of eigenvalues of A_{0}.

Diffusion free model

Theorem (Song et al., 1982)
The operator A_{0} has a unique real eigenvalue λ_{1}^{0}. Moreover:
(1) λ_{1}^{0} is of algebraic multiplicity one;
(2) $\lambda_{1}^{0}>0(<0) \Longleftrightarrow F(0)=\int_{0}^{a^{*}} \beta(a) \Pi(a) \mathrm{d} a>1(<1)$;
(3) λ_{1}^{0} is a real dominant eigenvalue:

$$
\lambda_{1}^{0}>\operatorname{Re}\left(\lambda_{n}^{0}\right), \quad \forall n \geqslant 2
$$

Back to the problem with diffusion

$$
\begin{aligned}
\mathcal{D}(A)= & \left\{\varphi \in X \cap L^{2}\left(\left(0, a^{*}\right), H_{0}^{1}(\Omega)\right) \left\lvert\,-\frac{\partial \varphi}{\partial a}-\mu \varphi+k \Delta \varphi \in X\right. ;\right. \\
& \left.\varphi(a, \cdot)\right|_{\partial \Omega}=0 \text { for almost all } a \in\left(0, a^{*}\right) ; \\
& \left.\varphi(0, x)=\int_{0}^{a^{*}} \beta(a) \varphi(a, x) \mathrm{d} a \text { for almost all } x \in \Omega\right\} \\
& A \varphi=-\partial_{a} \varphi-\mu \varphi+k \Delta \varphi, \quad \forall \varphi \in \mathcal{D}(A) .
\end{aligned}
$$

Let $0<\lambda_{1}^{D}<\lambda_{2}^{D} \leqslant \lambda_{3}^{D} \leqslant \cdots$ be the increasing sequence of eigenvalues of $-k \Delta$ with Dirichlet boundary conditions and let $\left(\varphi_{n}^{D}\right)_{n \geqslant 1}$ be a corresponding orthonormal basis of $L^{2}(\Omega)$.

Spectral properties

Theorem (Chan and Guo, 1989)

(1) A has compact resolvent and its (pure point) spectrum is

$$
\sigma(A)=\left\{\lambda_{i}^{0}-\lambda_{j}^{D} \mid i, j \in \mathbb{N}^{*}\right\}
$$

(2) The eigenspace associated to an eigenvalue λ of A is given by

$$
\operatorname{Span}\left\{\varphi_{i}^{0}(a) \varphi_{j}^{D}(x)=e^{-\lambda_{i}^{0} a} \Pi(a) \varphi_{j}^{D}(x) \mid \lambda_{i}^{0}-\lambda_{j}^{D}=\lambda\right\} .
$$

(3) The real eigenvalue λ_{1} of A is dominant:

$$
\lambda_{1}=\lambda_{1}^{0}-\lambda_{1}^{D}>\operatorname{Re}(\lambda), \quad \forall \lambda \in \sigma(A), \lambda \neq \lambda_{1}
$$

(9) λ_{1} is a simple eigenvalue, the corresponding eigenspace being generated by

$$
\varphi_{1}(a, x):=\varphi_{1}^{0}(a) \varphi_{1}^{D}(x)=e^{-\lambda_{1}^{0} a} \Pi(a) \varphi_{1}^{D}(x)
$$

Spectral properties

Figure: Spectra of A_{0} and $-k \Delta$.

In this example, there is only 1 unstable eigenvalue λ_{1} :

$$
\begin{gathered}
\operatorname{Re}\left(\lambda_{n}^{0}\right)<\lambda_{1}^{D}<\lambda_{1}^{0}<\lambda_{2}^{D}, \quad \forall n \geqslant 2 \\
\Longrightarrow \quad \lambda_{1}=\lambda_{1}^{0}-\lambda_{1}^{D}>0, \quad \operatorname{Re}\left(\lambda_{n}\right)<0, \quad \forall n \geqslant 2
\end{gathered}
$$

Compactness \& Stability

Proposition (Chan and Guo, 1989)

The semigroup $e^{t A}$ generated on X by A is compact for $t \geqslant a^{*}$.
This implies in particular that (see Zabczyk, 1975)

$$
\omega_{a}(A)=\omega_{0}(A)
$$

where $\omega_{a}(A):=\lim _{t \rightarrow+\infty} t^{-1} \ln \left\|e^{t A}\right\|$ denotes the growth bound of $e^{t A}$ and $\omega_{0}(A):=\sup \{\operatorname{Re} \lambda \mid \lambda \in \sigma(A)\}$ the spectral bound of A.

Consequence

The above condition ensures that the exponential stability of $e^{t A}$ is equivalent to the condition

$$
\omega_{0}(A)=\sup \{\operatorname{Re} \lambda \mid \lambda \in \sigma(A)\}<0
$$

Outline

(1) Spectral properties of the operator
(2) Detectability
(3) Application: observer design for populations dynamics

4 Numerical results

Abstract framework

Consider

- $A: \mathcal{D}(A) \rightarrow X$ with compact resolvent on a Hilbert space X generating a C_{0}-semigroup in X,
- $C \in \mathcal{L}(X, Y)$, where Y is another Hilbert space.

We assume
(A1) A admits M eigenvalues (counted without multiplicities) with real part greater or equal than 0 :

$$
\cdots \leqslant \operatorname{Re} \lambda_{M+2} \leqslant \operatorname{Re} \lambda_{M+1}<0 \leqslant \operatorname{Re} \lambda_{M} \leqslant \cdots \leqslant \operatorname{Re} \lambda_{2} \leqslant \operatorname{Re} \lambda_{1} .
$$

(A2) We have the equality

$$
\omega_{a}(A)=\omega_{0}(A)
$$

Detectability

Definition

The pair (A, C) is detectable if there exists $L \in \mathcal{L}(Y, X)$ such that $(A+L C)$ generates an exponentially stable semigroup.

We are going to show that:
Spectral observability of unstable eigenfunctions of A

$$
\left(A \varphi=\lambda \varphi \text { for } \lambda \in \Sigma_{+} \text {and } C \varphi=0\right) \quad \Longrightarrow \quad \varphi=0
$$

$$
\Downarrow
$$

Detectability of the finite dimensional system $\left(A^{+}, C^{+}\right)$

$$
\Downarrow
$$

Detectability of the infinite dimensional system (A, C)

Projection operator

We set $\Sigma_{+}:=\left\{\lambda_{1}, \ldots, \lambda_{M}\right\}$ and let Γ_{+}be a positively oriented curve enclosing Σ_{+}but no other point of the spectrum of A. Let $P_{+}: X \rightarrow X$ be the projection operator defined by

$$
P_{+}:=-\frac{1}{2 \pi i} \int_{\Gamma_{+}}(\xi-A)^{-1} d \xi
$$

Splitting

We set $X_{+}:=P_{+} X$ and $X_{-}:=\left(I-P_{+}\right) X$, and then P_{+}provides the following decomposition of X

$$
X=X_{+} \oplus X_{-}
$$

Following Russell and Triggiani, we can decompose our system into two subsystems :

- a finite dimensional system to be stabilized,
- a stable infinite dimensional system.

More precisely, X_{+}and X_{-}are invariant subspaces under A (since A and P_{+}commute) and the spectra of the restricted operators $\left.A\right|_{X_{+}}$and $\left.A\right|_{X_{-}}$are respectively Σ_{+}and $\Sigma_{-}:=\sigma(A) \backslash \Sigma_{+}$. We also define

$$
\begin{aligned}
& A_{+}:=\left.A\right|_{\mathcal{D}(A) \cap X_{+}}: \mathcal{D}(A) \cap X_{+} \longrightarrow X_{+} \\
& A_{-}:=\left.A\right|_{\mathcal{D}(A) \cap X_{-}}: \mathcal{D}(A) \cap X_{-} \longrightarrow X_{-}
\end{aligned}
$$

Splitting

If A is diagonalizable, the space $X_{+}=P_{+} X$ is the finite dimensional space spanned by the eigenfunctions of A associated to the unstable eigenvalues:

$$
X_{+}=\bigoplus_{k=1}^{M} \operatorname{Ker}\left(A-\lambda_{k}\right)
$$

and

$$
\operatorname{dim} X_{+}=\sum_{k=1}^{M} m_{k}^{\mathrm{G}}
$$

where $m_{k}^{\mathrm{G}}:=\operatorname{dim} \operatorname{Ker}\left(A-\lambda_{k}\right)$ is the geometric multiplicity of λ_{k}.

Splitting

In the general case, the space X_{+}is the finite dimensional space spanned by the generalized eigenfunctions of A associated to the unstable eigenvalues:

$$
X_{+}=\bigoplus_{k=1}^{M} \operatorname{Ker}\left(A-\lambda_{k}\right)^{m_{k}^{\mathrm{P}}}
$$

where m_{k}^{P} is the multiplicity of the pole λ_{k} in the resolvent $(A-\lambda)^{-1}$.
The space $\operatorname{Ker}\left(A-\lambda_{k}\right)^{m_{k}^{\mathrm{P}}}$ is called the generalized eigenspace associated to λ_{k}. Its dimension m_{k}^{A} is the algebraic multiplicity of λ_{k}.

$$
\operatorname{dim} X_{+}=\sum_{k=1}^{M} m_{k}^{\mathrm{A}}
$$

Detectability result : from L_{+}to L

Theorem

Let

- $Q_{+}: Y \rightarrow Y_{+}:=C X_{+}$be the orthogonal projection operator from Y to Y_{+},
- $i_{X_{+}}: X_{+} \rightarrow X$ be the embedding operator from X_{+}into X.

Set

$$
C_{+}=C i_{X_{+}} \in \mathcal{L}\left(X_{+}, Y_{+}\right)
$$

and assume that the finite dimensional projected system $\left(A_{+}, C_{+}\right)$ is detectable through $L_{+} \in \mathcal{L}\left(Y_{+}, X_{+}\right)$.
Then, the infinite dimensional system (A, C) is detectable through

$$
L=i_{X_{+}} L_{+} Q_{+} \in \mathcal{L}(Y, X)
$$

Proof

For $L \in \mathcal{L}(Y, X)$, consider the system

$$
\dot{z}(t)=(A+L C) z(t)
$$

If we write $z=z_{+}+z_{-}$where $z_{+}:=P_{+} z$ and $z_{-}:=\left(I-P_{+}\right) z$, by applying P_{+}and $\left(I-P_{+}\right)$to the above equation, we obtain a corresponding splitting of the system into two subsystems:

$$
\left\{\begin{array}{l}
\dot{z}_{+}(t)=A_{+} z_{+}(t)+P_{+} L C z(t) \\
\dot{z}_{-}(t)=A_{-} z_{-}(t)+\left(I-P_{+}\right) L C z(t)
\end{array}\right.
$$

Taking $L=i_{X_{+}} L_{+} Q_{+}$and using the identities $P_{+} i_{X_{+}}=\operatorname{ld}_{X_{+}}$and $\left(I-P_{+}\right) i_{X_{+}}=0$, we obtain

$$
\left\{\begin{array}{l}
\dot{z}_{+}(t)=A_{+} z_{+}(t)+L_{+} Q_{+} C z(t) \\
\dot{z}_{-}(t)=A_{-} z_{-}(t)
\end{array}\right.
$$

Proof

It follows from assumption (A2) that z_{-}is exponentially stable:

$$
\left\|z_{-}(t)\right\| \leqslant K e^{-\omega_{-} t}\left\|z_{-}(0)\right\|
$$

where $0<\omega_{-} \leqslant-\operatorname{Re} \lambda_{M+1}$. On the other hand, by using $C_{+}=Q_{+} C i_{X_{+}}$and since $i_{X_{+}} z_{+}=z_{+}$, we have

$$
\begin{aligned}
\dot{z}_{+}(t) & =A_{+} z_{+}(t)+L_{+} Q_{+} C\left(z_{+}(t)+z_{-}(t)\right) \\
& =A_{+} z_{+}(t)+L_{+} Q_{+} C i_{X_{+}} z_{+}(t)+L_{+} Q_{+} C z_{-}(t) \\
& =\left(A_{+}+L_{+} C_{+}\right) z_{+}(t)+L_{+} Q_{+} C z_{-}(t)
\end{aligned}
$$

Proof

Using Duhamel's formula, we get

$$
z_{+}(t)=\mathbb{T}_{t}^{+} z_{+}(0)+\int_{0}^{t} \mathbb{T}_{t-s}^{+} L_{+} Q_{+} C z_{-}(s) d s
$$

where \mathbb{T}_{t}^{+}is the semigroup generated by $A_{+}+L_{+} C_{+}$, which is exponentially stable by the detectability assumption, i.e. there exists $\omega_{+}>0$ such that

$$
\left\|\mathbb{T}_{t}^{+} x\right\| \leqslant K e^{-\omega_{+} t}\|x\| \quad \forall x \in X_{+}, \forall t>0
$$

Combined with exponential stability of z_{-}, this yields

$$
\left\|z_{+}(t)\right\| \leqslant K\left\{e^{-\omega_{+} t}\left\|z_{+}(0)\right\|+\left\|L_{+}\right\|\|C\| \int_{0}^{t} e^{-\omega_{+}(t-s)} e^{-\omega_{-} s}\left\|z_{-}(0)\right\| d s\right\}
$$

and consequently

$$
\left\|z_{+}(t)\right\| \leqslant K\left(e^{-\omega_{+} t}+\left\|L_{+}\right\|\|C\| \frac{e^{-\omega_{+} t}-e^{-\omega_{-} t}}{\omega_{-}-\omega_{+}}\right)\left\|z_{0}\right\| .
$$

Proof

It is then sufficient to choose ω_{+}small enough such that $0<\omega_{+}<\omega_{-}$to have the exponential decay of $t \mapsto z_{+}(t)$:

$$
\left\|z_{+}(t)\right\| \leqslant K e^{-\omega_{+} t}\left\|z_{0}\right\|, \quad t>0
$$

We have thus proved the exponential decay of $z=z_{+}+z_{-}$.

Hautus test

The following result provide a sufficient condition of Hautus type for the detectability of the finite dimensional projected system $\left(A_{+}, C_{+}\right)$.

Proposition

If the spectral observability condition (Hautus test)

$$
\left(A \varphi=\lambda \varphi \text { for } \lambda \in \Sigma_{+} \text {and } C \varphi=0\right) \quad \Longrightarrow \quad \varphi=0
$$

is satisfied, then $\left(A_{+}, C_{+}\right)$is detectable.
Proof: Since $C_{+} z_{+}=C z_{+}$for any $z_{+} \in X_{+}$, if the Hautus test is satisfied, then it is clear that the following Hautus test is also satisfied:

$$
\left(\varphi \in \mathcal{D}(A) \cap X_{+} \mid A_{+} \varphi=\lambda \varphi \text { and } C_{+} \varphi=0\right) \quad \Longrightarrow \quad \varphi=0 .
$$

As the above system is finite dimensional, $\left(A_{+}, C_{+}\right)$is detectable.

Remarks

Corollaire

If the Hautus test is satisfied, then (A, C) is detectable via the stabilizing output injection operator L defined previously.

- The matrices A_{+}and C_{+}are in practice of small size : their dimensions are respectively $\operatorname{dim} X_{+} \times \operatorname{dim} X_{+}$and $\operatorname{dim} Y_{+} \times \operatorname{dim} X_{+}$.
- The stabilizing operator L_{+}of the finite dimensional system (A_{+}, C_{+}) can be determined by solving a finite dimensional algebraic Riccati equation.

Outline

(1) Spectral properties of the operator
(2) Detectability
(3) Application: observer design for populations dynamics
(4) Numerical results

Observer

Assumptions (A1) ($M<\infty$ unstable eigenvalues) and (A2) $\left(\omega_{a}(A)=\omega_{0}(A)\right)$ are satisfied for our population model and the problem of determining the stabilizing operator L for (A, C) fits into the framework described above.
It only remains to verify that the Hautus test is satisfied for our system (A, C) :

Lemma

If $\varphi \in \mathcal{D}(A)$ satisfies $A \varphi=\lambda \varphi$ for $\lambda \in \Sigma_{+}$and $C \varphi=0$, then φ vanishes identically.

Proof of the spectral observability

Let λ be an unstable eigenvalue of A and let $\varphi \in \mathcal{D}(A)$ satisfying $A \varphi=\lambda \varphi$. Decomposing $\varphi(0, x)$ in the basis of $L^{2}(\Omega)$ constituted of the eigenfunctions of $-k \Delta$, the unique solution of the evolution system

$$
\begin{cases}\frac{\partial \varphi}{\partial a}(a, x)=k \Delta \varphi(a, x)-(\lambda+\mu) \varphi(a, x), & a \in\left(0, a^{*}\right), x \in \Omega \\ \varphi(a, x)=0, & a \in\left(0, a^{*}\right), x \in \partial \Omega \\ \varphi(0, x)=\sum_{j \in \mathbb{N}} \alpha_{j} \varphi_{j}^{D}(x), & x \in \Omega,\end{cases}
$$

is given by

$$
\varphi(a, x)=\sum_{j \in \mathbb{N}} \alpha_{j} e^{-\left(\lambda+\lambda_{j}^{D}\right) a} \Pi(a) \varphi_{j}^{D}(x) .
$$

Plugging the above expression in the renewal equation, we obtain

$$
\sum_{j \in \mathbb{N}} \alpha_{j} \varphi_{j}^{D}(x)=\sum_{j \in \mathbb{N}} \alpha_{j}\left(\int_{0}^{a^{*}} \beta(a) e^{-\left(\lambda+\lambda_{j}^{D}\right) a} \Pi(a)\right) \varphi_{j}^{D}(x) .
$$

We see that is equivalent to, for any $j \in \mathbb{N}$, either $\alpha_{j}=0$, either $\lambda+\lambda_{j}^{D}$ solves the characteristic equation of the diffusion free problem.

Proof of the spectral observability (end)

Consequently, we have

$$
\varphi(a, x)=\sum_{j \mid \lambda+\lambda_{j}^{D} \in \sigma\left(A_{0}\right)} \alpha_{j} e^{-\left(\lambda+\lambda_{j}^{D}\right) a} \Pi(a) \varphi_{j}^{D}(x)
$$

The condition $C \varphi=0$ reads then

$$
\left.\sum_{j \mid \lambda+\lambda_{j}^{D} \in \sigma\left(A_{0}\right)} \alpha_{j} e^{-\left(\lambda+\lambda_{j}^{D}\right) a} \varphi_{j}^{D}\right|_{\mathcal{O}}(x)=0, \quad a \in\left(a_{1}, a_{2}\right)
$$

Since the eigenfunctions of $-k \Delta$ with Dirichlet boundary conditions are analytic, we immediately obtain that $\varphi=0$.

Main result

Theorem

Let $p_{0} \in X$ and assume that $y(t)=\left.p\right|_{\left(a_{1}, a_{2}\right) \times \mathcal{O}}(t>0)$ is known. Let \hat{p} the observer defined by

$$
\left\{\begin{array}{l}
\dot{\hat{p}}(t)=A \hat{p}(t)+L(C \hat{p}(t)-y(t)), \quad t \in(0, T) \\
\hat{p}(0)=0
\end{array}\right.
$$

where $L \in \mathcal{L}(Y, X)$ is the stabilizing operator defined by

$$
L=i_{X_{+}} L_{+} Q_{+} \in \mathcal{L}(Y, X)
$$

Then, there exist $M, \omega>0$ such that

$$
\|\hat{p}(t)-p(t)\| \leqslant M e^{-\omega t}\left\|p_{0}\right\|, \quad t>0
$$

Outline

(1) Spectral properties of the operator
(2) Detectability
(3) Application: observer design for populations dynamics
(4) Numerical results

Full observation in age

Taking $\Omega=(0, \pi)$ and assuming that p_{0} is an unknown initial data, we want to estimate p at time $t=T$ where p solves:

$$
\begin{cases}\partial_{t} p(a, x, t)+\partial_{a} p(a, x, t) & \\ =-\mu(a) p(a, x, t)+\partial_{x x} p(a, x, t), & a \in\left(0, a^{*}\right), x \in(0, \pi), t>0 \\ p(a, 0, t)=p(a, \pi, t)=0, & a \in\left(0, a^{*}\right), t>0 \\ p(a, x, 0)=p_{0}(a, x), & a \in\left(0, a^{*}\right), x \in(0, \pi) \\ p(0, x, t)=\int_{0}^{a^{*}} \beta(a) p(a, x, t) \mathrm{d} a, & x \in(0, \pi), t>0\end{cases}
$$

provided we know the observation

$$
y(t)=p(t)_{\mid\left(0, a^{*}\right) \times(\pi / 3,2 \pi / 3)}, \quad t \in(0, T)
$$

The fertility and mortality functions

Figure: The fertility and mortality functions.

Taking $a^{*}=2$, we choose the fertility and mortality function to be

$$
\beta(a)=10 a\left(a^{*}-a\right) \exp \left\{-20\left(a-a^{*} / 3\right)^{2}\right\}, \quad \mu(a)=\left(a^{*}-a\right)^{-1}
$$

Note that the function $\Pi(a)$ can be computed explicitly:

$$
\Pi(a)=\exp \left(-\int_{0}^{a} \mu(s) \mathrm{d} s\right)=\frac{a^{*}-a}{a^{*}} .
$$

First test : initial state $=$ unstable eigenfunction

Under these assumptions, there is a unique unstable eigenvalue $\lambda_{1}=\lambda_{1}^{0}-\pi^{2}$ (where $\lambda_{1}^{0} \in \mathbb{R}$ satisfies $F\left(\lambda_{1}^{0}\right)=1$). Computing numerically this value, we obtain that $\lambda_{1}=0.239$. We first choose as initial state an eigenfunction corresponding to λ_{1}

$$
p_{0}(a, x)=\varphi_{1}(a, x)=\varphi_{1}^{0}(a) \varphi_{1}^{D}(x)=\frac{a^{*}-a}{a^{*}} e^{-\lambda_{1}^{0} a} \sin (x)
$$

Estimated and exact solution at time $t=T$

The exact solution is:

$$
p(a, x, t)=e^{\lambda_{1} t} p_{0}(a, x) .
$$

We take: $T=2 a^{*}$, with $a^{*}=2$. Using $N_{x}=100, N_{a}=120$ and $N_{t}=2 N_{a}$, we obtain an L^{2} relative error of 4.07%.

Estimated (left) and exact (right) solution at time $t=T$.

Second test : initial state $=$ Gaussian function

We choose a space-aged localized initial distribution of population of gaussian type:

$$
p_{0}(a, x)=\exp \left\{-\left(30\left(a-a^{*} / 4\right)^{2}+20(x-\ell / 4)^{2}\right)\right\} .
$$

Gaussian initial state (3D and 2D representations).

Estimated and exact solution at time $t=T$

We obtain an L^{2} relative error of $2.99 \%, 9.6 \%$ and 16.2% respectively for $5 \%, 10 \%$ and 15% of noise ${ }^{1}$.

Estimated (left) and exact (right) solution at time $t=T$ (5% of noise).

1 "Exact" solution refers here to a numerical solution computed numerically.

Estimated and exact final total population

$$
P_{T}(x)=\int_{0}^{a^{*}} p(a, T, x) \mathrm{d} a \quad \text { and } \quad \widehat{P}_{T}(x)=\int_{0}^{a^{*}} \widehat{p}(a, T, x) \mathrm{d} a .
$$

Estimated (dashed line) and exact total population at time $t=T$ with 5% of noise (left) and 15% of noise (right).

Distributed observation in space and age

Estimated (dashed line) and exact total population at time $t=T$ with age observation in $\left(0, \frac{a^{*}}{20}\right)$ (left) and $\left(\frac{a^{*}}{2}, a^{*}\right)$ (right).

Influence of the observation time

We consider a configuration with two unstable eigenvalues and we investigate the influence of T. For $T=0.5 a^{*}$, we obtain a relative error of 27% for the population density, but we still obtain a reasonable approximation for the total population.

Estimated (dashed line) and exact total population at time $t=T$, for $T=a^{*}$ (left) and for $T=0.5 a^{*}$ (right).

Conclusion

(1) Other models

- Other outputs : $\quad y(x, t)=\int_{a_{1}}^{a_{2}} p(a, x, t) \mathrm{d} a, \quad x \in \mathcal{O}$.
- Space dependent coefficients: $\quad \beta(a, x), \quad \mu(a, x)$.
- Nonlinearities: $\quad \beta(a, x, P)$ and $\mu(a, x, P)$ where

$$
P(x, t):=\int_{0}^{a^{*}} p(a, x, t) \mathrm{d} a
$$

- adaptative observer which gives an estimation of p and k.
(2) Approximation
- Convergence analysis and error estimates
- Uniform exponential stability (with respect to Δa et h)

Particular case: $A_{+}:=\left.A\right|_{\mathcal{D}(A) \cap X_{+}}$diagonalizable

The results collected here can be found in Barbu and Triggiani 2004. We assume that $A_{+}:=\left.A\right|_{\mathcal{D}(A) \cap X_{+}}$is diagonalizable. For simplicity, we denote by N the number of unstable eigenvalues of A counted with multiplicities (still denoted $\lambda_{k}, k=1, \cdots, N$). This implies in particular that the unstable space is

$$
X_{+}=\bigoplus_{k=1}^{N} \operatorname{Ker}\left(A-\lambda_{k}\right) .
$$

We denote then by $\left(\varphi_{k}\right)_{1 \leqslant k \leqslant N}$ a basis of X_{+}. Denote by ψ_{k} an eigenfunction of A^{*} corresponding to the unstable eigenvalue $\overline{\lambda_{k}}$ $(1 \leqslant k \leqslant N)$. It can be shown that the family $\left(\psi_{k}\right)_{1 \leqslant k \leqslant N}$ can be chosen such that $\left(\varphi_{k}\right)_{1 \leqslant k \leqslant N}$ and $\left(\psi_{k}\right)_{1 \leqslant k \leqslant N}$ form bi-orthogonal sequences, in the sense that $\left(\varphi_{k}, \psi_{m}\right)_{X}=\delta_{k m}$. It follows then that the projection operator $P_{+} \in \mathcal{L}\left(X, X_{+}\right)$can be expressed as

$$
P_{+} z=\sum_{k=1}^{N}\left(z, \psi_{k}\right)_{X} \varphi_{k} \quad(z \in X)
$$

Since

$$
X_{+}=P_{+} X=\operatorname{Span}\left\{\varphi_{k}, 1 \leqslant k \leqslant N\right\}
$$

it follows that

$$
Y_{+}=C X_{+}=\operatorname{Span}\left\{C \varphi_{k}, 1 \leqslant k \leqslant N\right\}
$$

Assume now that the family

$$
\begin{equation*}
\left(C \varphi_{k}\right)_{1 \leqslant k \leqslant N} \text { is linearly independent in } X \text {. } \tag{1}
\end{equation*}
$$

This property holds true in the case of internal observation. Therefore

$$
\operatorname{dim} Y_{+}=\operatorname{dim} X_{+}=N
$$

We denote by \mathbb{G} the Hermitian matrix of size $N \times N$ defined by

$$
\mathbb{G}=\left(\left(C \varphi_{i}, C \varphi_{j}\right)_{Y}\right)_{1 \leqslant i \leqslant N, 1 \leqslant j \leqslant N}
$$

It is not difficult to prove that (1) is equivalent to the fact that \mathbb{G} is invertible.

The orthogonal projection operator Q_{+}

Lemma

Assume that property (1) holds true. Then, for any $y \in Y$, then $Q_{+} y$ is defined by

$$
Q_{+} y=\sum_{i=1}^{N}\left(y, \eta_{i}\right)_{Y} C \varphi_{i},
$$

where

$$
\eta_{i}=\sum_{j=1}^{N} \alpha_{i j} C \varphi_{j}
$$

and

$$
\left(\alpha_{i j}\right)_{1 \leqslant i \leqslant N, 1 \leqslant j \leqslant N}=\mathbb{G}^{-1} .
$$

From L_{+}to L

The (finite dimensional) operator $C_{+} \in \mathcal{L}\left(X_{+}, Y_{+}\right)$satisfies $C_{+} \varphi_{k}=C \varphi_{k}$ for any $k \in\{1, \ldots, N\}$. Note that C_{+}is nothing but the identity matrix when we choose as basis for X_{+}and Y_{+} respectively $\left(\varphi_{k}\right)_{1 \leqslant k \leqslant N}$ and $\left(C \varphi_{k}\right)_{1 \leqslant k \leqslant N}$. Therefore, using these bases, $A_{+}+L_{+} C_{+}$is a Hurwitz matrix provided $\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{N}\right)+L_{+}$is Hurwitz. It is thus sufficient to take $L_{+}=-\sigma I$ with

$$
\sigma>\operatorname{Re} \lambda_{1}
$$

to ensure the stability of $A_{+}+L_{+} C_{+}$.
The corresponding operator $L \in \mathcal{L}(Y, X)$ for every $y \in Y$

$$
L y=L_{+} Q_{+} y=L_{+}\left(\sum_{i=1}^{N}\left(y, \eta_{i}\right)_{Y} C \varphi_{i}\right)=-\sigma \sum_{i=1}^{N}\left(y, \eta_{i}\right)_{Y} \varphi_{i}
$$

and, following Theorem 6, $A+L C$ generates an exponentially stable semigroup.

Goal

Under these assumptions, there is a unique unstable eigenvalue $\lambda_{1}=\lambda_{1}^{0}-1$ (where $\lambda_{1}^{0} \in \mathbb{R}$ satisfies $F\left(\lambda_{1}^{0}\right)=1$). Computing numerically this value, we obtain that $\lambda_{1}=0.239$.
The observation operator $C \in \mathcal{L}(X, Y)$ is given by

$$
C \varphi=\varphi_{\mid\left(0, a^{*}\right) \times(\pi / 3,2 \pi / 3)}, \quad \forall \varphi \in X
$$

where $X=L^{2}\left(\left(0, a^{*}\right) \times(0, \pi)\right)$ and $Y=L^{2}\left(\left(0, a^{*}\right) \times(\pi / 3,2 \pi / 3)\right)$. In order to estimate $p(T)$, we use the observer designed previously. As the unstable space is the one-dimensional space

$$
X_{+}=\operatorname{Ker}\left(A-\lambda_{1}\right)=\operatorname{Span}\left\{\varphi_{1}\right\}=\operatorname{Span}\left\{\varphi_{1}^{0}(a) \varphi_{1}^{D}(x)\right\}
$$

the observer involves the stabilizing output injection operator L defined by

$$
L y=-\sigma\left(y, \eta_{1}\right)_{Y} \varphi_{1} \quad(y \in Y)
$$

where $\sigma>\lambda_{1}$ (gain coefficient) and

$$
\eta_{1}=\alpha_{11} C \varphi_{1}=\frac{C \varphi_{1}}{\left\|C \varphi_{1}\right\|_{Y_{4}}^{2}}
$$

Goal

The observer solves then the following system

$$
\begin{cases}\partial_{t} \widehat{p}(a, x, t)+\partial_{a} \widehat{p}(a, x, t)+\mu(a) \widehat{p}(a, x, t) & \\ \quad-\partial_{x x} \widehat{p}(a, x, t)+\sigma\left(C \widehat{p}, \eta_{1}\right)_{Y} \varphi_{1}(a, x) & \\ \quad=\sigma\left(y, \eta_{1}\right)_{Y} \varphi_{1}(a, x), & a \in\left(0, a^{*}\right), x \in(0, \pi), t>0, \\ \widehat{p}(a, 0, t)=\widehat{p}(a, \pi, t)=0, & a \in\left(0, a^{*}\right), t>0, \\ \widehat{p}(a, x, 0)=0, & a \in\left(0, a^{*}\right), x \in(0, \pi), \\ \widehat{p}(0, x, t)=\int_{0}^{a^{*}} \beta(a) \widehat{p}(a, x, t) \mathrm{d} a, & x \in(0, \pi), t>0 .\end{cases}
$$

Goal: compare $p(T)$ and $\widehat{p}(T)$

Main difficulties concerning the discretization

- Singular behavior of the coefficient μ
\hookrightarrow rescaling the problem: introduce the auxiliary variable

$$
\begin{aligned}
& u(a, x, t)=\frac{p(a, x, t)}{\Pi(a)}=\exp \left(\int_{0}^{a^{*}} \mu(s) \mathrm{d} s\right) p(a, x, t) \\
& \left\{\begin{array}{l}
\partial_{t} u(a, x, t)+\partial_{a} u(a, x, t)-\partial_{x x} u(a, x, t)=0 \\
u(a, 0, t)=u(a, \pi, t)=0 \\
u(a, x, 0)=u_{0}(a, x)=p_{0}(a, x) / \Pi(a), \\
u(0, x, t)=\int_{0}^{a^{*}} m(a) u(a, x, t) \mathrm{d} a, \quad \text { where } m(a)=\beta(a) \Pi(a)
\end{array}\right.
\end{aligned}
$$

- discretization of the renewal eq.: $p(0, x, t)=\int_{0}^{a^{*}} \beta(a) p(a, x, t) \mathrm{d} a$

$$
\hookrightarrow u(0, x, n \Delta t)=\int_{0}^{a^{*}} m(a) u(a, x,(n-1) \Delta t) \mathrm{d} a
$$

- presence of the extra term in the observer equation $\left(C \widehat{p}, \eta_{1}\right)_{Y} \varphi_{1}$, \hookrightarrow introduce $\theta(t)=\left(C \Pi \widehat{u}, \eta_{1}\right)_{Y}$ which satisfies

$$
\left\{\begin{array}{l}
\dot{\theta}(t)=-\left(C \Pi \partial_{a} \widehat{u}, \eta_{1}\right)_{Y}+\left(C \Pi \partial_{x x} \widehat{u}, \eta_{1}\right)_{Y}-\sigma \theta(t)+\sigma\left(y, \eta_{1}\right)_{Y} \\
\theta(0)=0
\end{array}\right.
$$

Rescaling the open loop problem

First of all, in order to overcome the difficulties due to singular behavior of the coefficient μ, we introduce the auxiliary variable

$$
u(a, x, t)=\frac{p(a, x, t)}{\Pi(a)}=\exp \left(\int_{0}^{a^{*}} \mu(s) \mathrm{d} s\right) p(a, x, t) .
$$

One can easily check that u satisfies

$$
\begin{cases}\partial_{t} u(a, x, t)+\partial_{a} u(a, x, t)-\partial_{x x} u(a, x, t)=0, & a \in\left(0, a^{*}\right), x \in(0, \pi), t>0, \\ u(a, 0, t)=u(a, \pi, t)=0, & a \in\left(0, a^{*}\right), t>0, \\ u(a, x, 0)=u_{0}(a, x), & a \in\left(0, a^{*}\right), x \in(0, \pi), \\ u(0, x, t)=\int_{0}^{a^{*}} m(a) u(a, x, t) \mathrm{d} a, & x \in(0, \pi), t>0,\end{cases}
$$

where we have set $u_{0}(a, x)=p_{0}(a, x) / \Pi(a)$ and where $m(a)=\beta(a) \Pi(a)$ stands for the maternity function.

Finite difference discretization in time

Let $u^{n}(a, x)$ be an approximation of $u\left(a, x, t^{n}\right)$, where $t^{n}=n \Delta t$, $0 \leqslant n \leqslant N_{t}, \Delta t=T / N_{t}$ is a discretization of $(0, T)$. Starting from $u^{0}(a, x)=u_{0}(a, x)$, we construct u^{n} for $n \geqslant 1$ using an Euler's backwards scheme

$$
\begin{cases}\frac{u^{n}(a, x)-u^{n-1}(a, x)}{\Delta t}+\partial_{a} u^{n}(a, x) & \\ \quad-\partial_{x x} u^{n}(a, x)=0, & a \in\left(0, a^{*}\right), x \in(0, \pi), \\ u^{n}(a, 0)=u^{n}(a, \pi)=0, & a \in\left(0, a^{*}\right), \\ u^{0}(a, x)=u_{0}(a, x), & a \in\left(0, a^{*}\right), x \in(0, \pi), \\ u^{n}(0, x)=\int_{0}^{a^{*}} m(a) u^{n-1}(a, x) \mathrm{d} a, & x \in(0, \pi) .\end{cases}
$$

Finite difference discretization in space

Denoting by $u_{i}^{n}(a)$ an approximation of $u^{n}\left(x_{i}, a\right)$ (where $x_{i}=i h=i \ell /\left(N_{x}+1\right)$, with $\left.0 \leqslant i \leqslant N_{x}+1\right)$ and using a classical centered approximation for the second order derivative in space, the above system yields

$$
\left\{\begin{array}{l}
\frac{\mathrm{d} \mathbf{U}^{n}}{\mathrm{~d} a}(a)+\frac{1}{h^{2}} \mathbb{K} \mathbf{U}^{n}(a)+\frac{1}{\Delta t} \mathbf{U}^{n}(a)=\frac{1}{\Delta t} \mathbf{U}^{n-1}(a), \\
\mathbf{U}^{n}(0)=\int_{0}^{a^{*}} m(a) \mathbf{U}^{n-1}(a) \mathrm{d} a \\
\mathbf{U}^{0}(a)=\mathbf{U}_{0}(a)
\end{array}\right.
$$

where

$$
\mathbf{U}^{n}(a)=\left(\begin{array}{c}
u_{1}^{n}(a) \\
\vdots \\
\vdots \\
u_{N_{x}}^{n}(a)
\end{array}\right), \mathbf{U}_{0}(a)=\left(\begin{array}{c}
u_{0}\left(a, x_{1}\right) \\
\vdots \\
\vdots \\
u_{0}\left(a, x_{N_{x}}\right)
\end{array}\right), \mathbb{K}=\left(\begin{array}{cccc}
2 & -1 & & \\
-1 & 2 & -1 & 0 \\
& \ddots & \ddots & \ddots \\
0 & -1 & 2 & -1 \\
& & -1 & 2
\end{array}\right) .
$$

Finite difference discretization in age

We use a Crank-Nicholson scheme. Denoting by $u_{i}^{n, k}$ an approximation of $u_{i}^{n}\left(a^{k}\right)$, where $a^{k}=k \Delta a, 0 \leqslant k \leqslant N_{a}, \Delta t=a^{*} / N_{a}$, and by

$$
\mathbf{U}^{n, k}:=\left(\begin{array}{c}
u_{1}^{n, k} \\
\vdots \\
u_{N_{x}}^{n, k}
\end{array}\right)
$$

an approximation of $\mathbf{U}^{n}\left(a^{k}\right)$, we move from age a^{k-1} to age a^{k} following

$$
\begin{aligned}
& \frac{1}{\Delta a}\left(\mathbf{U}^{n, k}-\mathbf{U}^{n, k-1}\right)+\frac{1}{h^{2}} \mathbb{K}\left(\frac{\mathbf{U}^{n, k}+\mathbf{U}^{n, k-1}}{2}\right)+\frac{1}{\Delta t}\left(\frac{\mathbf{U}^{n, k}+\mathbf{U}^{n, k-1}}{2}\right) \\
&=\frac{1}{\Delta t}\left(\frac{\mathbf{U}^{n-1, k}+\mathbf{U}^{n-1, k-1}}{2}\right)
\end{aligned}
$$

with the initial conditions

$$
\left\{\begin{array}{l}
\mathbf{U}^{0, k}=\mathbf{U}_{0}\left(a^{k}\right), \quad \forall k=0, \ldots, N_{a}, \\
\mathbf{U}^{n, 0}=\sum_{k=0}^{N_{a}} \omega_{k} m\left(a^{k}\right) \mathbf{U}^{n-1, k} \simeq \int_{0}^{a^{*}} m(a) \mathbf{U}^{n-1}(a) \mathrm{d} a .
\end{array}\right.
$$

The algorithm

(1) For $n=0$: Initialization of $\mathbf{U}^{0, k}$
(2) For $n=1, \ldots, N_{t}$:

- $k=0$: Initialization of $\mathbf{U}^{n, 0}$ using the values of $\left(\mathbf{U}^{n-1, j}\right)_{j=0}^{N_{a}}$:

$$
\mathbf{U}^{n, 0}=\sum_{k=0}^{N_{a}} \omega_{k} m\left(a^{k}\right) \mathbf{U}^{n-1, k}
$$

- For $k=1, \ldots, N_{a}, \mathbf{U}^{n, k}=\left(\begin{array}{c}u_{1}^{n, k} \\ \vdots \\ u_{N_{x}}^{n, k}\end{array}\right)$ solves the linear system

$$
\mathbb{A} \mathbf{U}^{n, k}=\mathbf{b}^{n, k}
$$

where

$$
\begin{gathered}
\mathbb{A}=\left(\Delta t+\frac{1}{2} \Delta a\right) \mathbb{I}+\frac{1}{2} \frac{\Delta t \Delta a}{h^{2}} \mathbb{K} \\
\mathbf{b}^{n, k}=\frac{\Delta a}{2}\left(\mathbf{U}^{n-1, k}+\mathbf{U}^{n-1, k-1}\right)+\left[\left(\Delta t-\frac{\Delta a}{2}\right) \mathbb{I}-\frac{\Delta t \Delta a}{2 h^{2}} \mathbb{K}\right] \mathbf{U}^{n, k-1} \\
-\mathbf{Y}^{n, k}=\left(\begin{array}{c}
y_{1}^{n, k} \\
\vdots \\
y_{N}^{n, k}
\end{array}\right) \text { where } y_{i}^{n, k}=\Pi\left(a^{k}\right) u_{i}^{n, k} \text { if } \ell_{1} \leqslant i h \leqslant \ell_{2} \text { and }
\end{gathered}
$$

Discretization of the closed loop system : observer design

$$
\left\{\begin{array}{l}
\partial_{t} \widehat{p}(a, x, t)+\partial_{a} \widehat{p}(a, x, t)+\mu(a) \widehat{p}(a, x, t) \\
\quad-\partial_{x x} \widehat{p}(a, x, t)+\sigma\left(C \widehat{p}, \eta_{1}\right)_{Y} \varphi_{1}(a, x)=\sigma\left(y, \eta_{1}\right)_{Y} \varphi_{1}(a, x) \\
\widehat{p}(a, 0, t)=\widehat{p}(a, \pi, t)=0 \\
\widehat{p}(a, x, 0)=0 \\
\widehat{p}(0, x, t)=\int_{0}^{a^{*}} \beta(a) \widehat{p}(a, x, t) \mathrm{d} a
\end{array}\right.
$$

Rescaling the problem

First of all, we introduce the auxiliary variable

$$
\widehat{u}(a, x, t)=\frac{\widehat{p}(a, x, t)}{\Pi(a)}=\exp \left(\int_{0}^{a^{*}} \mu(s) \mathrm{d} s\right) \widehat{p}(a, x, t)
$$

One can easily check that \widehat{u} satisfies

$$
\left\{\begin{aligned}
\partial_{t} \widehat{u}(a, x, t) & +\partial_{a} \widehat{u}(a, x, t)-\partial_{x x} \widehat{u}(a, x, t) \\
& +\sigma\left(C \Pi \widehat{u}, \eta_{1}\right)_{Y} v_{1}(a, x)=\sigma\left(y, \eta_{1}\right)_{Y} v_{1}(a, x), \\
\widehat{u}(a, 0, t)= & \widehat{u}(a, \pi, t)=0, \\
\widehat{u}(a, x, 0)= & 0, \\
\widehat{u}(0, x, t)= & \int_{0}^{a^{*}} m(a) \widehat{u}(a, x, t) \mathrm{d} a,
\end{aligned}\right.
$$

where we have set $v_{1}(a, x)=\varphi_{1}(a, x) / \Pi(a)$.

Discretization of the term $\left(C \Pi \widehat{u}, \eta_{1}\right)_{Y}$

Let us introduce

$$
\theta(t)=\left(C \Pi \widehat{u}, \eta_{1}\right)_{Y} .
$$

Using the fact that $\left(C \Pi v_{1}, \eta_{1}\right)_{Y}=1$, we remark that θ satisfies

$$
\dot{\theta}(t)=-\left(C \Pi \partial_{a} \widehat{u}, \eta_{1}\right)_{Y}+\left(C \Pi \partial_{x x} \widehat{u}, \eta_{1}\right)_{Y}-\sigma \theta(t)+\sigma\left(y, \eta_{1}\right)_{Y} .
$$

Consequently,

$$
\left\{\begin{array}{l}
\dot{\theta}(t)=-\left(C \Pi \partial_{a} \widehat{u}(t), \eta_{1}\right)_{Y}+\left(C \Pi \partial_{x x} \widehat{u}(t), \eta_{1}\right)_{Y}-\sigma \theta(t)+\sigma\left(y(t), \eta_{1}\right)_{Y} \\
\partial_{t} \widehat{u}(a, x, t)+\partial_{a} \widehat{u}(a, x, t)-\partial_{x x} \widehat{u}(a, x, t)+\sigma \theta(t) v_{1}(a, x) \\
\quad=\sigma\left(y, \eta_{1}\right)_{Y} v_{1}(a, x) \\
\theta(0)=0 \\
\widehat{u}(a, 0, t)=\widehat{u}(a, \ell, t)=0 \\
\widehat{u}(a, x, 0)=0 \\
\widehat{u}(0, x, t)=\int_{0}^{a^{*}} m(a) \widehat{u}(a, x, t) \mathrm{d} a
\end{array}\right.
$$

Finite difference discretization in time

Let $\widehat{u}^{n}(a, x)$ (resp. $\left.\theta^{n}, y^{n}(a, x)\right)$ be an approximation of $\widehat{u}\left(a, x, t^{n}\right)$ (resp. $\left.\theta\left(t^{n}\right), y\left(a, x, t^{n}\right)\right)$, where $t^{n}=n \Delta t, 0 \leqslant n \leqslant N_{t}, \Delta t=T / N_{t}$ is a discretization of $(0, T)$. Starting from $\theta^{0}=0$ and $\widehat{u}^{0}(a, x)=0$, we construct θ^{n} and \widehat{u}^{n} for $n \geqslant 1$ using an Euler's backwards scheme

$$
\left\{\begin{array}{l}
\frac{1}{\Delta t}\left(\theta^{n}-\theta^{n-1}\right)=-\left(C \Pi \partial_{a} \widehat{u}^{n-1}, \eta_{1}\right)_{Y}+\left(C \Pi \partial_{x x} \widehat{u}^{n-1}, \eta_{1}\right)_{Y} \\
\quad-\sigma \theta^{n}+\sigma\left(y^{n}, \eta_{1}\right)_{Y}, \\
\frac{1}{\Delta t}\left(\widehat{u}^{n}(a, x)-\widehat{u}^{n-1}(a, x)\right)+\partial_{a} \widehat{u}^{n}(a, x)-\partial_{x x} \widehat{u}^{n}(a, x)+\sigma \theta^{n} v_{1} \\
\quad=\sigma\left(y^{n}, \eta_{1}\right)_{Y} v_{1}, \\
\theta^{0}=0, \\
\widehat{u}^{n}(a, 0)= \\
\widehat{u}^{0}(a, x)=0, \\
\widehat{u}^{n}(a, \ell)=0, \\
\widehat{u}^{n}(0, x)=\int_{0}^{a^{*}} m(a) \widehat{u}^{n-1}(a, x) \mathrm{d} a .
\end{array}\right.
$$

Finite difference discretization in space

Denoting by $\widehat{u}_{i}^{n}(a)$ an approximation of $\widehat{u}^{n}\left(x_{i}, a\right)$, the above system yields

$$
\left\{\begin{array}{l}
\frac{1}{\Delta t} \theta^{n}=\frac{1}{\Delta t} \theta^{n-1}-\sigma \theta^{n}-h\left(\int_{0}^{a^{*}} \Pi(a) \boldsymbol{\eta}_{1}(a)^{\mathbf{T}} \partial_{a} \widehat{\mathbf{U}}^{n-1}(a) \mathrm{d} a\right) \\
\quad-\frac{1}{h}\left(\int_{0}^{a^{*}} \Pi(a) \boldsymbol{\eta}_{1}(a)^{\mathbf{T}} \mathbb{K} \widehat{\mathbf{U}}^{n-1}(a) \mathrm{d} a\right)+\sigma h\left(\int_{0}^{a^{*}} \boldsymbol{\eta}_{1}(a)^{\mathbf{T}} \mathbf{Y}^{n}(a) \mathrm{d} a\right) \\
\frac{\mathrm{d} \widehat{\mathbf{U}}^{n}}{\mathrm{~d} a}(a)+\frac{1}{h^{2}} \mathbb{K} \widehat{\mathbf{U}}^{n}(a)+\frac{1}{\Delta t} \widehat{\mathbf{U}}^{n}(a)+\sigma \theta^{n} \mathbf{V}_{1}(a) \\
\quad=\frac{1}{\Delta t} \widehat{\mathbf{U}}^{n-1}(a)+\sigma h\left(\int_{0}^{a^{*}} \boldsymbol{\eta}_{1}(a)^{\mathbf{T}} \mathbf{Y}^{n}(a) \mathrm{d} a\right) \mathbf{V}_{1}(a), \\
\theta^{0}=0, \\
\widehat{\mathbf{U}}^{n}(0)=\int_{0}^{a^{*}} m(a) \widehat{\mathbf{U}}^{n-1}(a) \mathrm{d} a, \\
\widehat{\mathbf{U}}^{0}(a)=0,
\end{array}\right.
$$

where

$$
\widehat{\mathbf{U}}^{n}(a)=\left(\begin{array}{c}
\widehat{u}_{1}^{n}(a) \\
\vdots \\
\widehat{u}_{N_{x}}^{n}(a)
\end{array}\right), \mathbf{V}_{1}(a)=\left(\begin{array}{c}
v_{1}\left(a, x_{1}\right) \\
\vdots \\
v_{1}\left(a, x_{N_{x}}\right)
\end{array}\right), \boldsymbol{\eta}_{1}(a)=\left(\begin{array}{c}
\eta_{1}\left(a, x_{1}\right) \\
\vdots \\
\eta_{1}\left(a, x_{N_{x]}}\right)
\end{array}\right)
$$

Finite difference discretization in age

We use a Crank-Nicholson scheme. Denoting by $\widehat{u}_{i}^{n, k}$ an approximation of $\widehat{u}_{i}^{n}\left(a^{k}\right)$, where $a^{k}=k \Delta a, 0 \leqslant k \leqslant N_{a}, \Delta t=a^{*} / N_{a}$, and by $\widehat{\mathbf{U}}^{n, k}:=\left(\begin{array}{c}\widehat{u}_{1}^{n, k} \\ \vdots \\ \widehat{u}_{N_{x}}^{n, k}\end{array}\right)$ an approximation of $\widehat{\mathbf{U}}^{n}\left(a^{k}\right)$, we move from age a^{k-1} to age a^{k} following

$$
\begin{aligned}
& \frac{1}{\Delta t} \theta^{n}=\frac{1}{\Delta t} \theta^{n-1}-\sigma \theta^{n}-h \Delta a\left(\sum_{k=1}^{N_{a}} \Pi(k \Delta a)\left(\boldsymbol{\eta}_{1}^{k}\right)^{\mathbf{T}}\left(\frac{\widehat{\mathbf{U}}^{n-1, k}-\widehat{\mathbf{U}}^{n-1, k-1}}{\Delta a}\right)\right) \\
- & \frac{\Delta a}{h}\left(\sum_{k=1}^{N_{a}} \Pi(k \Delta a)\left(\boldsymbol{\eta}_{1}^{k}\right)^{\mathbf{T}} \mathbb{K} \widehat{\mathbf{U}}^{n-1, k}\right)+\sigma h \Delta a\left(\sum_{k=1}^{N_{a}}\left(\boldsymbol{\eta}_{1}^{k}\right)^{\mathbf{T}} \mathbf{Y}^{n, k}\right),
\end{aligned}
$$

and

$$
\begin{aligned}
& \quad \frac{1}{\Delta a}\left(\widehat{\mathbf{U}}^{n, k}-\widehat{\mathbf{U}}^{n, k-1}\right)+\frac{1}{h^{2}} \mathbb{K}\left(\frac{\widehat{\mathbf{U}}^{n, k}+\widehat{\mathbf{U}}^{n, k-1}}{2}\right)+\frac{1}{\Delta t}\left(\frac{\widehat{\mathbf{U}}^{n, k}+\widehat{\mathbf{U}}^{n, k-1}}{2}\right) \\
& + \\
& +\sigma \theta^{n} \mathbf{V}_{1}^{k}=\frac{1}{\Delta t}\left(\frac{\widehat{\mathbf{U}}^{n-1, k}+\widehat{\mathbf{U}}^{n-1, k-1}}{2}\right)+\sigma h \Delta a\left(\sum_{j=1}^{N_{a}}\left(\boldsymbol{\eta}_{1}^{j}\right)^{\mathbf{T}} \mathbf{Y}^{n, j}\right) \mathbf{V}_{1}^{k},
\end{aligned}
$$

with the initial conditions

$$
\left\{\begin{array}{l}
\theta^{0}=0, \\
\widehat{\mathbf{U}}^{0, k}=0, \quad \forall k=0, \ldots, N_{a} \\
\widehat{\mathbf{U}}^{n, 0}=\sum_{k=0}^{N_{a}} \omega_{k} m\left(a^{k}\right) \widehat{\mathbf{U}}^{n-1, k}
\end{array}\right.
$$

Here

$$
\mathbf{V}_{1}^{k}=\left(\begin{array}{c}
v_{1}\left(k \Delta a, x_{1}\right) \\
\vdots \\
v_{1}\left(k \Delta a, x_{N_{x}}\right)
\end{array}\right), \boldsymbol{\eta}_{1}^{k}=\left(\begin{array}{c}
\eta_{1}\left(k \Delta a, x_{1}\right) \\
\vdots \\
\eta_{1}\left(k \Delta a, x_{N_{x}}\right)
\end{array}\right), \mathbf{Y}^{n, k}=\left(\begin{array}{c}
y^{n}\left(k \Delta a, x_{1}\right) \\
\vdots \\
y^{n}\left(k \Delta a, x_{N_{x}}\right)
\end{array}\right)
$$

(1) For $n=0$: Initialization of θ^{0} and $\widehat{\mathbf{U}}^{0, k}\left(k=0, \ldots, N_{a}\right)$ at 0 .
(2) For $n=1, \ldots, N_{t}$:

- Calculate θ^{n} using the values of θ^{n-1} and $\left(\widehat{\mathbf{U}}^{n-1, j}\right)_{j=0}^{N_{a}}$:

$$
\begin{aligned}
& \theta^{n}=\frac{1}{1+\sigma \Delta t}\left(\theta^{n-1}-h \Delta t \sum_{k=1}^{N_{a}} \Pi(k \Delta a)\left(\boldsymbol{\eta}_{1}^{k}\right)^{\mathbf{T}}\left(\widehat{\mathbf{U}}^{n-1, k}-\widehat{\mathbf{U}}^{n-1, k-1}\right)\right. \\
& \left.-\frac{\Delta a \Delta t}{h} \sum_{k=1}^{N_{a}} \Pi(k \Delta a)\left(\boldsymbol{\eta}_{1}^{k}\right)^{\mathbf{T}} \mathbb{K} \widehat{\mathbf{U}}^{n-1, k}+\sigma h \Delta a \Delta t \sum_{k=1}^{N_{a}}\left(\boldsymbol{\eta}_{1}^{k}\right)^{\mathbf{T}} \mathbf{Y}^{n, k}\right)
\end{aligned}
$$

- $k=0$: Initialization of $\widehat{\mathbf{U}}^{n, 0}$ using the values of $\left(\widehat{\mathbf{U}}^{n-1, j}\right)_{j=0}^{N_{a}}$:

$$
\widehat{\mathbf{U}}^{n, 0}=\sum_{k=0}^{N_{a}} \omega_{k} m(k \Delta a) \widehat{\mathbf{U}}^{n-1, k}
$$

- For $k=1, \ldots, N_{a}$, solve the linear system

$$
\mathbb{A} \widehat{\mathbf{U}}^{n, k}=\widehat{\mathbf{b}}^{n, k}
$$

where

$$
\begin{aligned}
\widehat{\mathbf{b}}^{n, k}= & \frac{\Delta a}{2}\left(\widehat{\mathbf{U}}^{n-1, k}+\widehat{\mathbf{U}}^{n-1, k-1}\right)+\left[\left(\Delta t-\frac{\Delta a}{2}\right) \mathbb{I}-\frac{\Delta t \Delta a}{2 h^{2}} \mathbb{K}\right] \widehat{\mathbf{U}}^{n, k-1} \\
& -\sigma \Delta a \Delta t \theta^{n} \mathbf{V}_{1}^{k}+\sigma h(\Delta a)^{2} \Delta t\left(\sum_{j=1}^{N_{a}}\left(\boldsymbol{\eta}_{1}^{j}\right)^{\mathbf{T}} \mathbf{Y}^{n, j}\right) \mathbf{V}_{1}^{k}
\end{aligned}
$$

End of the algorithm

$\widehat{\mathbf{P}^{n, k}}=\left(\begin{array}{c}\widehat{p}_{1}^{n, k} \\ \vdots \\ \widehat{p}_{N_{x}}^{n, k}\end{array}\right)$ where $\widehat{p}_{i}^{n, k}=\Pi\left(a^{k}\right) \widehat{u}_{i}^{n, k}$.

