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The problem in a glance

A classical model for age-space structured populations is given by

Oop op (

(%(afnt)—l-% a,x,t)
= —u(a)p(a,z,t) + kAp(a, z,t), a€ (0,a%), z€Q, t>0,
p(axt)zO a€ (0,a*), z€0Q, t>0,
pla,z,0) = , ), ac (0,a%), €,
p(0,,t) / B(a)p(a,t,z)da x e, t>0.
\

e p(a,x,t) : distribution density of the population of age a at
spatial position x at time ¢;

@ a* : maximal life expectancy;
o [ : diffusion coefficient;
@ u(a),(a) : death and birth rates (independent of z);



The problem in a glance

a*

Figure: Typical birth and death rates.
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The problem in a glance

OocQ

Estimation problem

Knowing the output y(t) := p[(4, 4.)xo (but assuming that py is
unknown), estimate p(a,z,T) for all a € (0,a*) and x € Q, as
T — +o0.




The problem in a glance

p(t) - Ap(t)v te (07T)
p(0) = po,
?/(t) - Cp(t), te (OvT)a

where C € L(X,Y), Y := L?((a1,az2) x O) is defined by
Co = @l(a;,a0)x0 for all p € X.
We introduce the Luenberger observer

{ p(t) = Ap(t) + L (Ch(t) — (1)),  t€(0,T)
p(0) =0,
where L € L(Y, X) is a linear operator to be defined.
Then the error e := p — p satisfies
{ é(t) = (A+ LC)e(t), te(0,T)
6(0) = —Po-



The problem in a glance

Goal
Find L such that e/(A+2C) exponentially stable (detectability).




The problem in a glance

Goal
Find L such that e/(A+2C) exponentially stable (detectability).

How?

b
Y

Spectrum of A : an infinite number of stable modes
and a finite number of unstable modes.

Design an infinite dimensional Luenberger observer via a finite
dimensional stabilizing operator.
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The

model

dp

P g 9p
ot

——(a,z,t)

x,t) = 90

—p(a)p(a,x,t) + kAp(a, z,t),

p(a,x,t) = 07

p(a,z,0) = po(a, x),

p(0,z,t) /

at$

€ (0,a*), x€Q, t>0,
€ (0,a*), x €09, t >0,
€ (0,a*), z €Q,

a, €, t>0.



Assumptions

Typical assumptions on the birth and death rates 8 and u:
e € L>®0,a%), f>0a.e in(0,a");
>

o pe Ll (0,a*), p>0ae. in(0,a*) and

a

lim w(s)ds = +oc.

*
a—a 0

We also introduce the function

[l(a) := exp <— /O " u(s) ds>

which represents the probability to survive at age a > 0.
In particular
lim II(a) = 0.

a—a*



First order formulation

We introduce the Hilbert space X := L? ((0,a*) x ) and let A
be defined by:

Pe= {(p € XN LF ((0.0%), Hy (@) ‘ _g% —pp+kAp € X;
o(a,)]on = 0 for almost all a € (0,a%);

»(0, ) / B(a)p(a,z)da for almost all = € Q}

)
Ap = —a—j g+ kA, Ve D(A).



Well-posedness

The population dynamics problem reads then

{ p(t) = Ap(t), t>0
p(0) = po.

Theorem (Chan and Guo, 1989)

o A is the infinitesimal generator of a Cy—semigroup e** on X.
e Ifpy € X, there exists a unique solution p € C([0,00), X).

e Ifpy € D(A), there exists a unique solution
p € C([0,00), D(A)) N C*([0,00), X).




Diffusion free model

McKendrick—Von Foerster model (1959) describes the diffusion
free case (k =0) :
op Ip

a(a,t) = —%(a, t) — u(a)p(a,t), a€ (0,a"), t>0,

p(a,0) = po(a) a € (0,a"),

bola),
p(0,t) = /0 B(a)p(a,t)da, t>0.



Diffusion free model

The population operator Ay corresponding to the above system is
defined as follows

d
— 22 g € L3(0,a%);

D(Ap) = {gp € L*(0,a*) ”

o0 = [ sarea) dal
d

Agp = —£ — [, Vi € D(Ap).

Then the McKendrick—Von Foerster model reads then

{ p(t) = Aop(t), t>0
p(0) = po.



Diffusion free model

Theorem (Song et al., 1982)

@ A\ has compact resolvent and its spectrum is constituted of a
countable (infinite) set of isolated eigenvalues with finite
algebraic multiplicity.

@ The eigenvalues (\2),>1 of Ay (counted without multiplicity)
the (complex) solutions of the characteristic equation

F(\) = / 5(G)H(a)e_>‘“ da = 1.
0
© The eigenvalues (A\0),>1 are of geometric multiplicity one:
phla) = 67}‘%‘11_1((1) — e Mna—fg u(s)ds

@ Every vertical strip of the complex plane contains a finite
number of eigenvalues of Ay.




Diffusion free model

Theorem (Song et al., 1982)

The operator Ay has a unique real eigenvalue \{. Moreover:

@ )\ is of algebraic multiplicity one;

Q@ \)>0(<0) < F(0) :/ B(a)l(a)da > 1 (< 1);
0

© )Y is a real dominant eigenvalue:

A > Re (AD), Vn > 2.




Back to the problem with diffusion

D(A) = {(p c XNIL2 ((O,Q*),Hé(Q)) ‘—%_MSO—FkAQD cX;
v(a,)|aq = 0 for almost all a € (0,a™);

»(0,x) / B(a)p(a,z)da for almost all = € Q}

Ap = =0, — o + kA, Vo € D(A).

Let 0 < AP < AP < AP < -+ be the increasing sequence of
eigenvalues of —kA with Dirichlet boundary conditions and let
(©7),,~1 be a corresponding orthonormal basis of L?(2).



Spectral properties
Theorem (Chan and Guo, 1989)
@ A has compact resolvent and its (pure point) spectrum is
={\ = AP]i,j eN*}
@ The eigenspace associated to an eigenvalue )\ of A is given by
Span {¢9(a)¢§)<. ) = e~ NII(a) P ( ‘ )| A= AP = A} .
© The real eigenvalue \y of A is dominant:
M=M= >Re()), Vieco(Ad), \#A.

@ )1 is a simple eigenvalue, the corresponding eigenspace being
generated by

p1(a,z) == P (a)p? (x) = e M (a)pP (2).




Spectral properties

A
x
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Figure: Spectra of Ay and —kA.

In this example, there is only 1 unstable eigenvalue Aq:
Re(\) < AP <\ <22 wn>2

— M =2 =P >0, Re (\,) <0,



Compactness & Stability

Proposition (Chan and Guo, 1989)

The semigroup €' generated on X by A is compact for t > a*.

This implies in particular that (see Zabczyk, 1975)
wa(A) = wo(A)

where w,(4) = . ligrn t~11n ||e*|| denotes the growth bound of
—+oo

et and wo(A) :=sup {Re X | A € 0(A)} the spectral bound of
A.

Consequence

The above condition ensures that the exponential stability of e4 is
equivalent to the condition

wo(A) =sup{ReA | A ead(4)} <O0.
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Abstract framework

Consider

e A:D(A) — X with compact resolvent on a Hilbert space X
generating a Cy-semigroup in X,

e C € L(X,Y), where Y is another Hilbert space.
We assume

(A1) A admits M eigenvalues (counted without multiplicities) with
real part greater or equal than 0:

- K Re/\]\/[+2 < Re)\M+1 <0< Redpy <--- < Redy < Rey.
(A2) We have the equality

wa(A) = wp(A).



Detectability

Definition
The pair (A, C) is detectable if there exists L € L(Y, X) such that
(A + LC) generates an exponentially stable semigroup.

We are going to show that:

(Spectral observability of unstable eigenfunctions of A]
(Ag0:)\g0for)\62+ and C’g0:0) = =0

|

[Detectability of the finite dimensional system (A™, C*)]

|

[ Detectability of the infinite dimensional system (4, C)]




Projection operator

We set ¥, := {\q,...,\ys} and let ' be a positively oriented
curve enclosing > but no other point of the spectrum of A. Let
P, : X — X be the projection operator defined by

P, = b (€ —A)tde

21 r,

Stable modes Unstable modes



Splitting

We set X := Py X and X_ := (I — P;)X, and then P, provides
the following decomposition of X

X=X,®X_.

Following Russell and Triggiani, we can decompose our system into
two subsystems :

@ a finite dimensional system to be stabilized,

@ a stable infinite dimensional system.

More precisely, X, and X_ are invariant subspaces under A (since
A and P, commute) and the spectra of the restricted operators
Alx, and A|x_ are respectively ¥, and Y_ :=o(A4) \ ©,. We
also define

Ay = Alpaynx, DA N Xy — Xy,

A_ = A"D(A)QX_ : D(A) NnNX_. — X_.



Splitting

If A is diagonalizable, the space X, = P, X is the finite
dimensional space spanned by the eigenfunctions of A associated
to the unstable eigenvalues:

M
X, =EPKer(A—\p).
k=1
and
M
dim X, = ng
k=1

where m{ := dim Ker (4 — \;,) is the geometric multiplicity of .



Splitting

In the general case, the space X is the finite dimensional space
spanned by the generalized eigenfunctions of A associated to the
unstable eigenvalues:

M
X = @ Ker (A - )™
k=1

where ml,z is the multiplicity of the pole Ay in the resolvent
(A—XN)"L

The space Ker (A — )\k)mg is called the generalized eigenspace
associated to \j. lts dimension mﬁ is the algebraic multiplicity of
Ak

M
; _ A
dim X | = E my, .
k=1



Detectability result : from L, to L

Theorem

Let
@ Qy:Y — Y, :=CX, be the orthogonal projection operator
fromY toY,,
@ iy, : X — X be the embedding operator from X into X.
Set
Cp=Cix, € L(X,Y,)

and assume that the finite dimensional projected system (A, C')
is detectable through L, € L(Y,, X ).
Then, the infinite dimensional system (A, C') is detectable through

L=ix,L.Q, €LY, X).




Proof
For L € L(Y, X), consider the system
2(t) = (A+ LCO)z(t).

If we write z =z, + z_ where z, := P,z and z_ := (I — P,)z,
by applying P, and (I — P;) to the above equation, we obtain a
corresponding splitting of the system into two subsystems:

{ (1) = Agpzp(t) + PrLC2(t),
2.(t) = A_z_(t)+ (I —Py)LC=(t).

Taking L = ix, L@ and using the identities 1 ix, = Idy  and
(I = Py)ix, =0, we obtain

{24(75) = Az () + L1 Q4 C2(d),
) = A s (b).



Proof

It follows from assumption (A2) that z_ is exponentially stable:
Iz ()]l < K™= - (0)]

where 0 < w_ < —ReApr11. On the other hand, by using
Cy = Q4Cix, andsince iy, z; = z;, we have

() = Apze(t) + LeQC(z4(t) + 2-(1))
= Ay2(t) + L1 Q4 Cix, 24 (1) + L1 Q1 Cz_(t)
= (Ap + LiCp)zp(t) + LyQCz(2).



Proof

Using Duhamel's formula, we get

t

S () =TF =0+ [ TE,14Q4 0 (s)ds.

where T is the semigroup generated by A, + L C, which is
exponentially stable by the detectability assumption, i.e. there exists
w4 > 0 such that

T || < Ke™+t||z||  Vae Xy, V>0
Combined with exponential stability of z_, this yields

t
IOl < K { e O+ 2] [ et Jo_o)] ds} ,

and consequently

. e—u,urt _ e—w_t
o0 € K (4 IO = ol



Proof

It is then sufficient to choose w small enough such that
0 < w; < w_ to have the exponential decay of ¢t — 2, ():

lz+ (0] < Ke™ lzof|,  ¢>0.

We have thus proved the exponential decay of z = z, + z_.



Hautus test

The following result provide a sufficient condition of Hautus type
for the detectability of the finite dimensional projected system
(A, C5).

Proposition
If the spectral observability condition (Hautus test)
(Agaz)\go for A e ¥, anng0:0) = =0

is satisfied, then (A, C.) is detectable.

Proof : Since Cy 2z = Czy for any 2z, € X, if the Hautus test is
satisfied, then it is clear that the following Hautus test is also satisfied:

(¢eDA)NX, | Ap=dpand CLp=0) = ¢ =0.

As the above system is finite dimensional, (A, C ) is detectable. B




Remarks

Corollaire

If the Hautus test is satisfied, then (A, C) is detectable via the
stabilizing output injection operator L defined previously.

@ The matrices A, and C are in practice of small size : their
dimensions are respectively dim X x dim X and
dim Y} x dim X..

@ The stabilizing operator L of the finite dimensional system
(A4, C4) can be determined by solving a finite dimensional
algebraic Riccati equation.



@ Spectral properties of the operator

© Detectability
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Observer

Assumptions (A1) (M < oo unstable eigenvalues) and (A2)
(wa(A) = wp(A)) are satisfied for our population model and the
problem of determining the stabilizing operator L for (A, C) fits
into the framework described above.

It only remains to verify that the Hautus test is satisfied for our
system (A, C):

Lemma

If o € D(A) satisfies Ap = \p for A € ¥ and Cp =0, then ¢
vanishes identically.




Proof of the spectral observability

Let A be an unstable eigenvalue of A and let ¢ € D(A) satisfying
Agp = A\p. Decomposing ¢(0, ) in the basis of L?(Q) constituted of the
eigenfunctions of —kA, the unique solution of the evolution system

0
az)(a z) = kA(p(a z) — A+ pela,x), a € (0,a%), x € Q,
go(a x) a € (0,a"), x € 09,
Za]go] ), x €,
JjeN

is given by

pla,x) = Y aje N I(a) P ().
JEN
Plugging the above expression in the renewal equation, we obtain
D
>l (@) = a; (/ Bla)e AT TI(a )) 0P (z).
JEN jEN

We see that is equivalent to, for any j € N, either a; = 0, either X + )\jD
solves the characteristic equation of the diffusion free problem.



Proof of the spectral observability (end)

Consequently, we have

plaz)= Y e O I(a)pP (x).
JIAAP €a(Ao)

The condition C'p = 0 reads then

— D
Z aje A+ )aaij|o(ac) =0, a € (a1, as).
JIA+AP €a(Ao)

Since the eigenfunctions of —kA with Dirichlet boundary
conditions are analytic, we immediately obtain that ¢ = 0. B



Main result

Theorem

Let po € X and assume that y(t) = p|(a, a0)x0 (t > 0) is known.
Let p the observer defined by

{ p(t) = Ap(t) + L(Cp(t) — y(1)),  t€(0,T)
p(0) =0,

where L € L(Y, X) is the stabilizing operator defined by
L = ”L'X+L+Q+ S E(Y,X)
Then, there exist M,w > 0 such that

() = p()Il < Me™" |Ipoll, ¢ >0.




@ Spectral properties of the operator

© Detectability
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@ Numerical results
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Full observation in age

Taking © = (0,7) and assuming that pg is an unknown initial data, we
want to estimate p at time t = T where p solves:

atp(awrat) +8ap(a,a?,t)
= —pla)p(a,z,t) + Opzpla, x,t), a€ (0,a*),x € (0,7),t >0,
p(a,0,t) = p(a,7,t) =0, a € (0,a*),t >0,
p(a,x,0) = po(a,z), a € (0,a*),z € (0,7),
(0, z,t) / Bla)p(a,z,t)da z € (0,7),t>0,

provided we know the observation

y(t) = p(t)|(0,0%)x (n/3,27/3) s te(0,7).



The fertility and mortality functions

—— Fertility function
- = Mortality function

o 02 o0a 06 08 1 12 14 16 18 2

Figure: The fertility and mortality functions.

Taking a* = 2, we choose the fertility and mortality function to be
B(a) = 10a(a* — a)exp {—20(a — a*/3)*}, wla) = (a* —a)™t.

Note that the function II(a) can be computed explicitly:

II(a) = exp (— /OQM(S) d8> = a*a: =,




First test : initial state = unstable eigenfunction

Under these assumptions, there is a unique unstable eigenvalue

A1 = A} — 7%(where A} € R satisfies F'(\}) = 1). Computing numerically
this value, we obtain that A1 = 0.239. We first choose as initial state an
eigenfunction corresponding to A4

*
a —a —A?a

po(a, @) = ¢1(a,z) = pY(a)er’(z) = ——e

sin(x).




Estimated and exact solution at time ¢t =T

The exact solution is:

pla,z,t) = eMpg (a,z).

We take: T = 2a*, with a* = 2.
Using N, = 100, N, = 120 and N, = 2N,, we obtain an L?
relative error of 4.07%.

B,
I
I05 Ia5
o
s s

Estimated (left) and exact (right) solution at time ¢t = 7.

1 15 2 25 1 15 2 25



Second test : initial state = Gaussian function

We choose a space-aged localized initial distribution of population
of gaussian type:

poa,z) = exp {— (30(a — a*/4)% + 20(z — 5/4)2)} :

Gaussian initial state (3D and 2D representations).



Estimated and exact solution at time ¢t =T

We obtain an L? relative error of 2.99%, 9.6% and 16.2%
respectively for 5%, 10% and 15% of noise?.

. .
-
e
.-
1.2 | L ¥

Estimated (left) and exact (right) solution at time t = T' (5% of noise).

1“Exact” solution refers here to a numerical solution computed-numerically.



Estimated and exact final total population

* *

PT($):/ p(a,T,z)da and PT(x):/ p(a, T, z)da.
0 0

02
- - - Estimated PEEEN - - - Estimated
— Exact L e N — Exact

016 o N
S N
014

Estimated (dashed line) and exact total population at time ¢t =T
with 5% of noise (left) and 15% of noise (right).



Distributed observation in space and age

025,
- - -Estimated - - -Estimated
— Exact LemTTN — Exact

0z e .
K

Estimated (dashed line) and exact total population at time ¢t =T
with age observation in (0, ;0) (left) and <C;,a*> (right).



Influence of the observation time

We consider a configuration with two unstable eigenvalues and we
investigate the influence of T'. For T' = 0.5a*, we obtain a relative
error of 27% for the population density, but we still obtain a
reasonable approximation for the total population.

05, 03,
- - -Estimated - - ~Estimated
045) 2 —Exact —Exact
/ 025
o /
4

Estimated (dashed line) and exact total population at time ¢t = T,
for T'= a* (left) and for T'= 0.5a* (right).



Conclusion

@ Other models

az
o Other outputs : y(x,t) = / p(a,z,t)da, e 0.
e Space dependent coefficients : ' B(a,x), wla,x).

e Nonlinearities: B(a,z, P) and u(a,z, P) where

s

P(z,t) = /Oa p(a, z,t) da.

e adaptative observer which gives an estimation of p and k.
© Approximation

e Convergence analysis and error estimates

o Uniform exponential stability (with respect to Aa et h)



Particular case: A, := A|p(a)nx, diagonalizable

The results collected here can be found in Barbu and Triggiani
2004. We assume that A := A|p(a)nx is diagonalizable. For
simplicity, we denote by /N the number of unstable eigenvalues of

A counted with multiplicities (still denoted A\, k =1,--- , N).
This implies in particular that the unstable space is
X, =EPKer(A-\p).
k=1

We denote then by (¢); << @ basis of X . Denote by 1) an
eigenfunction of A* corresponding to the unstable eigenvalue )\,
(1 <k < N). It can be shown that the family (1), ;< can be
chosen such that (¢k);<pcy and (Yx),<p< v form bi-orthogonal
sequences, in the sense that (g, ¥m)x = dkm. It follows then that
the projection operator P, € £(X, X ) can be expressed as

N

Piz=Y (z¢1)xer (2 €X)
k=1



Since
X, =P X =Span{gg, 1 <k <N},

it follows that
Y, =CX; =Span{C¢, 1 <k < N}.
Assume now that the family
(Cor)i<p<n is linearly independent in X. (1)

This property holds true in the case of internal observation.
Therefore
dimYy; =dim X, = N.

We denote by G the Hermitian matrix of size N x N defined by
G= ((C‘Piv C‘PJ')Y)1<¢<N, 1<GEN ©

It is not difficult to prove that (1) is equivalent to the fact that G
is invertible.



The orthogonal projection operator ()

Lemma

Assume that property (1) holds true. Then, for any y € Y, then
Q1y is defined by

N

Qry =Y (Wm)y Ces,

i=1
where

N
=Y 0;Cop;
=1

and

-1
(@ij)1cien,1cjen =G




From L, to L

The (finite dimensional) operator C'y € L(X,,Y}) satisfies
Cror = Cypy for any k € {1,..., N}. Note that C'; is nothing but
the identity matrix when we choose as basis for X and Y,
respectively (¢r);<x<y and (Cpr)icp<n- Therefore, using these
bases, AL + L1 C. is a Hurwitz matrix provided
diag(A1, ..., An) + Ly is Hurwitz. It is thus sufficient to take
Ly = —ol with

o> Re)

to ensure the stability of Ay + L (.
The corresponding operator L € L(Y, X) for every y € Y

N N
Ly=1L,Qiy=Ly (Z (Y, 1)y C%) =—0 > (y,m)y @i

i=1 i=1

and, following Theorem 6, A + LC generates an exponentially
stable semigroup.



Goal

Under these assumptions, there is a unique unstable eigenvalue
A1 = A} — 1 (where \} € R satisfies F'(\}) = 1). Computing
numerically this value, we obtain that A; = 0.239.

The observation operator C' € L(X,Y) is given by

Cv = ©|(0,a%)x(r/3,27/3)> Vpe X
where X = L?((0,a*) x (0,7)) and Y = L?((0,a*) x (7/3,27/3)).
In order to estimate p(7'), we use the observer designed previously.
As the unstable space is the one-dimensional space

X, = Ker (A — A1) = Span {1} = Span {¢}(a)e? (2) } ,
the observer involves the stabilizing output injection operator L
defined by
Ly=—o(y,mlyyr (yeY),
where o > A1 (gain coefficient) and
Co1

m=a1Cp = ————-.
|Cerlly



Goal

The observer solves then the following system

op(a, z,t) + 0.p(a, x,t) + p(a)pla, x, t)
—0zapla, z,t) + 0 (CP,m)y #1(a, 7)
=0 (y,m)y ¢i(a, ), a € (0,a*),z € (0,7),t >0,
pla,0,t) = pla,w,t) =0, a € (0,a*),t >0,
pla,x,0) = a € (0,a*),z € (0,7),
p(0,z,t) / B(a)p(a, z,t) da z € (0,m),t>0.

Goal: compare p(T") and p(T)



Main difficulties concerning the discretization

@ Singular behavior of the coefficient
— rescaling the problem: introduce the auxiliary variable

u(a,z,t) = p(a(z)t) = exp (fo ds) pla,z,t)
Awu(a, z,t) + Oau(a, x,t) — Ozsu(a, z,t) =0,
u(a,0,t) = u(a,m, t) =0,

u(av x, 0) = Uo (aa x) = pO(a7 :c)/H(a),

u(0,z,t) = /Oa m(a)u(a,z,t)da, where m(a) = B(a)Il(a)

@ discretization of the renewal eq.: p(0,x,t) fo p(a,z,t)da

— u(0,z,nAt) = / m(a)u(a,z, (n — 1)At)da
0
@ presence of the extra term in the observer equation (CD,71)y 1,
— introduce 6(t) = (CIIu, n1 ), which satisfies

{ 0(t) = — (CTaT,m)y + (CHO2al, M)y — 08(t) + o (y, 1)y
6(0) =0



Rescaling the open loop problem

First of all, in order to overcome the difficulties due to singular behavior
of the coefficient i, we introduce the auxiliary variable

u(a,x,t) = p(léfl,(z,)t) = exp (/Oa w(s) ds) p(a, x,t).

One can easily check that u satisfies

Opu(a, x,t) + dyu(a, x,t) — Orzu(a,x,t) =0, a € (0,a*),z € (0,7),t >0,
u(a,0,t) = u(a,m,t) =0, a € (0,a*),t>0,
u(a, z,0) = ug(a, ), a € (0,a*), z € (0,7),
u(0,x,t) = / m(a)u(a,z,t) da, x € (0,m),t>0,

Jo

where we have set ug(a,x) = po(a,x)/I(a) and where
m(a) = B(a)II(a) stands for the maternity function.



Finite difference discretization in time

Let u"(a,x) be an approximation of u(a,z,t™), where t" = nAt,
0 < n < Ny, At =T/Ny is a discretization of (0,7"). Starting from
u®(a,x) = ug(a, ), we construct u™ for n > 1 using an Euler's
backwards scheme

u"(a, ) —u" a, )

A7 + Jpu"(a, x)
- xmun(aﬂx) =0, a € (0,(1*), T e (O,ﬂ'),
u"(a,0) =u"(a,7) =0, a € (0,a%),
u’(a, ) = up(a, ), ac (0,a*), z e (0,m),




Finite difference discretization in space

Denoting by u?(a) an approximation of u"(x;,a) (where
x; =th =1il/(Ny + 1), with 0 < i < N, + 1) and using a classical
centered approximation for the second order derivative in space, the

above system yields

dun 1 | B
da (a)‘}’ﬁKU (a)+KtU (a) = AtU (CL),

U (0) = /0 " (@)U () da,
U%(a) = Ug(a),

where

uy (a) uo(a, 1) Ly .

uo(a, TN, )



Finite difference discretization in age

We use a Crank-Nicholson scheme. Denoting by u?’k an approximation
of u?*(a*), where a* = kAa, 0 < k < N,, At = a*/N,, and by

Uy’

Un,k —
n,k

an approximation of U™ (a*), we move from age a*~! to age a* following

1 n,k n,k—1 unk 4 gmk-l 1 ynk 4 gnik-1
AUV )+h2K< 2 A 2

1 ur- 1k+Un 1,k—1
At( 2 )

with the initial conditions
Uovk:Uo(a"?), Vk=0,...,Ng,

*

Zwkm yun—bk ~ / m(a)U" *(a) da.
0



The algorithm

@ For n =0 : Initialization of U%*

Q@ Forn=1,...,N;:
o k = 0: Initialization of U™ using the values of (U”’l‘j)‘?;O:

NO,
Un,O _ Zwk m(ak)Unfl,k
k=0
n,k
Uy
o Fork=1,...,N,, U* = solves the linear system
AUn,k bn,k
where ALA
1 1 At Aa
A=(At+ =Aa I+ = K
( + 5 a> + 5 72
Aa _ ke Aa At Aa _
n,k _ 2% n—1,k n—1,k—1 _ /¢ _ n,k—1
L A LA )+Km 2)1{ - KJU
n,k
Y1
o Y™F = where yfk = H(ak)u?’k if /1 <ih < ¢ and
n,k

Ynr



Discretization of the closed loop system : observer design

9pla,z,t) + 0apla, x,t) + p(a)pla, z,1)

—0pzpla, x,t) + 0 (CD,ym)y e1(a,z) = o (y,m)y ¢1(a, ),
p(a,0,t) = pla,m,t) =0,
pla,z,0) =

p(0,z,t) /ﬁ pla,z,t)d
\




Rescaling the problem

First of all, we introduce the auxiliary variable

u(a,x,t) = W = exp </Oa wu(s) ds> pla,z,t).

One can easily check that u satisfies
ou(a, x,t) + 0.u(a, x,t) — Oz t(a, x,t)

+o (CHu, m)y vi(a,z) = o (y,m)y vi(a, z),
u(a,0,t) = u(a,m,t) =0,

u(a,z,0) =0,

o
ﬁ(Ow,t)z/ m(a)u(a,z,t)da,
0

where we have set vi(a, z) = p1(a,x)/I(a).



Discretization of the term (CTlu, 7, )y

Let us introduce
0(t) = (CTIu, m)y -
Using the fact that (CTIvi,71)y = 1, we remark that § satisfies

0(t) = — (CT0,T,m)y + (CHali, m)y — ob(t) +0 (y,11)y -
Consequently,
0(t) = — (CTIO,(t), m)y + (CTIOpati(t), m)y — oO(t) + o (y(t), m)y ,
oru(a, x,t) + d,u(a, x,t) — Orzti(a, x,t) + ob(t)v1(a, x)
=0 (y,m)y vi(a,z),
6(0) =0,
u(a,0,t) = u(a,?,t) =0,

u(a,z,0) =0,

(0, 2,1) / m(a)ia, z, 1) da.
0



Finite difference discretization in time

Let @™ (a,x) (resp. 0™, y"(a,x)) be an approximation of u(a,z,t") (resp.
0(t"), y(a,x, ")), where t" = nAt, 0 < n < Ny, At=T/N, is a
discretization of (0,T). Starting from 6#° = 0 and @°(a, ) = 0, we construct
0™ and ©"™ for n > 1 using an Euler’s backwards scheme

i (0" — 6" ") = — (CTHAT" ", m)y + (CHOue@™ ™', m1)
—a0" +o(y" m)y,

i (@"(a, @) — 8" (@, 7)) + 00" (a, @) — Dua (a,7) + 00" 01
=0 (y",m)y v,

0° =0,

@"(a,0) = " (a, ) = 0,

@°(a,z) =0,




Finite difference discretization in space

Denoting by uj'(a) an approximation of u™(z;,a), the above system yields

1 n_in—l_ n _ “
Ee_Ate ob h(/o

—% (/O T(a)n, () TKT™ (a) da) +oh (/0 n,(@)TY" (a)da> ,

S
At

*

*

I(a)m, (a)"9.U" " (a) da)

dﬁn 1 “n =in n
(a) + =KU"(a) + —U"(a) + 06" V1i(a)

da h2
— Lo +on /
At o

0° =

m1(a)"Y" (a) da) Vi(a),

. 't (a) vi(a, 21) m(a, 1)
U"(a) = , ,Vi(a) = : 1 (a) =
uy, (a) vi(a, zN, ) m(a, zn,)



Finite difference discretization in age

We use a Crank-Nicholson scheme. Denoting by a:”“ an approximation of

~n,k
uy’
~n

u; (ak), where a® = kAa, 0 < k < N, At = a*/Nq, and by Uk = :
ayt
an approximation of U™(a*), we move from age a"~* to age a” following

1 n— n Yo, W\ T Un—Lk _ gn—1k-1
Ata = EG 50" —hAa (ZH(I{:A&) (771> < Ao >>
No T —~ Nq T
J— <Z kAa, ( ) KUn—l,k> +O'hACL (Z (nllc) Yn,.k:) 7
k=1 k=1
and
1 in, E—_ fj’n,k + ﬁn,kfl 1 ﬁn’k + ﬁn,kfl

rin—1,k Tn—1,k—1 Ng T
+o0"VE = Ait <U +2U >+UhAa (Z (n{) Y”‘*7> A%

Jj=1



with the initial conditions
0% =0,

U0 =0, Vk=0,...,N,,

N,
U0 = Zwk m(a®)Un—Lk,
k=0
Here
vy (kAa, x1) m(kAa, xq) y"(kAa, x1)
Vi = : ;= : YR = :

vy (kAa,zy,) m(kAa,zy,) y"(kAa,xN,)



@ For n =0 : Initialization of #° and gk (k=0,...,N,) at 0.

Q@ Forn=1,...,N;:
o Calculate #™ using the values of §"~! and (U"_l’j);-v:“o:

N
n o__ 1 n—1 5 kT (fyn—1,k  qyn—1,k—1
0" = o (9 hAtgﬂ(kAa)(nl) (U U )
AaAt Ja
ZH (kAa)(pP)TRU™1F 4 ahAaAtZ(n'f)TY”’k)
k=1 k=1
o k= 0: Initialization of U™ using the values of (ﬁ"‘l’j);vvgo:
Nq
= Zwk m(kAa)U™ 1k
k=0
e For k=1,..., Ng, solve the linear system
Aﬁn,k _ Bn,k:
where
Tnk _ Aa n—1,k | Fin—1,k—1 Aa AtAa_, | = k-1
bt =St (T *+0 )+|(at- Ol- S5K| O

Ng T
— 0AaALOMVE + oh(Aa)2At (Z (n{) YW) N

Jj=1



End of the algorithm

L _ . ~n,k e\ ~n,k
o Pk =1 : where p;"" = II(a")u, " .
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