State estimation for linear age-structured population diffusion models

Karim Ramdani, Marius Tucsnak and Julie Valein

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Valenciennes, Stability of non-conservative systems July 5, 2016

A classical model for age-space structured populations is given by

$$\begin{aligned} \frac{\partial p}{\partial t}(a,x,t) &+ \frac{\partial p}{\partial a}(a,x,t) \\ &= -\mu(a)p(a,x,t) + k\Delta p(a,x,t), & a \in (0,a^*), \ x \in \Omega, \ t > 0, \\ p(a,x,t) &= 0, & a \in (0,a^*), \ x \in \partial\Omega, \ t > 0, \\ p(a,x,0) &= p_0(a,x), & a \in (0,a^*), \ x \in \Omega, \\ p(0,x,t) &= \int_0^{a^*} \beta(a)p(a,t,x) \, \mathrm{d}a, & x \in \Omega, \ t > 0. \end{aligned}$$

• p(a, x, t): distribution density of the population of age a at spatial position x at time t;

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- a^* : maximal life expectancy;
- k : diffusion coefficient;
- $\mu(a), \beta(a)$: death and birth rates (independent of x);

Figure: Typical birth and death rates.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Estimation problem

Knowing the output $y(t) := p|_{(a_1,a_2)\times\mathcal{O}}$ (but assuming that p_0 is unknown), estimate p(a, x, T) for all $a \in (0, a^*)$ and $x \in \Omega$, as $T \to +\infty$.

$$\begin{cases} \dot{p}(t) = Ap(t), & t \in (0,T) \\ p(0) = p_0, & \\ y(t) = Cp(t), & t \in (0,T), \end{cases}$$

where $C \in \mathcal{L}(X, Y)$, $Y := L^2((a_1, a_2) \times \mathcal{O})$ is defined by

$$C\varphi := \varphi|_{(a_1,a_2) \times \mathcal{O}}$$
 for all $\varphi \in X$.

We introduce the Luenberger observer

$$\begin{cases} \dot{p}(t) = A\hat{p}(t) + L(C\hat{p}(t) - y(t)), & t \in (0,T) \\ \hat{p}(0) = 0, \end{cases}$$

where $L \in \mathcal{L}(Y, X)$ is a linear operator to be defined. Then the error $e := \hat{p} - p$ satisfies

$$\begin{cases} \dot{e}(t) = (A + LC)e(t), & t \in (0,T) \\ e(0) = -p_0. \end{cases}$$

Goal

Find L such that $e^{t(A+LC)}$ exponentially stable (detectability).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Goal

Find L such that $e^{t(A+LC)}$ exponentially stable (detectability).

Spectrum of *A* : an infinite number of stable modes and a finite number of unstable modes.

Design an infinite dimensional Luenberger observer via a finite dimensional stabilizing operator.

Selective bibliography

• Population Dynamics

- Semigroup properties: Song et al., Chan, Guo, Li et al., Langlais, Walker
- **Controllability problems:** Ainseba, Anita, Iannelli, Langlais, Echarroudi, Maniar, Traoré, Kavian
- Inverse problems: Traoré, Rundell, Di Blasio, Lorenzi, Perasso, Picart
- Numerical aspects: Lopez, Trigiante, Milner, Kim, Huyer, Ayati, Dupont, Pelovska, Gerardo-Giorda

• State Space Splitting

- Abstract setting: Russel, Triggiani, Jacobson & Nett, Jacob & Zwart
- **Stabilization of PDE:** Barbu & Triggiani, Raymond et al., Badra & Takahashi

2 Detectability

3 Application : observer design for populations dynamics

1 Spectral properties of the operator

2 Detectability

3 Application : observer design for populations dynamics

4 Numerical results

うせん 神子 不明子 不明子 不日子

$$\begin{cases} \frac{\partial p}{\partial t}(a, x, t) = -\frac{\partial p}{\partial a}(a, x, t) \\ -\mu(a)p(a, x, t) + k\Delta p(a, x, t), & a \in (0, a^*), \ x \in \Omega, \ t > 0, \end{cases}$$
$$p(a, x, t) = 0, & a \in (0, a^*), \ x \in \partial\Omega, \ t > 0, \end{cases}$$
$$p(a, x, 0) = p_0(a, x), & a \in (0, a^*), \ x \in \Omega, \end{cases}$$
$$p(0, x, t) = \int_0^{a^*} \beta(a)p(a, t, x) \, \mathrm{d}a, \quad x \in \Omega, \ t > 0. \end{cases}$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

Assumptions

Typical assumptions on the birth and death rates β and μ :

•
$$\beta \in L^\infty(0,a^*)$$
 , $\beta \geqslant 0$ a.e. in $(0,a^*)$;

• $\mu \in L^1_{\mathrm{loc}}(0,a^*)$, $\mu \geqslant 0$ a.e. in $(0,a^*)$ and

$$\lim_{a \to a^*} \int_0^a \mu(s) \, \mathrm{d}s = +\infty.$$

We also introduce the function

$$\Pi(a) := \exp\left(-\int_0^a \mu(s) \,\mathrm{d}s\right)$$

which represents the probability to survive at age a > 0. In particular

$$\lim_{a \to a^*} \Pi(a) = 0.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

We introduce the Hilbert space $X:=L^2\left((0,a^*)\times\Omega\right)$ and let A be defined by:

$$\mathcal{D}(A) = \left\{ \varphi \in X \cap L^2\left((0, a^*), H_0^1(\Omega)\right) \middle| -\frac{\partial\varphi}{\partial a} - \mu\varphi + k\Delta\varphi \in X; \\ \varphi(a, \cdot)|_{\partial\Omega} = 0 \text{ for almost all } a \in (0, a^*); \\ \varphi(0, x) = \int_0^{a^*} \beta(a)\varphi(a, x) \, \mathrm{d}a \text{ for almost all } x \in \Omega \right\}$$

$$A\varphi = -\frac{\partial\varphi}{\partial a} - \mu\varphi + k\Delta\varphi, \qquad \forall\varphi \in \mathcal{D}(A).$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

The population dynamics problem reads then

$$\left\{ \begin{array}{ll} \dot{p}(t)=Ap(t), \qquad t>0\\ p(0)=p_0. \end{array} \right.$$

Theorem (Chan and Guo, 1989)

• A is the infinitesimal generator of a C_0 -semigroup e^{tA} on X.

- If $p_0 \in X$, there exists a unique solution $p \in C([0,\infty), X)$.
- If $p_0 \in \mathcal{D}(A)$, there exists a unique solution $p \in C([0,\infty), \mathcal{D}(A)) \cap C^1([0,\infty), X).$

McKendrick–Von Foerster model (1959) describes the diffusion free case (k = 0) :

$$\begin{cases} \frac{\partial p}{\partial t}(a,t) &= -\frac{\partial p}{\partial a}(a,t) - \mu(a)p(a,t), & a \in (0,a^*), \ t > 0, \\ p(a,0) &= p_0(a), & a \in (0,a^*), \\ p(0,t) &= \int_0^{a^*} \beta(a)p(a,t) \, \mathrm{d}a, & t > 0. \end{cases}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

The population operator ${\cal A}_0$ corresponding to the above system is defined as follows

$$\mathcal{D}(A_0) = \left\{ \varphi \in L^2(0, a^*) \, \Big| \, -\frac{\mathsf{d}\varphi}{\mathsf{d}a} - \mu\varphi \in L^2(0, a^*); \\ \varphi(0) = \int_0^{a^*} \beta(a)\varphi(a) \, \mathrm{d}a \right\}.$$

$$A_0 \varphi = -\frac{\mathsf{d}\varphi}{\mathsf{d}a} - \mu \varphi, \qquad \forall \varphi \in \mathcal{D}(A_0).$$

Then the McKendrick-Von Foerster model reads then

$$\begin{cases} \dot{p}(t) = A_0 p(t), & t > 0\\ p(0) = p_0. \end{cases}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Theorem (Song et al., 1982)

- A₀ has compact resolvent and its spectrum is constituted of a countable (infinite) set of isolated eigenvalues with finite algebraic multiplicity.
- **2** The eigenvalues $(\lambda_n^0)_{n \ge 1}$ of A_0 (counted without multiplicity) the (complex) solutions of the characteristic equation

$$F(\lambda) := \int_0^{a^*} \beta(a) \Pi(a) e^{-\lambda a} \, \mathrm{d}a = 1.$$

• The eigenvalues $(\lambda_n^0)_{n \ge 1}$ are of geometric multiplicity one:

$$\varphi_n^0(a) = e^{-\lambda_n^0 a} \Pi(a) = e^{-\lambda_n^0 a - \int_0^a \mu(s) \, \mathrm{d}s}$$

Every vertical strip of the complex plane contains a finite number of eigenvalues of A₀.

Theorem (Song et al., 1982)

The operator A_0 has a unique real eigenvalue λ_1^0 . Moreover:

- λ_1^0 is of algebraic multiplicity one;
- **3** $\lambda_1^0 > 0 \ (<0) \iff F(0) = \int_0^{a^*} \beta(a) \Pi(a) \, \mathrm{d}a > 1 \ (<1);$

(a) λ_1^0 is a real dominant eigenvalue:

$$\lambda_1^0 > \operatorname{Re}(\lambda_n^0), \qquad \forall n \ge 2.$$

Back to the problem with diffusion

$$\mathcal{D}(A) = \left\{ \varphi \in X \cap L^2\left((0, a^*), H_0^1(\Omega)\right) \middle| -\frac{\partial\varphi}{\partial a} - \mu\varphi + k\Delta\varphi \in X; \\ \varphi(a, \cdot)|_{\partial\Omega} = 0 \text{ for almost all } a \in (0, a^*); \\ \varphi(0, x) = \int_0^{a^*} \beta(a)\varphi(a, x) \, \mathrm{d}a \text{ for almost all } x \in \Omega \right\} \\ A\varphi = -\partial_a\varphi - \mu\varphi + k\Delta\varphi, \qquad \forall \varphi \in \mathcal{D}(A).$$

Let $0 < \lambda_1^D < \lambda_2^D \leq \lambda_3^D \leq \cdots$ be the increasing sequence of eigenvalues of $-k\Delta$ with Dirichlet boundary conditions and let $(\varphi_n^D)_{n\geq 1}$ be a corresponding orthonormal basis of $L^2(\Omega)$.

Theorem (Chan and Guo, 1989)

A has compact resolvent and its (pure point) spectrum is

$$\sigma(A) = \left\{ \lambda_i^0 - \lambda_j^D \, | i, j \in \mathbb{N}^* \right\}$$

② The eigenspace associated to an eigenvalue λ of A is given by

$$\mathsf{Span}\left\{\varphi_i^0(a)\varphi_j^D(x) = e^{-\lambda_i^0 a} \Pi(a)\varphi_j^D(x) \, \middle| \, \lambda_i^0 - \lambda_j^D = \lambda\right\}.$$

③ The real eigenvalue λ_1 of A is dominant:

$$\lambda_1 = \lambda_1^0 - \lambda_1^D > \operatorname{Re}(\lambda), \qquad \forall \lambda \in \sigma(A), \ \lambda \neq \lambda_1.$$

 λ₁ is a simple eigenvalue, the corresponding eigenspace being generated by

$$\varphi_1(a,x) := \varphi_1^0(a) \varphi_1^D(x) = e^{-\lambda_1^0 a} \Pi(a) \varphi_1^D(x).$$

Spectral properties

Figure: Spectra of A_0 and $-k\Delta$.

In this example, there is only 1 unstable eigenvalue λ_1 :

$$\operatorname{Re}\left(\lambda_{n}^{0}\right) < \lambda_{1}^{D} < \lambda_{1}^{0} < \lambda_{2}^{D}, \qquad \forall n \ge 2$$
$$\implies \qquad \lambda_{1} = \lambda_{1}^{0} - \lambda_{1}^{D} > 0, \qquad \operatorname{Re}\left(\lambda_{n}\right) < 0, \qquad \forall n \ge 2$$

Proposition (Chan and Guo, 1989)

The semigroup e^{tA} generated on X by A is compact for $t \ge a^*$.

This implies in particular that (see Zabczyk, 1975)

$$\omega_a(A) = \omega_0(A)$$

where $\omega_a(A) := \lim_{t \to +\infty} t^{-1} \ln \|e^{tA}\|$ denotes the growth bound of e^{tA} and $\omega_0(A) := \sup \{\operatorname{Re} \lambda \mid \lambda \in \sigma(A)\}$ the spectral bound of A.

Consequence

The above condition ensures that the exponential stability of e^{tA} is equivalent to the condition

$$\omega_0(A) = \sup \{ \operatorname{Re} \lambda \mid \lambda \in \sigma(A) \} < 0.$$

1 Spectral properties of the operator

2 Detectability

3 Application : observer design for populations dynamics

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

4 Numerical results

Consider

- A: D(A) → X with compact resolvent on a Hilbert space X generating a C₀-semigroup in X,
- $C \in \mathcal{L}(X, Y)$, where Y is another Hilbert space.

We assume

(A1) A admits M eigenvalues (counted without multiplicities) with real part greater or equal than 0:

 $\cdots \leqslant \operatorname{Re} \lambda_{M+2} \leqslant \operatorname{Re} \lambda_{M+1} < 0 \leqslant \operatorname{Re} \lambda_M \leqslant \cdots \leqslant \operatorname{Re} \lambda_2 \leqslant \operatorname{Re} \lambda_1.$

(A2) We have the equality

$$\omega_a(A) = \omega_0(A).$$

Detectability

Definition

The pair (A, C) is detectable if there exists $L \in \mathcal{L}(Y, X)$ such that (A + LC) generates an exponentially stable semigroup.

We are going to show that:

Projection operator

We set $\Sigma_+ := \{\lambda_1, \dots, \lambda_M\}$ and let Γ_+ be a positively oriented curve enclosing Σ_+ but no other point of the spectrum of A. Let $P_+ : X \to X$ be the projection operator defined by

$$P_{+} := -\frac{1}{2\pi i} \int_{\Gamma_{+}} (\xi - A)^{-1} d\xi.$$

(日)、

э

Splitting

We set $X_+ := P_+X$ and $X_- := (I - P_+)X$, and then P_+ provides the following decomposition of X

 $X = X_+ \oplus X_-.$

Following Russell and Triggiani, we can decompose our system into two subsystems :

- a finite dimensional system to be stabilized,
- a stable infinite dimensional system.

More precisely, X_+ and X_- are invariant subspaces under A (since A and P_+ commute) and the spectra of the restricted operators $A \mid_{X_+}$ and $A \mid_{X_-}$ are respectively Σ_+ and $\Sigma_- := \sigma(A) \setminus \Sigma_+$. We also define

$$\begin{aligned} A_+ &:= A|_{\mathcal{D}(A) \cap X_+} : \mathcal{D}(A) \cap X_+ \longrightarrow X_+, \\ A_- &:= A|_{\mathcal{D}(A) \cap X_-} : \mathcal{D}(A) \cap X_- \longrightarrow X_-. \end{aligned}$$

If A is **diagonalizable**, the space $X_+ = P_+X$ is the finite dimensional space spanned by the eigenfunctions of A associated to the unstable eigenvalues:

$$X_+ = \bigoplus_{k=1}^M \operatorname{Ker} (A - \lambda_k).$$

and

$$\dim \mathbf{X}_+ = \sum_{k=1}^M m_k^{\mathrm{G}}.$$

where $m_k^{\mathrm{G}} := \dim \operatorname{Ker} (A - \lambda_k)$ is the geometric multiplicity of λ_k .

Splitting

In the general case, the space X_+ is the finite dimensional space spanned by the generalized eigenfunctions of A associated to the unstable eigenvalues:

$$X_{+} = \bigoplus_{k=1}^{M} \operatorname{Ker} \left(A - \lambda_{k}\right)^{m_{k}^{\mathrm{P}}}$$

where $m_k^{\rm P}$ is the multiplicity of the pole λ_k in the resolvent $(A - \lambda)^{-1}$. The space Ker $(A - \lambda_k)^{m_k^{\rm P}}$ is called the generalized eigenspace associated to λ_k . Its dimension $m_k^{\rm A}$ is the algebraic multiplicity of λ_k .

$$\dim \mathbf{X}_+ = \sum_{k=1}^M m_k^{\mathbf{A}}.$$

Theorem

Let

• $Q_+: Y \to Y_+ := CX_+$ be the orthogonal projection operator from Y to Y_+ ,

• $i_{X_+}: X_+ \to X$ be the embedding operator from X_+ into X. Set

$$C_+ = Ci_{X_+} \in \mathcal{L}(X_+, Y_+)$$

and assume that the finite dimensional projected system (A_+, C_+) is detectable through $L_+ \in \mathcal{L}(Y_+, X_+)$. Then, the infinite dimensional system (A, C) is detectable through

 $L = i_{X_+} L_+ Q_+ \in \mathcal{L}(Y, X).$

Proof

For $L \in \mathcal{L}(Y, X)$, consider the system

$$\dot{z}(t) = (A + LC)z(t).$$

If we write $z = z_+ + z_-$ where $z_+ := P_+ z$ and $z_- := (I - P_+)z$, by applying P_+ and $(I - P_+)$ to the above equation, we obtain a corresponding splitting of the system into two subsystems:

$$\begin{cases} \dot{z}_{+}(t) &= A_{+}z_{+}(t) + P_{+}LCz(t), \\ \dot{z}_{-}(t) &= A_{-}z_{-}(t) + (I - P_{+})LCz(t). \end{cases}$$

Taking $L = i_{X_+}L_+Q_+$ and using the identities $P_+i_{X_+} = Id_{X_+}$ and $(I - P_+)i_{X_+} = 0$, we obtain

$$\begin{cases} \dot{z}_{+}(t) &= A_{+}z_{+}(t) + L_{+}Q_{+}Cz(t), \\ \dot{z}_{-}(t) &= A_{-}z_{-}(t). \end{cases}$$

It follows from assumption (A2) that z_{-} is exponentially stable:

$$\left\|z_{-}(t)\right\| \leqslant K e^{-\omega_{-}t} \left\|z_{-}(0)\right\|$$

where $0 < \omega_{-} \leq -\text{Re} \lambda_{M+1}$. On the other hand, by using $C_{+} = Q_{+}Ci_{X_{+}}$ and since $i_{X_{+}}z_{+} = z_{+}$, we have

 $\dot{z}_{+}(t) = A_{+}z_{+}(t) + L_{+}Q_{+}C(z_{+}(t) + z_{-}(t))$

 $= A_{+}z_{+}(t) + L_{+}Q_{+}Ci_{X_{+}}z_{+}(t) + L_{+}Q_{+}Cz_{-}(t)$

$$= (A_{+} + L_{+}C_{+})z_{+}(t) + L_{+}Q_{+}Cz_{-}(t).$$

Proof

Using Duhamel's formula, we get

$$z_{+}(t) = \mathbb{T}_{t}^{+} z_{+}(0) + \int_{0}^{t} \mathbb{T}_{t-s}^{+} L_{+} Q_{+} C z_{-}(s) ds,$$

where \mathbb{T}_t^+ is the semigroup generated by $A_++L_+C_+,$ which is exponentially stable by the detectability assumption, i.e. there exists $\omega_+>0$ such that

$$\left\| \mathbb{T}_{t}^{+} x \right\| \leqslant K e^{-\omega_{+} t} \left\| x \right\| \qquad \forall x \in X_{+}, \, \forall t > 0.$$

Combined with exponential stability of z_{-} , this yields

$$\|z_{+}(t)\| \leq K \left\{ e^{-\omega_{+}t} \|z_{+}(0)\| + \|L_{+}\| \|C\| \int_{0}^{t} e^{-\omega_{+}(t-s)} e^{-\omega_{-}s} \|z_{-}(0)\| ds \right\},$$

and consequently

$$||z_{+}(t)|| \leq K \left(e^{-\omega_{+}t} + ||L_{+}|| \, ||C|| \, \frac{e^{-\omega_{+}t} - e^{-\omega_{-}t}}{\omega_{-} - \omega_{+}} \right) ||z_{0}||.$$

It is then sufficient to choose ω_+ small enough such that $0 < \omega_+ < \omega_-$ to have the exponential decay of $t \mapsto z_+(t)$:

$$||z_{+}(t)|| \leq K e^{-\omega_{+}t} ||z_{0}||, \quad t > 0.$$

We have thus proved the exponential decay of $z = z_+ + z_-$.

Hautus test

The following result provide a sufficient condition of Hautus type for the detectability of the finite dimensional projected system (A_+, C_+) .

Proposition

If the spectral observability condition (Hautus test)

$$(A\varphi = \lambda \varphi \text{ for } \lambda \in \Sigma_+ \text{ and } C\varphi = 0) \implies \varphi = 0$$

is satisfied, then (A_+, C_+) is detectable.

<u>Proof</u>: Since $C_+z_+ = Cz_+$ for any $z_+ \in X_+$, if the Hautus test is satisfied, then it is clear that the following Hautus test is also satisfied:

$$\left(\ arphi \in \mathcal{D}(A) \cap X_+ \ | \ A_+ arphi = \lambda arphi \ ext{and} \ C_+ arphi = 0 \
ight) \quad \Longrightarrow \quad arphi = 0.$$

As the above system is finite dimensional, (A_+, C_+) is detectable.

Corollaire

If the Hautus test is satisfied, then (A, C) is detectable via the stabilizing output injection operator L defined previously.

- The matrices A₊ and C₊ are in practice of small size : their dimensions are respectively dim X₊ × dim X₊ and dim Y₊ × dim X₊.
- The stabilizing operator L_+ of the finite dimensional system (A_+, C_+) can be determined by solving a finite dimensional algebraic Riccati equation.
1 Spectral properties of the operator

2 Detectability

3 Application : observer design for populations dynamics

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

4 Numerical results

Assumptions (A1) $(M < \infty$ unstable eigenvalues) and (A2) $(\omega_a(A) = \omega_0(A))$ are satisfied for our population model and the problem of determining the stabilizing operator L for (A, C) fits into the framework described above.

It only remains to verify that the Hautus test is satisfied for our system $({\cal A},{\cal C}):$

Lemma

If $\varphi \in \mathcal{D}(A)$ satisfies $A\varphi = \lambda \varphi$ for $\lambda \in \Sigma_+$ and $C\varphi = 0$, then φ vanishes identically.

Proof of the spectral observability

Let λ be an unstable eigenvalue of A and let $\varphi \in \mathcal{D}(A)$ satisfying $A\varphi = \lambda\varphi$. Decomposing $\varphi(0, x)$ in the basis of $L^2(\Omega)$ constituted of the eigenfunctions of $-k\Delta$, the unique solution of the evolution system

$$\begin{cases} \frac{\partial \varphi}{\partial a}(a,x) = k \Delta \varphi(a,x) - (\lambda + \mu)\varphi(a,x), & a \in (0,a^*), \ x \in \Omega, \\ \varphi(a,x) = 0, & a \in (0,a^*), \ x \in \partial\Omega, \\ \varphi(0,x) = \sum_{j \in \mathbb{N}} \alpha_j \varphi_j^D(x), & x \in \Omega, \end{cases}$$

is given by

$$\varphi(a,x) = \sum_{j \in \mathbb{N}} \alpha_j e^{-(\lambda + \lambda_j^D)a} \Pi(a) \varphi_j^D(x).$$

Plugging the above expression in the renewal equation, we obtain

$$\sum_{j \in \mathbb{N}} \alpha_j \varphi_j^D(x) = \sum_{j \in \mathbb{N}} \alpha_j \left(\int_0^{a^*} \beta(a) e^{-(\lambda + \lambda_j^D)a} \Pi(a) \right) \varphi_j^D(x).$$

We see that is equivalent to, for any $j \in \mathbb{N}$, either $\alpha_j = 0$, either $\lambda + \lambda_j^D$ solves the characteristic equation of the diffusion free problem.

Consequently, we have

$$\varphi(a,x) = \sum_{j|\lambda+\lambda_j^D \in \sigma(A_0)} \alpha_j e^{-(\lambda+\lambda_j^D)a} \Pi(a) \varphi_j^D(x).$$

The condition $C\varphi = 0$ reads then

$$\sum_{j|\lambda+\lambda_j^D\in\sigma(A_0)}\alpha_j e^{-(\lambda+\lambda_j^D)a}\varphi_j^D|_{\mathcal{O}}(x)=0, \qquad a\in(a_1,a_2).$$

Since the eigenfunctions of $-k\Delta$ with Dirichlet boundary conditions are analytic, we immediately obtain that $\varphi = 0$.

Theorem

Let $p_0 \in X$ and assume that $y(t) = p|_{(a_1,a_2)\times O}$ (t > 0) is known. Let \hat{p} the observer defined by

$$\begin{cases} \dot{p}(t) = A\hat{p}(t) + L(C\hat{p}(t) - y(t)), & t \in (0, T) \\ \hat{p}(0) = 0, \end{cases}$$

where $L \in \mathcal{L}(Y, X)$ is the stabilizing operator defined by

$$L = i_{X_+} L_+ Q_+ \in \mathcal{L}(Y, X).$$

Then, there exist $M, \omega > 0$ such that

$$\|\hat{p}(t) - p(t)\| \leq M e^{-\omega t} \|p_0\|, \quad t > 0.$$

1 Spectral properties of the operator

2 Detectability

3 Application : observer design for populations dynamics

4 Numerical results

Full observation in age

Taking $\Omega = (0, \pi)$ and assuming that p_0 is an unknown initial data, we want to estimate p at time t = T where p solves:

$$\begin{cases} \partial_t p(a, x, t) + \partial_a p(a, x, t) \\ &= -\mu(a)p(a, x, t) + \partial_{xx}p(a, x, t), & a \in (0, a^*), x \in (0, \pi), t > 0, \\ p(a, 0, t) = p(a, \pi, t) = 0, & a \in (0, a^*), t > 0, \\ p(a, x, 0) = p_0(a, x), & a \in (0, a^*), x \in (0, \pi), \\ p(0, x, t) = \int_0^{a^*} \beta(a)p(a, x, t) \, \mathrm{d}a, & x \in (0, \pi), t > 0, \end{cases}$$

provided we know the observation

$$y(t) = p(t)_{|(0,a^*) \times (\pi/3, 2\pi/3)}, \qquad t \in (0, T).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The fertility and mortality functions

Figure: The fertility and mortality functions.

Taking $a^* = 2$, we choose the fertility and mortality function to be $\beta(a) = 10 a(a^* - a) \exp\left\{-20(a - a^*/3)^2\right\}, \qquad \mu(a) = (a^* - a)^{-1}.$ Note that the function $\Pi(a)$ can be computed explicitly:

$$\Pi(a) = \exp\left(-\int_0^a \mu(s) \,\mathrm{d}s\right) = \frac{a^* - a}{a^*}.$$

First test : initial state = unstable eigenfunction

Under these assumptions, there is a unique unstable eigenvalue $\lambda_1 = \lambda_1^0 - \pi^2$ (where $\lambda_1^0 \in \mathbb{R}$ satisfies $F(\lambda_1^0) = 1$). Computing numerically this value, we obtain that $\lambda_1 = 0.239$. We first choose as initial state an eigenfunction corresponding to λ_1

$$p_0(a,x) = \varphi_1(a,x) = \varphi_1^0(a)\varphi_1^D(x) = \frac{a^* - a}{a^*}e^{-\lambda_1^0 a}\sin(x).$$

・ロト ・四ト ・ヨト ・ヨ

Estimated and exact solution at time t = T

The exact solution is:

$$p(a, x, t) = e^{\lambda_1 t} p_0(a, x).$$

We take: $T = 2a^*$, with $a^* = 2$. Using $N_x = 100$, $N_a = 120$ and $N_t = 2N_a$, we obtain an L^2 relative error of 4.07%.

Estimated (left) and exact (right) solution at time t = T.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

Second test : initial state = Gaussian function

We choose a space-aged localized initial distribution of population of gaussian type:

$$p_0(a,x) = \exp\left\{-\left(30(a-a^*/4)^2 + 20(x-\ell/4)^2\right)\right\}.$$

Gaussian initial state (3D and 2D representations).

・ロト ・聞ト ・ヨト ・ヨト

э

Estimated and exact solution at time t = T

We obtain an L^2 relative error of 2.99%, 9.6% and 16.2% respectively for 5%, 10% and 15% of noise¹.

Estimated (left) and exact (right) solution at time t = T (5% of noise).

 $^{^1}$ "Exact" solution refers here to a numerical solution computed_numerically. $~~\odot$

Estimated and exact final total population

Estimated (dashed line) and exact total population at time t = Twith 5% of noise (left) and 15% of noise (right).

・ロト・雪 ・ 山 ・ 山 ・ 小田 ・ 小田 ・

Distributed observation in space and age

Estimated (dashed line) and exact total population at time t = T with age observation in $\left(0, \frac{a^*}{20}\right)$ (left) and $\left(\frac{a^*}{2}, a^*\right)$ (right).

ヘロト 人間ト 人団ト 人団ト

э

Influence of the observation time

We consider a configuration with two unstable eigenvalues and we investigate the influence of T. For $T = 0.5a^*$, we obtain a relative error of 27% for the population density, but we still obtain a reasonable approximation for the total population.

Estimated (dashed line) and exact total population at time t = T, for $T = a^*$ (left) and for $T = 0.5a^*$ (right).

・ロ・・西・・田・・田・ 日・ シュウ

Conclusion

Other models

- Other outputs : $y(x,t) = \int_{a_1}^{a_2} p(a,x,t) \, \mathrm{d}a, \quad x \in \mathcal{O}.$ Space dependent coefficients : $\beta(a, x), \quad \mu(a, x).$
- Nonlinearities: $\beta(a, x, P)$ and $\mu(a, x, P)$ where

$$P(x,t) := \int_0^{a^*} p(a,x,t) \,\mathrm{d}a.$$

• adaptative observer which gives an estimation of p and k.

2 Approximation

- Convergence analysis and error estimates
- Uniform exponential stability (with respect to Δa et h)

Particular case: $A_+ := A|_{\mathcal{D}(A) \cap X_+}$ diagonalizable

The results collected here can be found in Barbu and Triggiani 2004. We assume that $A_+ := A|_{\mathcal{D}(A)\cap X_+}$ is diagonalizable. For simplicity, we denote by N the number of unstable eigenvalues of A counted with multiplicities (still denoted λ_k , $k = 1, \dots, N$). This implies in particular that the unstable space is

$$X_+ = \bigoplus_{k=1}^N \operatorname{Ker} (A - \lambda_k).$$

We denote then by $(\varphi_k)_{1 \leq k \leq N}$ a basis of X_+ . Denote by ψ_k an eigenfunction of A^* corresponding to the unstable eigenvalue $\overline{\lambda_k}$ $(1 \leq k \leq N)$. It can be shown that the family $(\psi_k)_{1 \leq k \leq N}$ can be chosen such that $(\varphi_k)_{1 \leq k \leq N}$ and $(\psi_k)_{1 \leq k \leq N}$ form bi-orthogonal sequences, in the sense that $(\varphi_k, \psi_m)_X = \delta_{km}$. It follows then that the projection operator $P_+ \in \mathcal{L}(X, X_+)$ can be expressed as

$$P_{+}z = \sum_{k=1}^{N} (z, \psi_{k})_{X} \varphi_{k} \qquad (z \in X).$$

Since

$$X_{+} = P_{+}X = \operatorname{Span}\left\{\varphi_{k}, 1 \leq k \leq N\right\},\,$$

it follows that

$$Y_{+} = CX_{+} = \operatorname{Span} \left\{ C\varphi_{k}, \, 1 \leqslant k \leqslant N \right\}.$$

Assume now that the family

 $(C\varphi_k)_{1 \le k \le N}$ is linearly independent in X. (1)

This property holds true in the case of internal observation. Therefore

$$\dim Y_+ = \dim X_+ = N.$$

We denote by \mathbb{G} the Hermitian matrix of size N imes N defined by

$$\mathbb{G} = \left(\left(C\varphi_i, C\varphi_j \right)_Y \right)_{1 \leq i \leq N, \ 1 \leq j \leq N}.$$

It is not difficult to prove that (1) is equivalent to the fact that \mathbb{G} is invertible.

Lemma

Assume that property (1) holds true. Then, for any $y \in Y$, then Q_+y is defined by

$$Q_+ y = \sum_{i=1}^N \left(y, \eta_i \right)_Y C \varphi_i,$$

where

$$\eta_i = \sum_{j=1}^N \alpha_{ij} C\varphi_j$$

and

$$(\alpha_{ij})_{1\leqslant i\leqslant \mathbf{N}, 1\leqslant j\leqslant \mathbf{N}} = \mathbb{G}^{-1}.$$

From L_+ to L

The (finite dimensional) operator $C_+ \in \mathcal{L}(X_+, Y_+)$ satisfies $C_+\varphi_k = C\varphi_k$ for any $k \in \{1, ..., N\}$. Note that C_+ is nothing but the identity matrix when we choose as basis for X_+ and Y_+ respectively $(\varphi_k)_{1 \leqslant k \leqslant N}$ and $(C\varphi_k)_{1 \leqslant k \leqslant N}$. Therefore, using these bases, $A_+ + L_+C_+$ is a Hurwitz matrix provided $\operatorname{diag}(\lambda_1, ..., \lambda_N) + L_+$ is Hurwitz. It is thus sufficient to take $L_+ = -\sigma I$ with

 $\sigma > \operatorname{Re}\lambda_1$

to ensure the stability of $A_+ + L_+C_+$. The corresponding operator $L \in \mathcal{L}(Y, X)$ for every $y \in Y$

$$Ly = \mathbf{L}_{+}\mathbf{Q}_{+}y = L_{+}\left(\sum_{i=1}^{N} (y,\eta_{i})_{Y} C\varphi_{i}\right) = -\sigma \sum_{i=1}^{N} (y,\eta_{i})_{Y} \varphi_{i},$$

and, following Theorem 6, A + L C generates an exponentially stable semigroup.

Goal

Under these assumptions, there is a unique unstable eigenvalue $\lambda_1 = \lambda_1^0 - 1$ (where $\lambda_1^0 \in \mathbb{R}$ satisfies $F(\lambda_1^0) = 1$). Computing numerically this value, we obtain that $\lambda_1 = 0.239$. The observation operator $C \in \mathcal{L}(X, Y)$ is given by

$$C\varphi = \varphi_{\mid (0,a^*) \times (\pi/3, 2\pi/3)}, \qquad \forall \varphi \in X$$

where $X = L^2((0, a^*) \times (0, \pi))$ and $Y = L^2((0, a^*) \times (\pi/3, 2\pi/3))$. In order to estimate p(T), we use the observer designed previously. As the unstable space is the one-dimensional space

$$X_{+} = \operatorname{Ker} \left(A - \lambda_{1} \right) = \operatorname{Span} \left\{ \varphi_{1}^{0}(a) \varphi_{1}^{D}(x) \right\},$$

the observer involves the stabilizing output injection operator \boldsymbol{L} defined by

$$Ly = -\sigma (y, \eta_1)_Y \varphi_1 \qquad (y \in Y),$$

where $\sigma > \lambda_1$ (gain coefficient) and

$$\eta_1 = \alpha_{11} C \varphi_1 = \frac{C \varphi_1}{\|C \varphi_1\|_{Y_1}^2}.$$

The observer solves then the following system

$$\begin{cases} \partial_t \widehat{p}(a, x, t) + \partial_a \widehat{p}(a, x, t) + \mu(a) \widehat{p}(a, x, t) \\ -\partial_{xx} \widehat{p}(a, x, t) + \sigma (C\widehat{p}, \eta_1)_Y \varphi_1(a, x) \\ &= \sigma (y, \eta_1)_Y \varphi_1(a, x), & a \in (0, a^*), x \in (0, \pi), t > 0, \\ \widehat{p}(a, 0, t) = \widehat{p}(a, \pi, t) = 0, & a \in (0, a^*), t > 0, \\ \widehat{p}(a, x, 0) = 0, & a \in (0, a^*), x \in (0, \pi), \\ \widehat{p}(0, x, t) = \int_0^{a^*} \beta(a) \widehat{p}(a, x, t) \, \mathrm{d}a, & x \in (0, \pi), t > 0. \end{cases}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Goal: compare p(T) and $\hat{p}(T)$

Main difficulties concerning the discretization

• Singular behavior of the coefficient
$$\mu$$

 \hookrightarrow rescaling the problem: introduce the auxiliary variable
 $u(a, x, t) = \frac{p(a, x, t)}{\Pi(a)} = \exp\left(\int_{0}^{a^{*}} \mu(s) \, \mathrm{d}s\right) p(a, x, t)$
 $\begin{cases} \partial_{t}u(a, x, t) + \partial_{a}u(a, x, t) - \partial_{xx}u(a, x, t) = 0, \\ u(a, 0, t) = u(a, \pi, t) = 0, \\ u(a, x, 0) = u_{0}(a, x) = p_{0}(a, x)/\Pi(a), \\ u(0, x, t) = \int_{0}^{a^{*}} m(a)u(a, x, t) \, \mathrm{d}a, \quad \text{where } m(a) = \beta(a)\Pi(a) \end{cases}$

- discretization of the renewal eq.: $p(0, x, t) = \int_0^{a^*} \beta(a) p(a, x, t) da$ $\hookrightarrow u(0, x, n\Delta t) = \int_0^{a^*} m(a) u(a, x, (n-1)\Delta t) da$
- presence of the extra term in the observer equation $(C\hat{p}, \eta_1)_Y \varphi_1$, \hookrightarrow introduce $\theta(t) = (C\Pi \hat{u}, \eta_1)_Y$ which satisfies

$$\begin{cases} \dot{\theta}(t) = -\left(C\Pi\partial_a \hat{u}, \eta_1\right)_Y + \left(C\Pi\partial_{xx} \hat{u}, \eta_1\right)_Y - \sigma\theta(t) + \sigma\left(y, \eta_1\right)_Y \\ \theta(0) = 0 \end{cases}$$

Rescaling the open loop problem

First of all, in order to overcome the difficulties due to singular behavior of the coefficient μ , we introduce the auxiliary variable

$$u(a, x, t) = \frac{p(a, x, t)}{\Pi(a)} = \exp\left(\int_0^{a^*} \mu(s) \,\mathrm{d}s\right) p(a, x, t).$$

One can easily check that u satisfies

$$\begin{cases} \partial_t u(a, x, t) + \partial_a u(a, x, t) - \partial_{xx} u(a, x, t) = 0, & a \in (0, a^*), x \in (0, \pi), t > 0, \\ u(a, 0, t) = u(a, \pi, t) = 0, & a \in (0, a^*), t > 0, \\ u(a, x, 0) = u_0(a, x), & a \in (0, a^*), x \in (0, \pi), \\ u(0, x, t) = \int_0^{a^*} m(a) u(a, x, t) \, \mathrm{d}a, & x \in (0, \pi), t > 0, \end{cases}$$

where we have set $u_0(a, x) = p_0(a, x)/\Pi(a)$ and where $m(a) = \beta(a)\Pi(a)$ stands for the maternity function.

Finite difference discretization in time

Let $u^n(a, x)$ be an approximation of $u(a, x, t^n)$, where $t^n = n\Delta t$, $0 \leq n \leq N_t$, $\Delta t = T/N_t$ is a discretization of (0, T). Starting from $u^0(a, x) = u_0(a, x)$, we construct u^n for $n \geq 1$ using an Euler's backwards scheme

$$\begin{cases} \frac{u^{n}(a,x) - u^{n-1}(a,x)}{\Delta t} + \partial_{a}u^{n}(a,x) \\ -\partial_{xx}u^{n}(a,x) = 0, & a \in (0,a^{*}), x \in (0,\pi), \\ u^{n}(a,0) = u^{n}(a,\pi) = 0, & a \in (0,a^{*}), \\ u^{0}(a,x) = u_{0}(a,x), & a \in (0,a^{*}), x \in (0,\pi), \\ u^{n}(0,x) = \int_{0}^{a^{*}} m(a)u^{n-1}(a,x) \, \mathrm{d}a, & x \in (0,\pi). \end{cases}$$

Finite difference discretization in space

Denoting by $u_i^n(a)$ an approximation of $u^n(x_i, a)$ (where $x_i = ih = i\ell/(N_x + 1)$, with $0 \le i \le N_x + 1$) and using a classical centered approximation for the second order derivative in space, the above system yields

$$\begin{cases} \frac{\mathrm{d}\mathbf{U}^n}{\mathrm{d}a}(a) + \frac{1}{h^2} \mathbb{K} \mathbf{U}^n(a) + \frac{1}{\Delta t} \mathbf{U}^n(a) = \frac{1}{\Delta t} \mathbf{U}^{n-1}(a), \\ \mathbf{U}^n(0) = \int_0^{a^*} m(a) \mathbf{U}^{n-1}(a) \,\mathrm{d}a, \\ \mathbf{U}^0(a) = \mathbf{U}_0(a), \end{cases}$$

where

$$\mathbf{U}^{n}(a) = \begin{pmatrix} u_{1}^{n}(a) \\ \vdots \\ \vdots \\ u_{N_{x}}^{n}(a) \end{pmatrix}, \mathbf{U}_{0}(a) = \begin{pmatrix} u_{0}(a, x_{1}) \\ \vdots \\ \vdots \\ u_{0}(a, x_{N_{x}}) \end{pmatrix}, \mathbb{K} = \begin{pmatrix} 2 & -1 & & \\ -1 & 2 & -1 & 0 \\ & \ddots & \ddots & \ddots \\ 0 & -1 & 2 & -1 \\ & & & -1 & 2 \end{pmatrix}.$$

Finite difference discretization in age

We use a Crank-Nicholson scheme. Denoting by $u_i^{n,k}$ an approximation of $u_i^n(a^k)$, where $a^k = k\Delta a$, $0 \leq k \leq N_a$, $\Delta t = a^*/N_a$, and by

$$\mathbf{U}^{n,k} := \begin{pmatrix} u_1^{n,k} \\ \vdots \\ u_{N_x}^{n,k} \end{pmatrix}$$

an approximation of $\mathbf{U}^n(a^k),$ we move from age a^{k-1} to age a^k following

$$\begin{aligned} \frac{1}{\Delta a} \left(\mathbf{U}^{n,k} - \mathbf{U}^{n,k-1} \right) + \frac{1}{h^2} \mathbb{K} \left(\frac{\mathbf{U}^{n,k} + \mathbf{U}^{n,k-1}}{2} \right) + \frac{1}{\Delta t} \left(\frac{\mathbf{U}^{n,k} + \mathbf{U}^{n,k-1}}{2} \right) \\ &= \frac{1}{\Delta t} \left(\frac{\mathbf{U}^{n-1,k} + \mathbf{U}^{n-1,k-1}}{2} \right), \end{aligned}$$

with the initial conditions

$$\begin{cases} \mathbf{U}^{0,k} = \mathbf{U}_0(a^k), & \forall k = 0, \dots, N_a, \\ \mathbf{U}^{n,0} = \sum_{k=0}^{N_a} \omega_k \, m(a^k) \mathbf{U}^{n-1,k} \simeq \int_0^{a^*} m(a) \mathbf{U}^{n-1}(a) \, \mathrm{d}a. \end{cases}$$

The algorithm

1 For n = 0: Initialization of $\mathbf{U}^{0,k}$

$$\mathbf{U}^{n,0} = \sum_{k=0}^{N_a} \omega_k \, m(a^k) \mathbf{U}^{n-1,k}$$

• For $k = 1, \dots, N_a$, $\mathbf{U}^{n,k} = \begin{pmatrix} u_1^{n,k} \\ \vdots \\ u_{N_x}^{n,k} \end{pmatrix}$ solves the linear system
 $\mathbb{A}\mathbf{U}^{n,k} = \mathbf{b}^{n,k}$

where

$$\mathbb{A} = \left(\Delta t + \frac{1}{2}\Delta a\right)\mathbb{I} + \frac{1}{2}\frac{\Delta t\,\Delta a}{h^2}\mathbb{K}$$
$$\mathbf{b}^{n,k} = \frac{\Delta a}{2}\left(\mathbf{U}^{n-1,k} + \mathbf{U}^{n-1,k-1}\right) + \left[\left(\Delta t - \frac{\Delta a}{2}\right)\mathbb{I} - \frac{\Delta t\,\Delta a}{2h^2}\mathbb{K}\right]\mathbf{U}^{n,k-1}$$
$$\bullet \ \mathbf{Y}^{n,k} = \begin{pmatrix} y_1^{n,k}\\ \vdots\\ y_N^{n,k} \end{pmatrix} \text{ where } y_i^{n,k} = \Pi(a^k)u_i^{n,k} \text{ if } \ell_1 \leq ih \leq \ell_2 \text{ and}$$

$$\begin{split} \partial_t \widehat{p}(a, x, t) &+ \partial_a \widehat{p}(a, x, t) + \mu(a) \widehat{p}(a, x, t) \\ &- \partial_{xx} \widehat{p}(a, x, t) + \sigma \left(C \widehat{p}, \eta_1 \right)_Y \varphi_1(a, x) = \sigma \left(y, \eta_1 \right)_Y \varphi_1(a, x), \\ \widehat{p}(a, 0, t) &= \widehat{p}(a, \pi, t) = 0, \\ \widehat{p}(a, x, 0) &= 0, \\ \widehat{p}(0, x, t) &= \int_0^{a^*} \beta(a) \widehat{p}(a, x, t) \, \mathrm{d}a. \end{split}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Rescaling the problem

First of all, we introduce the auxiliary variable

$$\widehat{u}(a, x, t) = \frac{\widehat{p}(a, x, t)}{\Pi(a)} = \exp\left(\int_0^{a^*} \mu(s) \,\mathrm{d}s\right) \widehat{p}(a, x, t).$$

One can easily check that \widehat{u} satisfies

$$\begin{cases} \partial_t \widehat{u}(a, x, t) + \partial_a \widehat{u}(a, x, t) - \partial_{xx} \widehat{u}(a, x, t) \\ + \sigma \left(C \Pi \widehat{u}, \eta_1 \right)_Y v_1(a, x) = \sigma \left(y, \eta_1 \right)_Y v_1(a, x), \\ \widehat{u}(a, 0, t) = \widehat{u}(a, \pi, t) = 0, \\ \widehat{u}(a, x, 0) = 0, \\ \widehat{u}(0, x, t) = \int_0^{a^*} m(a) \widehat{u}(a, x, t) \, \mathrm{d}a, \end{cases}$$

where we have set $v_1(a, x) = \varphi_1(a, x) / \Pi(a)$.

Discretization of the term $(C\Pi \hat{u}, \eta_1)_Y$

Let us introduce

 $\theta(t) = (C\Pi\widehat{u},\eta_1)_Y\,.$

Using the fact that $(C\Pi v_1,\eta_1)_Y=1$, we remark that heta satisfies

$$\dot{\theta}(t) = -\left(C\Pi\partial_a \widehat{u}, \eta_1\right)_Y + \left(C\Pi\partial_{xx}\widehat{u}, \eta_1\right)_Y - \sigma\theta(t) + \sigma\left(y, \eta_1\right)_Y.$$

Consequently,

$$\begin{cases} \dot{\theta}(t) = -\left(C\Pi\partial_a \hat{u}(t), \eta_1\right)_Y + \left(C\Pi\partial_{xx} \hat{u}(t), \eta_1\right)_Y - \sigma\theta(t) + \sigma\left(y(t), \eta_1\right)_Y, \\ \partial_t \hat{u}(a, x, t) + \partial_a \hat{u}(a, x, t) - \partial_{xx} \hat{u}(a, x, t) + \sigma\theta(t)v_1(a, x) \\ &= \sigma\left(y, \eta_1\right)_Y v_1(a, x), \\ \theta(0) = 0, \\ \hat{u}(a, 0, t) = \hat{u}(a, \ell, t) = 0, \\ \hat{u}(a, x, 0) = 0, \\ \hat{u}(0, x, t) = \int_0^{a^*} m(a)\hat{u}(a, x, t) \, \mathrm{d}a. \end{cases}$$

Finite difference discretization in time

Let $\hat{u}^n(a, x)$ (resp. θ^n , $y^n(a, x)$) be an approximation of $\hat{u}(a, x, t^n)$ (resp. $\theta(t^n)$, $y(a, x, t^n)$), where $t^n = n\Delta t$, $0 \leq n \leq N_t$, $\Delta t = T/N_t$ is a discretization of (0, T). Starting from $\theta^0 = 0$ and $\hat{u}^0(a, x) = 0$, we construct θ^n and \hat{u}^n for $n \geq 1$ using an Euler's backwards scheme

$$\begin{cases} \frac{1}{\Delta t} \left(\theta^n - \theta^{n-1} \right) = - \left(C \Pi \partial_a \widehat{u}^{n-1}, \eta_1 \right)_Y + \left(C \Pi \partial_{xx} \widehat{u}^{n-1}, \eta_1 \right)_Y \\ -\sigma \theta^n + \sigma \left(y^n, \eta_1 \right)_Y , \\ \frac{1}{\Delta t} \left(\widehat{u}^n(a, x) - \widehat{u}^{n-1}(a, x) \right) + \partial_a \widehat{u}^n(a, x) - \partial_{xx} \widehat{u}^n(a, x) + \sigma \theta^n v_1 \\ = \sigma \left(y^n, \eta_1 \right)_Y v_1 , \\ \theta^0 = 0, \\ \widehat{u}^n(a, 0) = \widehat{u}^n(a, \ell) = 0, \\ \widehat{u}^0(a, x) = 0, \\ \widehat{u}^n(0, x) = \int_0^{a^*} m(a) \widehat{u}^{n-1}(a, x) \, \mathrm{d}a. \end{cases}$$

Finite difference discretization in space

Denoting by $\widehat{u}_i^n(a)$ an approximation of $\widehat{u}^n(x_i,a),$ the above system yields

$$\begin{split} \int \frac{1}{\Delta t} \theta^{n} &= \frac{1}{\Delta t} \theta^{n-1} - \sigma \theta^{n} - h\left(\int_{0}^{a^{*}} \Pi(a) \boldsymbol{\eta}_{1}(a)^{\mathbf{T}} \partial_{a} \widehat{\mathbf{U}}^{n-1}(a) \, \mathrm{d}a\right) \\ &- \frac{1}{h} \left(\int_{0}^{a^{*}} \Pi(a) \boldsymbol{\eta}_{1}(a)^{\mathbf{T}} \mathbb{K} \widehat{\mathbf{U}}^{n-1}(a) \, \mathrm{d}a\right) + \sigma h\left(\int_{0}^{a^{*}} \boldsymbol{\eta}_{1}(a)^{\mathbf{T}} \mathbf{Y}^{n}(a) \, \mathrm{d}a\right), \\ &\frac{\mathrm{d}\widehat{\mathbf{U}}^{n}}{\mathrm{d}a}(a) + \frac{1}{h^{2}} \mathbb{K} \widehat{\mathbf{U}}^{n}(a) + \frac{1}{\Delta t} \widehat{\mathbf{U}}^{n}(a) + \sigma \theta^{n} \mathbf{V}_{1}(a) \\ &= \frac{1}{\Delta t} \widehat{\mathbf{U}}^{n-1}(a) + \sigma h\left(\int_{0}^{a^{*}} \boldsymbol{\eta}_{1}(a)^{\mathbf{T}} \mathbf{Y}^{n}(a) \, \mathrm{d}a\right) \mathbf{V}_{1}(a), \\ &\theta^{0} = 0, \\ &\widehat{\mathbf{U}}^{n}(0) = \int_{0}^{a^{*}} m(a) \widehat{\mathbf{U}}^{n-1}(a) \, \mathrm{d}a, \\ &\widehat{\mathbf{U}}^{0}(a) = 0, \end{split}$$

where

$$\widehat{\mathbf{U}}^{n}(a) = \begin{pmatrix} \widehat{u}_{1}^{n}(a) \\ \vdots \\ \widehat{u}_{N_{x}}^{n}(a) \end{pmatrix}, \mathbf{V}_{1}(a) = \begin{pmatrix} v_{1}(a, x_{1}) \\ \vdots \\ v_{1}(a, x_{N_{x}}) \end{pmatrix}, \boldsymbol{\eta}_{1}(a) = \begin{pmatrix} \eta_{1}(a, x_{1}) \\ \vdots \\ \eta_{1}(a, x_{N_{x}}) \end{pmatrix}.$$

Finite difference discretization in age

We use a Crank-Nicholson scheme. Denoting by $\widehat{u}_i^{n,k}$ an approximation of $\widehat{u}_i^n(a^k)$, where $a^k = k\Delta a$, $0 \leq k \leq N_a$, $\Delta t = a^*/N_a$, and by $\widehat{\mathbf{U}}^{n,k} := \begin{pmatrix} \widehat{u}_1^{n,k} \\ \vdots \\ \widehat{u}_{N_x}^{n,k} \end{pmatrix}$

an approximation of $\widehat{\mathbf{U}}^n(a^k)\text{, we move from age }a^{k-1}\text{ to age }a^k$ following

$$\begin{split} & \frac{1}{\Delta t}\boldsymbol{\theta}^{n} = \frac{1}{\Delta t}\boldsymbol{\theta}^{n-1} - \sigma\boldsymbol{\theta}^{n} - h\Delta a \left(\sum_{k=1}^{N_{a}}\Pi(k\Delta a)\left(\boldsymbol{\eta}_{1}^{k}\right)^{\mathrm{T}}\left(\frac{\widehat{\mathbf{U}}^{n-1,k} - \widehat{\mathbf{U}}^{n-1,k-1}}{\Delta a}\right)\right) \\ & - \frac{\Delta a}{h}\left(\sum_{k=1}^{N_{a}}\Pi(k\Delta a)\left(\boldsymbol{\eta}_{1}^{k}\right)^{\mathrm{T}}\mathbb{K}\widehat{\mathbf{U}}^{n-1,k}\right) + \sigma h\Delta a \left(\sum_{k=1}^{N_{a}}\left(\boldsymbol{\eta}_{1}^{k}\right)^{\mathrm{T}}\mathbf{Y}^{n,k}\right), \end{split}$$

and

$$\frac{1}{\Delta a} \left(\widehat{\mathbf{U}}^{n,k} - \widehat{\mathbf{U}}^{n,k-1} \right) + \frac{1}{h^2} \mathbb{K} \left(\frac{\widehat{\mathbf{U}}^{n,k} + \widehat{\mathbf{U}}^{n,k-1}}{2} \right) + \frac{1}{\Delta t} \left(\frac{\widehat{\mathbf{U}}^{n,k} + \widehat{\mathbf{U}}^{n,k-1}}{2} \right) + \sigma \theta^n \mathbf{V}_1^k = \frac{1}{\Delta t} \left(\frac{\widehat{\mathbf{U}}^{n-1,k} + \widehat{\mathbf{U}}^{n-1,k-1}}{2} \right) + \sigma h \Delta a \left(\sum_{j=1}^{N_a} \left(\boldsymbol{\eta}_1^j \right)^{\mathbf{T}} \mathbf{Y}^{n,j} \right) \mathbf{V}_1^k,$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣○

with the initial conditions

$$\begin{cases} \theta^0 = 0, \\ \widehat{\mathbf{U}}^{0,k} = 0, \quad \forall k = 0, \dots, N_a, \\ \widehat{\mathbf{U}}^{n,0} = \sum_{k=0}^{N_a} \omega_k \, m(a^k) \widehat{\mathbf{U}}^{n-1,k}. \end{cases}$$

Here

$$\mathbf{V}_{1}^{k} = \begin{pmatrix} v_{1}(k\Delta a, x_{1}) \\ \vdots \\ v_{1}(k\Delta a, x_{N_{x}}) \end{pmatrix}, \ \boldsymbol{\eta}_{1}^{k} = \begin{pmatrix} \eta_{1}(k\Delta a, x_{1}) \\ \vdots \\ \eta_{1}(k\Delta a, x_{N_{x}}) \end{pmatrix}, \ \mathbf{Y}^{n,k} = \begin{pmatrix} y^{n}(k\Delta a, x_{1}) \\ \vdots \\ y^{n}(k\Delta a, x_{N_{x}}) \end{pmatrix}$$

.

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

- **(**) For n = 0: Initialization of θ^0 and $\widehat{\mathbf{U}}^{0,k}$ $(k = 0, \dots, N_a)$ at 0.
- 2 For $n = 1, \ldots, N_t$:
 - Calculate θ^n using the values of θ^{n-1} and $(\widehat{\mathbf{U}}^{n-1,j})_{j=0}^{N_a}$:

$$\theta^{n} = \frac{1}{1 + \sigma \Delta t} \left(\theta^{n-1} - h \Delta t \sum_{k=1}^{N_{a}} \Pi(k \Delta a) (\boldsymbol{\eta}_{1}^{k})^{\mathbf{T}} \left(\widehat{\mathbf{U}}^{n-1,k} - \widehat{\mathbf{U}}^{n-1,k-1} \right) - \frac{\Delta a \Delta t}{h} \sum_{k=1}^{N_{a}} \Pi(k \Delta a) (\boldsymbol{\eta}_{1}^{k})^{\mathbf{T}} \mathbb{K} \widehat{\mathbf{U}}^{n-1,k} + \sigma h \Delta a \Delta t \sum_{k=1}^{N_{a}} (\boldsymbol{\eta}_{1}^{k})^{\mathbf{T}} \mathbf{Y}^{n,k} \right)$$

• k = 0: Initialization of $\widehat{\mathbf{U}}^{n,0}$ using the values of $(\widehat{\mathbf{U}}^{n-1,j})_{j=0}^{N_a}$:

$$\widehat{\mathbf{U}}^{n,0} = \sum_{k=0}^{N_a} \omega_k \, m(k\Delta a) \widehat{\mathbf{U}}^{n-1,k}$$

• For $k=1,\ldots,N_a$, solve the linear system

$$\mathbb{A}\widehat{\mathbf{U}}^{n,k} = \widehat{\mathbf{b}}^{n,k}$$

where

$$\begin{split} \widehat{\mathbf{b}}^{n,k} &= \frac{\Delta a}{2} \left(\widehat{\mathbf{U}}^{n-1,k} + \widehat{\mathbf{U}}^{n-1,k-1} \right) + \left[(\Delta t - \frac{\Delta a}{2}) \mathbb{I} - \frac{\Delta t \, \Delta a}{2h^2} \mathbb{K} \right] \widehat{\mathbf{U}}^{n,k-1} \\ &- \sigma \Delta a \Delta t \, \theta^n \mathbf{V}_1^k + \sigma h (\Delta a)^2 \Delta t \left(\sum_{j=1}^{N_a} \left(\boldsymbol{\eta}_1^j \right)^{\mathbf{T}} \mathbf{Y}^{n,j} \right) \mathbf{V}_1^k \\ &= \sigma \mathbf{V} \mathbf{V}_1^k + \sigma h (\Delta a)^2 \Delta t \left(\sum_{j=1}^{N_a} \left(\boldsymbol{\eta}_1^j \right)^{\mathbf{T}} \mathbf{Y}^{n,j} \right) \mathbf{V}_1^k \\ &= \sigma \mathbf{V} \mathbf{V} \mathbf{V}_1^k + \sigma \mathbf{V} \mathbf{V}_1^k + \sigma \mathbf{V} \mathbf{V}_1^k + \sigma \mathbf{V} \mathbf{V}_1^k \mathbf{V}_1^k + \sigma \mathbf{V} \mathbf{V}_1^k \mathbf{V}_1^$$
•
$$\widehat{\mathbf{P}^{n,k}} = \begin{pmatrix} \widehat{p}_1^{n,k} \\ \vdots \\ \widehat{p}_{N_x}^{n,k} \end{pmatrix}$$
 where $\widehat{p}_i^{n,k} = \Pi(a^k) \widehat{u}_i^{n,k}$.