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The problem in a glance

A classical model for age-space structured populations is given by

∂p

∂t
(a, x, t) +

∂p

∂a
(a, x, t)

= −µ(a)p(a, x, t) + k∆p(a, x, t), a ∈ (0, a∗), x ∈ Ω, t > 0,

p(a, x, t) = 0, a ∈ (0, a∗), x ∈ ∂Ω, t > 0,

p(a, x, 0) = p0(a, x), a ∈ (0, a∗), x ∈ Ω,

p(0, x, t) =

∫ a∗

0
β(a)p(a, t, x) da, x ∈ Ω, t > 0.

p(a, x, t) : distribution density of the population of age a at
spatial position x at time t;

a∗ : maximal life expectancy;

k : diffusion coefficient;

µ(a), β(a) : death and birth rates (independent of x);



The problem in a glance
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Figure: Typical birth and death rates.



The problem in a glance

O ⊂ Ω
0

a1

a2

a∗

y(t) := p|(a1,a2)×O

t = 0

t = T

Estimation problem

Knowing the output y(t) := p|(a1,a2)×O (but assuming that p0 is
unknown), estimate p(a, x, T ) for all a ∈ (0, a∗) and x ∈ Ω, as
T → +∞.



The problem in a glance


ṗ(t) = Ap(t), t ∈ (0, T )
p(0) = p0,
y(t) = Cp(t), t ∈ (0, T ),

where C ∈ L(X,Y ), Y := L2((a1, a2)×O) is defined by

Cϕ := ϕ|(a1,a2)×O for all ϕ ∈ X.

We introduce the Luenberger observer{
˙̂p(t) = Ap̂(t) + L (Cp̂(t)− y(t)) , t ∈ (0, T )
p̂(0) = 0,

where L ∈ L(Y,X) is a linear operator to be defined.
Then the error e := p̂− p satisfies{

ė(t) = (A+ LC)e(t), t ∈ (0, T )
e(0) = −p0.



The problem in a glance

Goal

Find L such that et(A+LC) exponentially stable (detectability).

How?
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Spectrum of A : an infinite number of stable modes
and a finite number of unstable modes.

Design an infinite dimensional Luenberger observer via a finite
dimensional stabilizing operator.
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Design an infinite dimensional Luenberger observer via a finite
dimensional stabilizing operator.
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The model



∂p

∂t
(a, x, t) = −∂p

∂a
(a, x, t)

−µ(a)p(a, x, t) + k∆p(a, x, t), a ∈ (0, a∗), x ∈ Ω, t > 0,

p(a, x, t) = 0, a ∈ (0, a∗), x ∈ ∂Ω, t > 0,

p(a, x, 0) = p0(a, x), a ∈ (0, a∗), x ∈ Ω,

p(0, x, t) =

∫ a∗

0
β(a)p(a, t, x) da, x ∈ Ω, t > 0.



Assumptions

Typical assumptions on the birth and death rates β and µ:

β ∈ L∞(0, a∗), β > 0 a.e. in (0, a∗) ;

µ ∈ L1
loc(0, a

∗), µ > 0 a.e. in (0, a∗) and

lim
a→a∗

∫ a

0
µ(s) ds = +∞.

We also introduce the function

Π(a) := exp

(
−
∫ a

0
µ(s) ds

)
which represents the probability to survive at age a > 0.
In particular

lim
a→a∗

Π(a) = 0.



First order formulation

We introduce the Hilbert space X := L2 ((0, a∗)× Ω) and let A
be defined by:

D(A) =

{
ϕ ∈ X ∩L2

(
(0, a∗), H1

0 (Ω)
) ∣∣∣− ∂ϕ

∂a
−µϕ+k∆ϕ ∈ X;

ϕ(a, ·)|∂Ω = 0 for almost all a ∈ (0, a∗);

ϕ(0, x) =

∫ a∗

0
β(a)ϕ(a, x) da for almost all x ∈ Ω

}

Aϕ = −∂ϕ
∂a
− µϕ+ k∆ϕ, ∀ϕ ∈ D(A).



Well-posedness

The population dynamics problem reads then{
ṗ(t) = Ap(t), t > 0
p(0) = p0.

Theorem (Chan and Guo, 1989)

A is the infinitesimal generator of a C0−semigroup etA on X.

If p0 ∈ X, there exists a unique solution p ∈ C([0,∞), X).

If p0 ∈ D(A), there exists a unique solution
p ∈ C([0,∞),D(A)) ∩ C1([0,∞), X).



Diffusion free model

McKendrick–Von Foerster model (1959) describes the diffusion
free case (k = 0) :

∂p

∂t
(a, t) = −∂p

∂a
(a, t)− µ(a)p(a, t), a ∈ (0, a∗), t > 0,

p(a, 0) = p0(a), a ∈ (0, a∗),

p(0, t) =

∫ a∗

0
β(a)p(a, t) da, t > 0.



Diffusion free model

The population operator A0 corresponding to the above system is
defined as follows

D(A0) =

{
ϕ ∈ L2(0, a∗)

∣∣∣ − dϕ

da
− µϕ ∈ L2(0, a∗);

ϕ(0) =

∫ a∗

0
β(a)ϕ(a) da

}
.

A0ϕ = −dϕ

da
− µϕ, ∀ϕ ∈ D(A0).

Then the McKendrick–Von Foerster model reads then{
ṗ(t) = A0p(t), t > 0
p(0) = p0.



Diffusion free model

Theorem (Song et al., 1982)

1 A0 has compact resolvent and its spectrum is constituted of a
countable (infinite) set of isolated eigenvalues with finite
algebraic multiplicity.

2 The eigenvalues (λ0
n)n>1 of A0 (counted without multiplicity)

the (complex) solutions of the characteristic equation

F (λ) :=

∫ a∗

0
β(a)Π(a)e−λa da = 1.

3 The eigenvalues (λ0
n)n>1 are of geometric multiplicity one:

ϕ0
n(a) = e−λ

0
naΠ(a) = e−λ

0
na−

∫ a
0 µ(s) ds.

4 Every vertical strip of the complex plane contains a finite
number of eigenvalues of A0.



Diffusion free model

Theorem (Song et al., 1982)

The operator A0 has a unique real eigenvalue λ0
1. Moreover:

1 λ0
1 is of algebraic multiplicity one;

2 λ0
1 > 0 (< 0) ⇐⇒ F (0) =

∫ a∗

0
β(a)Π(a) da > 1 (< 1);

3 λ0
1 is a real dominant eigenvalue:

λ0
1 > Re (λ0

n), ∀n > 2.



Back to the problem with diffusion

D(A) =

{
ϕ ∈ X ∩L2

(
(0, a∗), H1

0 (Ω)
) ∣∣∣− ∂ϕ

∂a
−µϕ+k∆ϕ ∈ X;

ϕ(a, ·)|∂Ω = 0 for almost all a ∈ (0, a∗);

ϕ(0, x) =

∫ a∗

0
β(a)ϕ(a, x) da for almost all x ∈ Ω

}
Aϕ = −∂aϕ− µϕ+ k∆ϕ, ∀ϕ ∈ D(A).

Let 0 < λD1 < λD2 6 λ
D
3 6 · · · be the increasing sequence of

eigenvalues of −k∆ with Dirichlet boundary conditions and let
(ϕDn )n>1 be a corresponding orthonormal basis of L2(Ω).



Spectral properties

Theorem (Chan and Guo, 1989)

1 A has compact resolvent and its (pure point) spectrum is

σ(A) =
{
λ0
i − λDj |i, j ∈ N∗

}
2 The eigenspace associated to an eigenvalue λ of A is given by

Span
{
ϕ0
i (a)ϕDj (x) = e−λ

0
i aΠ(a)ϕDj (x)

∣∣∣λ0
i − λDj = λ

}
.

3 The real eigenvalue λ1 of A is dominant:

λ1 = λ0
1 − λD1 > Re (λ), ∀λ ∈ σ(A), λ 6= λ1.

4 λ1 is a simple eigenvalue, the corresponding eigenspace being
generated by

ϕ1(a, x) := ϕ0
1(a)ϕD1 (x) = e−λ

0
1aΠ(a)ϕD1 (x).



Spectral properties
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Figure: Spectra of A0 and −k∆.

In this example, there is only 1 unstable eigenvalue λ1:

Re (λ0
n) < λD1 < λ0

1 < λD2 , ∀n > 2

=⇒ λ1 = λ0
1 − λD1 > 0, Re (λn) < 0, ∀n > 2



Compactness & Stability

Proposition (Chan and Guo, 1989)

The semigroup etA generated on X by A is compact for t > a∗.

This implies in particular that (see Zabczyk, 1975)

ωa(A) = ω0(A)

where ωa(A) := lim
t→+∞

t−1 ln ‖etA‖ denotes the growth bound of

etA and ω0(A) := sup {Reλ | λ ∈ σ(A)} the spectral bound of
A.

Consequence

The above condition ensures that the exponential stability of etA is
equivalent to the condition

ω0(A) = sup {Reλ | λ ∈ σ(A)} < 0.
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Abstract framework

Consider

A : D(A)→ X with compact resolvent on a Hilbert space X
generating a C0-semigroup in X,

C ∈ L(X,Y ), where Y is another Hilbert space.

We assume

(A1) A admits M eigenvalues (counted without multiplicities) with
real part greater or equal than 0:

· · · 6 ReλM+2 6 ReλM+1 < 0 6 ReλM 6 · · · 6 Reλ2 6 Reλ1.

(A2) We have the equality

ωa(A) = ω0(A).



Detectability

Definition

The pair (A,C) is detectable if there exists L ∈ L(Y,X) such that
(A+ LC) generates an exponentially stable semigroup.

We are going to show that:�� ��Spectral observability of unstable eigenfunctions of A(
Aϕ = λϕ for λ ∈ Σ+ and Cϕ = 0

)
=⇒ ϕ = 0w��� ��Detectability of the finite dimensional system (A+, C+)w��� ��Detectability of the infinite dimensional system (A,C)



Projection operator

We set Σ+ := {λ1, . . . , λM} and let Γ+ be a positively oriented
curve enclosing Σ+ but no other point of the spectrum of A. Let
P+ : X → X be the projection operator defined by

P+ := − 1

2πi

∫
Γ+

(ξ −A)−1 dξ.

X

X

X
X

X

X

X

X

X

X

X

X

X

X

X

X XXX XX XX

λ1

Unstable modesStable modes

Γ+



Splitting

We set X+ := P+X and X− := (I − P+)X, and then P+ provides
the following decomposition of X

X = X+ ⊕X−.

Following Russell and Triggiani, we can decompose our system into
two subsystems :

a finite dimensional system to be stabilized,

a stable infinite dimensional system.

More precisely, X+ and X− are invariant subspaces under A (since
A and P+ commute) and the spectra of the restricted operators
A
∣∣
X+ and A

∣∣
X− are respectively Σ+ and Σ− := σ(A) \ Σ+. We

also define

A+ := A|D(A)∩X+
: D(A) ∩X+ −→ X+,

A− := A|D(A)∩X− : D(A) ∩X− −→ X−.



Splitting

If A is diagonalizable, the space X+ = P+X is the finite
dimensional space spanned by the eigenfunctions of A associated
to the unstable eigenvalues:

X+ =

M⊕
k=1

Ker (A− λk).

and

dimX+ =
M∑
k=1

mG
k .

where mG
k := dim Ker (A− λk) is the geometric multiplicity of λk.



Splitting

In the general case, the space X+ is the finite dimensional space
spanned by the generalized eigenfunctions of A associated to the
unstable eigenvalues:

X+ =

M⊕
k=1

Ker (A− λk)m
P
k

where mP
k is the multiplicity of the pole λk in the resolvent

(A− λ)−1.

The space Ker (A− λk)m
P
k is called the generalized eigenspace

associated to λk. Its dimension mA
k is the algebraic multiplicity of

λk.

dimX+ =

M∑
k=1

mA
k .



Detectability result : from L+ to L

Theorem

Let

Q+ : Y → Y+ := CX+ be the orthogonal projection operator
from Y to Y+,

iX+ : X+ → X be the embedding operator from X+ into X.

Set
C+ = CiX+ ∈ L(X+, Y+)

and assume that the finite dimensional projected system (A+, C+)
is detectable through L+ ∈ L(Y+, X+).
Then, the infinite dimensional system (A,C) is detectable through

L = iX+L+Q+ ∈ L(Y,X).



Proof

For L ∈ L(Y,X), consider the system

ż(t) = (A+ LC)z(t).

If we write z = z+ + z− where z+ := P+z and z− := (I − P+)z,
by applying P+ and (I − P+) to the above equation, we obtain a
corresponding splitting of the system into two subsystems:{

ż+(t) = A+z+(t) + P+LCz(t),

ż−(t) = A−z−(t) + (I − P+)LCz(t).

Taking L = iX+L+Q+ and using the identities P+iX+ = IdX+ and
(I − P+)iX+ = 0, we obtain{

ż+(t) = A+z+(t) + L+Q+Cz(t),

ż−(t) = A−z−(t).



Proof

It follows from assumption (A2) that z− is exponentially stable:

‖z−(t)‖ 6 Ke−ω−t ‖z−(0)‖

where 0 < ω− 6 −ReλM+1. On the other hand, by using
C+ = Q+CiX+ and since iX+z+ = z+, we have

ż+(t) = A+z+(t) + L+Q+C(z+(t) + z−(t))

= A+z+(t) + L+Q+CiX+z+(t) + L+Q+Cz−(t)

= (A+ + L+C+)z+(t) + L+Q+Cz−(t).



Proof

Using Duhamel’s formula, we get

z+(t) = T+
t z+(0) +

∫ t

0

T+
t−sL+Q+Cz−(s)ds,

where T+
t is the semigroup generated by A+ + L+C+, which is

exponentially stable by the detectability assumption, i.e. there exists
ω+ > 0 such that∥∥T+

t x
∥∥ 6 Ke−ω+t ‖x‖ ∀x ∈ X+, ∀t > 0.

Combined with exponential stability of z−, this yields

‖z+(t)‖ 6 K
{
e−ω+t ‖z+(0)‖+ ‖L+‖ ‖C‖

∫ t

0

e−ω+(t−s)e−ω−s ‖z−(0)‖ ds
}
,

and consequently

‖z+(t)‖ 6 K
(
e−ω+t + ‖L+‖ ‖C‖

e−ω+t − e−ω−t

ω− − ω+

)
‖z0‖ .



Proof

It is then sufficient to choose ω+ small enough such that
0 < ω+ < ω− to have the exponential decay of t 7→ z+(t):

‖z+(t)‖ 6 Ke−ω+t ‖z0‖ , t > 0.

We have thus proved the exponential decay of z = z+ + z−.
�



Hautus test

The following result provide a sufficient condition of Hautus type
for the detectability of the finite dimensional projected system
(A+, C+).

Proposition

If the spectral observability condition (Hautus test)(
Aϕ = λϕ for λ ∈ Σ+ and Cϕ = 0

)
=⇒ ϕ = 0

is satisfied, then (A+, C+) is detectable.

Proof : Since C+z+ = Cz+ for any z+ ∈ X+, if the Hautus test is
satisfied, then it is clear that the following Hautus test is also satisfied:(

ϕ ∈ D(A) ∩X+ | A+ϕ = λϕ and C+ϕ = 0
)

=⇒ ϕ =0.

As the above system is finite dimensional, (A+, C+) is detectable. �



Remarks

Corollaire

If the Hautus test is satisfied, then (A,C) is detectable via the
stabilizing output injection operator L defined previously.

The matrices A+ and C+ are in practice of small size : their
dimensions are respectively dimX+ × dimX+ and
dimY+ × dimX+.

The stabilizing operator L+ of the finite dimensional system
(A+, C+) can be determined by solving a finite dimensional
algebraic Riccati equation.
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Observer

Assumptions (A1) (M <∞ unstable eigenvalues) and (A2)
(ωa(A) = ω0(A)) are satisfied for our population model and the
problem of determining the stabilizing operator L for (A,C) fits
into the framework described above.
It only remains to verify that the Hautus test is satisfied for our
system (A,C):

Lemma

If ϕ ∈ D(A) satisfies Aϕ = λϕ for λ ∈ Σ+ and Cϕ = 0, then ϕ
vanishes identically.



Proof of the spectral observability

Let λ be an unstable eigenvalue of A and let ϕ ∈ D(A) satisfying
Aϕ = λϕ. Decomposing ϕ(0, x) in the basis of L2(Ω) constituted of the
eigenfunctions of −k∆, the unique solution of the evolution system

∂ϕ

∂a
(a, x) = k∆ϕ(a, x)− (λ+ µ)ϕ(a, x), a ∈ (0, a∗), x ∈ Ω,

ϕ(a, x) = 0, a ∈ (0, a∗), x ∈ ∂Ω,

ϕ(0, x) =
∑
j∈N

αjϕ
D
j (x), x ∈ Ω,

is given by

ϕ(a, x) =
∑
j∈N

αje
−(λ+λD

j )aΠ(a)ϕDj (x).

Plugging the above expression in the renewal equation, we obtain

∑
j∈N

αjϕ
D
j (x) =

∑
j∈N

αj

(∫ a∗

0

β(a)e−(λ+λD
j )aΠ(a)

)
ϕDj (x).

We see that is equivalent to, for any j ∈ N, either αj = 0, either λ+ λDj
solves the characteristic equation of the diffusion free problem.



Proof of the spectral observability (end)

Consequently, we have

ϕ(a, x) =
∑

j|λ+λDj ∈σ(A0)

αje
−(λ+λDj )aΠ(a)ϕDj (x).

The condition Cϕ = 0 reads then∑
j|λ+λDj ∈σ(A0)

αje
−(λ+λDj )aϕDj |O(x) = 0, a ∈ (a1, a2).

Since the eigenfunctions of −k∆ with Dirichlet boundary
conditions are analytic, we immediately obtain that ϕ = 0. �



Main result

Theorem

Let p0 ∈ X and assume that y(t) = p|(a1,a2)×O (t > 0) is known.
Let p̂ the observer defined by{

˙̂p(t) = Ap̂(t) + L(Cp̂(t)− y(t)), t ∈ (0, T )
p̂(0) = 0,

where L ∈ L(Y,X) is the stabilizing operator defined by

L = iX+L+Q+ ∈ L(Y,X).

Then, there exist M,ω > 0 such that

‖p̂(t)− p(t)‖ 6Me−ωt ‖p0‖ , t > 0.
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Full observation in age

Taking Ω = (0, π) and assuming that p0 is an unknown initial data, we
want to estimate p at time t = T where p solves:

∂tp(a, x, t) + ∂ap(a, x, t)

= −µ(a)p(a, x, t) + ∂xxp(a, x, t), a ∈ (0, a∗), x ∈ (0, π), t > 0,

p(a, 0, t) = p(a, π, t) = 0, a ∈ (0, a∗), t > 0,

p(a, x, 0) = p0(a, x), a ∈ (0, a∗), x ∈ (0, π),

p(0, x, t) =

∫ a∗

0

β(a)p(a, x, t) da, x ∈ (0, π), t > 0,

provided we know the observation

y(t) = p(t)|(0,a∗)×(π/3,2π/3), t ∈ (0, T ).



The fertility and mortality functions
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Figure: The fertility and mortality functions.

Taking a∗ = 2, we choose the fertility and mortality function to be

β(a) = 10 a(a∗ − a) exp
{
−20(a− a∗/3)2

}
, µ(a) = (a∗ − a)−1.

Note that the function Π(a) can be computed explicitly:

Π(a) = exp

(
−
∫ a

0

µ(s) ds

)
=
a∗ − a
a∗

.



First test : initial state = unstable eigenfunction

Under these assumptions, there is a unique unstable eigenvalue
λ1 = λ0

1 − π2(where λ0
1 ∈ R satisfies F (λ0

1) = 1). Computing numerically
this value, we obtain that λ1 = 0.239. We first choose as initial state an
eigenfunction corresponding to λ1

p0(a, x) = ϕ1(a, x) = ϕ0
1(a)ϕD1 (x) =

a∗ − a
a∗

e−λ
0
1a sin(x).



Estimated and exact solution at time t = T

The exact solution is:

p(a, x, t) = eλ1tp0(a, x).

We take: T = 2a∗, with a∗ = 2.
Using Nx = 100, Na = 120 and Nt = 2Na, we obtain an L2

relative error of 4.07%.

Estimated (left) and exact (right) solution at time t = T .



Second test : initial state = Gaussian function

We choose a space-aged localized initial distribution of population
of gaussian type:

p0(a, x) = exp
{
−
(
30(a− a∗/4)2 + 20(x− `/4)2

)}
.

Gaussian initial state (3D and 2D representations).



Estimated and exact solution at time t = T

We obtain an L2 relative error of 2.99%, 9.6% and 16.2%
respectively for 5%, 10% and 15% of noise1.

Estimated (left) and exact (right) solution at time t = T (5% of noise).

1“Exact” solution refers here to a numerical solution computed numerically.



Estimated and exact final total population

PT (x) =

∫ a∗

0
p(a, T, x) da and P̂T (x) =

∫ a∗

0
p̂(a, T, x) da.
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Estimated
Exact

Estimated (dashed line) and exact total population at time t = T
with 5% of noise (left) and 15% of noise (right).



Distributed observation in space and age
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Estimated (dashed line) and exact total population at time t = T

with age observation in
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Influence of the observation time

We consider a configuration with two unstable eigenvalues and we
investigate the influence of T . For T = 0.5a∗, we obtain a relative
error of 27% for the population density, but we still obtain a
reasonable approximation for the total population.
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Estimated (dashed line) and exact total population at time t = T ,
for T = a∗ (left) and for T = 0.5a∗ (right).



Conclusion

1 Other models

Other outputs : y(x, t) =

∫ a2

a1

p(a, x, t) da, x ∈ O.

Space dependent coefficients : β(a, x), µ(a, x).

Nonlinearities: β(a, x, P ) and µ(a, x, P ) where

P (x, t) :=

∫ a∗

0

p(a, x, t) da.

adaptative observer which gives an estimation of p and k.

2 Approximation
Convergence analysis and error estimates

Uniform exponential stability (with respect to ∆a et h)



Particular case: A+ := A|D(A)∩X+
diagonalizable

The results collected here can be found in Barbu and Triggiani
2004. We assume that A+ := A|D(A)∩X+

is diagonalizable. For
simplicity, we denote by N the number of unstable eigenvalues of
A counted with multiplicities (still denoted λk, k = 1, · · · , N).
This implies in particular that the unstable space is

X+ =

N⊕
k=1

Ker (A− λk).

We denote then by (ϕk)16k6N a basis of X+. Denote by ψk an

eigenfunction of A∗ corresponding to the unstable eigenvalue λk
(1 6 k 6 N). It can be shown that the family (ψk)16k6N can be
chosen such that (ϕk)16k6N and (ψk)16k6N form bi-orthogonal
sequences, in the sense that (ϕk, ψm)X = δkm. It follows then that
the projection operator P+ ∈ L(X,X+) can be expressed as

P+z =

N∑
k=1

(z, ψk)X ϕk (z ∈ X).



Since
X+ = P+X = Span {ϕk, 1 6 k 6 N} ,

it follows that

Y+ = CX+ = Span {Cϕk, 1 6 k 6 N} .

Assume now that the family

(Cϕk)16k6N is linearly independent in X. (1)

This property holds true in the case of internal observation.
Therefore

dimY+ = dimX+ = N.

We denote by G the Hermitian matrix of size N ×N defined by

G =
(
(Cϕi, Cϕj)Y

)
16i6N, 16j6N .

It is not difficult to prove that (1) is equivalent to the fact that G
is invertible.



The orthogonal projection operator Q+

Lemma

Assume that property (1) holds true. Then, for any y ∈ Y , then
Q+y is defined by

Q+y =

N∑
i=1

(y, ηi)Y Cϕi,

where

ηi =

N∑
j=1

αijCϕj

and
(αij)16i6N, 16j6N = G−1.



From L+ to L

The (finite dimensional) operator C+ ∈ L(X+, Y+) satisfies
C+ϕk = Cϕk for any k ∈ {1, ..., N}. Note that C+ is nothing but
the identity matrix when we choose as basis for X+ and Y+

respectively (ϕk)16k6N and (Cϕk)16k6N . Therefore, using these
bases, A+ + L+C+ is a Hurwitz matrix provided
diag(λ1, ..., λN ) + L+ is Hurwitz. It is thus sufficient to take
L+ = −σI with

σ > Reλ1

to ensure the stability of A+ + L+C+.
The corresponding operator L ∈ L(Y,X) for every y ∈ Y

Ly = L+Q+y = L+

(
N∑
i=1

(y, ηi)Y Cϕi

)
= −σ

N∑
i=1

(y, ηi)Y ϕi,

and, following Theorem 6, A+ LC generates an exponentially
stable semigroup.



Goal

Under these assumptions, there is a unique unstable eigenvalue
λ1 = λ0

1 − 1 (where λ0
1 ∈ R satisfies F (λ0

1) = 1). Computing
numerically this value, we obtain that λ1 = 0.239.
The observation operator C ∈ L(X,Y ) is given by

Cϕ = ϕ|(0,a∗)×(π/3,2π/3), ∀ϕ ∈ X
where X = L2((0, a∗)× (0, π)) and Y = L2((0, a∗)× (π/3, 2π/3)).
In order to estimate p(T ), we use the observer designed previously.
As the unstable space is the one-dimensional space

X+ = Ker (A− λ1) = Span {ϕ1} = Span
{
ϕ0

1(a)ϕD1 (x)
}
,

the observer involves the stabilizing output injection operator L
defined by

Ly = −σ (y, η1)Y ϕ1 (y ∈ Y ),

where σ > λ1 (gain coefficient) and

η1 = α11Cϕ1 =
Cϕ1

‖Cϕ1‖2Y
.



Goal

The observer solves then the following system

∂tp̂(a, x, t) + ∂ap̂(a, x, t) + µ(a)p̂(a, x, t)

−∂xxp̂(a, x, t) + σ (Cp̂, η1)Y ϕ1(a, x)

= σ (y, η1)Y ϕ1(a, x), a ∈ (0, a∗), x ∈ (0, π), t > 0,

p̂(a, 0, t) = p̂(a, π, t) = 0, a ∈ (0, a∗), t > 0,

p̂(a, x, 0) = 0, a ∈ (0, a∗), x ∈ (0, π),

p̂(0, x, t) =

∫ a∗

0

β(a)p̂(a, x, t) da, x ∈ (0, π), t > 0.

Goal: compare p(T ) and p̂(T )



Main difficulties concerning the discretization

Singular behavior of the coefficient µ
↪→ rescaling the problem: introduce the auxiliary variable

u(a, x, t) = p(a,x,t)
Π(a) = exp

(∫ a∗
0
µ(s) ds

)
p(a, x, t)

∂tu(a, x, t) + ∂au(a, x, t)− ∂xxu(a, x, t) = 0,

u(a, 0, t) = u(a, π, t) = 0,

u(a, x, 0) = u0(a, x) = p0(a, x)/Π(a),

u(0, x, t) =

∫ a∗

0

m(a)u(a, x, t) da, where m(a) = β(a)Π(a)

discretization of the renewal eq.: p(0, x, t) =
∫ a∗

0
β(a)p(a, x, t) da

↪→ u(0, x, n∆t) =

∫ a∗

0

m(a)u(a, x, (n− 1)∆t) da

presence of the extra term in the observer equation (Cp̂, η1)Y ϕ1,
↪→ introduce θ(t) = (CΠû, η1)Y which satisfies{

θ̇(t) = − (CΠ∂aû, η1)Y + (CΠ∂xxû, η1)Y − σθ(t) + σ (y, η1)Y
θ(0) = 0



Rescaling the open loop problem

First of all, in order to overcome the difficulties due to singular behavior
of the coefficient µ, we introduce the auxiliary variable

u(a, x, t) =
p(a, x, t)

Π(a)
= exp

(∫ a∗

0

µ(s) ds

)
p(a, x, t).

One can easily check that u satisfies

∂tu(a, x, t) + ∂au(a, x, t)− ∂xxu(a, x, t) = 0, a ∈ (0, a∗), x ∈ (0, π), t > 0,

u(a, 0, t) = u(a, π, t) = 0, a ∈ (0, a∗), t > 0,

u(a, x, 0) = u0(a, x), a ∈ (0, a∗), x ∈ (0, π),

u(0, x, t) =

∫ a∗

0

m(a)u(a, x, t) da, x ∈ (0, π), t > 0,

where we have set u0(a, x) = p0(a, x)/Π(a) and where
m(a) = β(a)Π(a) stands for the maternity function.



Finite difference discretization in time

Let un(a, x) be an approximation of u(a, x, tn), where tn = n∆t,
0 6 n 6 Nt, ∆t = T/Nt is a discretization of (0, T ). Starting from
u0(a, x) = u0(a, x), we construct un for n > 1 using an Euler’s
backwards scheme

un(a, x)− un−1(a, x)

∆t
+ ∂au

n(a, x)

−∂xxun(a, x) = 0, a ∈ (0, a∗), x ∈ (0, π),

un(a, 0) = un(a, π) = 0, a ∈ (0, a∗),

u0(a, x) = u0(a, x), a ∈ (0, a∗), x ∈ (0, π),

un(0, x) =

∫ a∗

0
m(a)un−1(a, x) da, x ∈ (0, π).



Finite difference discretization in space

Denoting by uni (a) an approximation of un(xi, a) (where
xi = ih = i`/(Nx + 1), with 0 6 i 6 Nx + 1) and using a classical
centered approximation for the second order derivative in space, the
above system yields

dUn

da
(a) +

1

h2
KUn(a) +

1

∆t
Un(a) =

1

∆t
Un−1(a),

Un(0) =

∫ a∗

0

m(a)Un−1(a) da,

U0(a) = U0(a),

where

Un(a) =


un
1 (a)
...
...

un
Nx

(a)

 ,U0(a) =


u0(a, x1)

...

...
u0(a, xNx)

 ,K =


2 −1
−1 2 −1 0

. . .
. . .

. . .

0 −1 2 −1
−1 2

 .



Finite difference discretization in age

We use a Crank-Nicholson scheme. Denoting by un,ki an approximation
of uni (ak), where ak = k∆a, 0 6 k 6 Na, ∆t = a∗/Na, and by

Un,k :=

u
n,k
1
...

un,kNx


an approximation of Un(ak), we move from age ak−1 to age ak following

1

∆a

(
Un,k −Un,k−1

)
+

1

h2
K
(
Un,k + Un,k−1

2

)
+

1

∆t

(
Un,k + Un,k−1

2

)
=

1

∆t

(
Un−1,k + Un−1,k−1

2

)
,

with the initial conditions
U0,k = U0(ak), ∀k = 0, . . . , Na,

Un,0 =

Na∑
k=0

ωkm(ak)Un−1,k '
∫ a∗

0

m(a)Un−1(a) da.



The algorithm

1 For n = 0 : Initialization of U0,k

2 For n = 1, . . . , Nt :

k = 0: Initialization of Un,0 using the values of (Un−1,j)Na
j=0:

Un,0 =

Na∑
k=0

ωkm(ak)Un−1,k

For k = 1, . . . , Na, U
n,k =

u
n,k
1

...

un,k
Nx

 solves the linear system

AUn,k = bn,k

where

A =

(
∆t+

1

2
∆a

)
I +

1

2

∆t∆a

h2
K

bn,k =
∆a

2

(
Un−1,k + Un−1,k−1

)
+

[(
∆t− ∆a

2

)
I− ∆t∆a

2h2
K
]
Un,k−1

Yn,k =

y
n,k
1

...

yn,k
Nx

 where yn,k
i = Π(ak)un,k

i if `1 6 ih 6 `2 and

yn,k
i = 0 otherwise.



Discretization of the closed loop system : observer design



∂tp̂(a, x, t) + ∂ap̂(a, x, t) + µ(a)p̂(a, x, t)

−∂xxp̂(a, x, t) + σ (Cp̂, η1)Y ϕ1(a, x) = σ (y, η1)Y ϕ1(a, x),

p̂(a, 0, t) = p̂(a, π, t) = 0,

p̂(a, x, 0) = 0,

p̂(0, x, t) =

∫ a∗

0
β(a)p̂(a, x, t) da.



Rescaling the problem

First of all, we introduce the auxiliary variable

û(a, x, t) =
p̂(a, x, t)

Π(a)
= exp

(∫ a∗

0
µ(s) ds

)
p̂(a, x, t).

One can easily check that û satisfies

∂tû(a, x, t) + ∂aû(a, x, t)− ∂xxû(a, x, t)

+σ (CΠû, η1)Y v1(a, x) = σ (y, η1)Y v1(a, x),

û(a, 0, t) = û(a, π, t) = 0,

û(a, x, 0) = 0,

û(0, x, t) =

∫ a∗

0

m(a)û(a, x, t) da,

where we have set v1(a, x) = ϕ1(a, x)/Π(a).



Discretization of the term (CΠû, η1)Y

Let us introduce
θ(t) = (CΠû, η1)Y .

Using the fact that (CΠv1, η1)Y = 1, we remark that θ satisfies

θ̇(t) = − (CΠ∂aû, η1)Y + (CΠ∂xxû, η1)Y − σθ(t) + σ (y, η1)Y .

Consequently,

θ̇(t) = − (CΠ∂aû(t), η1)Y + (CΠ∂xxû(t), η1)Y − σθ(t) + σ (y(t), η1)Y ,

∂tû(a, x, t) + ∂aû(a, x, t)− ∂xxû(a, x, t) + σθ(t)v1(a, x)

= σ (y, η1)Y v1(a, x),

θ(0) = 0,

û(a, 0, t) = û(a, `, t) = 0,

û(a, x, 0) = 0,

û(0, x, t) =

∫ a∗

0

m(a)û(a, x, t) da.



Finite difference discretization in time

Let ûn(a, x) (resp. θn, yn(a, x)) be an approximation of û(a, x, tn) (resp.
θ(tn), y(a, x, tn)), where tn = n∆t, 0 6 n 6 Nt, ∆t = T/Nt is a
discretization of (0, T ). Starting from θ0 = 0 and û0(a, x) = 0, we construct
θn and ûn for n > 1 using an Euler’s backwards scheme

1

∆t

(
θn − θn−1) = −

(
CΠ∂aû

n−1, η1
)
Y

+
(
CΠ∂xxû

n−1, η1
)
Y

−σθn + σ (yn, η1)Y ,

1

∆t

(
ûn(a, x)− ûn−1(a, x)

)
+ ∂aû

n(a, x)− ∂xxûn(a, x) + σθnv1

= σ (yn, η1)Y v1,

θ0 = 0,

ûn(a, 0) = ûn(a, `) = 0,

û0(a, x) = 0,

ûn(0, x) =

∫ a∗

0

m(a)ûn−1(a, x) da.



Finite difference discretization in space

Denoting by ûn
i (a) an approximation of ûn(xi, a), the above system yields

1

∆t
θn =

1

∆t
θn−1 − σθn − h

(∫ a∗

0

Π(a)η1(a)T∂aÛ
n−1(a) da

)

− 1

h

(∫ a∗

0

Π(a)η1(a)TKÛn−1(a) da

)
+ σh

(∫ a∗

0

η1(a)TYn(a) da

)
,

dÛn

da
(a) +

1

h2
KÛn(a) +

1

∆t
Ûn(a) + σθnV1(a)

=
1

∆t
Ûn−1(a) + σh

(∫ a∗

0

η1(a)TYn(a) da

)
V1(a),

θ0 = 0,

Ûn(0) =

∫ a∗

0

m(a)Ûn−1(a) da,

Û0(a) = 0,

where

Ûn(a) =

 ûn
1 (a)
...

ûn
Nx

(a)

 ,V1(a) =

 v1(a, x1)
...

v1(a, xNx)

 ,η1(a) =

 η1(a, x1)
...

η1(a, xNx)

 .

We take here yn(a, xi) = 0 for all i ∈ {1, ..., Nx} such that xi /∈ (`1, `2), for all
a ∈ (0, a∗) and all n > 1.



Finite difference discretization in age

We use a Crank-Nicholson scheme. Denoting by ûn,k
i an approximation of

ûn
i (ak), where ak = k∆a, 0 6 k 6 Na, ∆t = a∗/Na, and by Ûn,k :=

û
n,k
1

...

ûn,k
Nx


an approximation of Ûn(ak), we move from age ak−1 to age ak following

1

∆t
θn =

1

∆t
θn−1−σθn−h∆a

(
Na∑
k=1

Π(k∆a)
(
ηk
1

)T(Ûn−1,k − Ûn−1,k−1

∆a

))

−∆a

h

(
Na∑
k=1

Π(k∆a)
(
ηk
1

)T
KÛn−1,k

)
+σh∆a

(
Na∑
k=1

(
ηk
1

)T
Yn,k

)
,

and

1

∆a

(
Ûn,k − Ûn,k−1

)
+

1

h2
K

(
Ûn,k + Ûn,k−1

2

)
+

1

∆t

(
Ûn,k + Ûn,k−1

2

)

+σθnVk
1 =

1

∆t

(
Ûn−1,k + Ûn−1,k−1

2

)
+σh∆a

(
Na∑
j=1

(
ηj
1

)T
Yn,j

)
Vk

1 ,



with the initial conditions

θ0 = 0,

Û0,k = 0, ∀k = 0, . . . , Na,

Ûn,0 =

Na∑
k=0

ωkm(ak)Ûn−1,k.

Here

Vk
1 =

 v1(k∆a, x1)
...

v1(k∆a, xNx)

 , ηk1 =

 η1(k∆a, x1)
...

η1(k∆a, xNx)

 , Yn,k =

 yn(k∆a, x1)
...

yn(k∆a, xNx)

 .



1 For n = 0 : Initialization of θ0 and Û0,k (k = 0, . . . , Na) at 0.

2 For n = 1, . . . , Nt :

Calculate θn using the values of θn−1 and (Ûn−1,j)Na
j=0:

θn =
1

1 + σ∆t

(
θn−1 − h∆t

Na∑
k=1

Π(k∆a)(ηk
1)T

(
Ûn−1,k − Ûn−1,k−1

)

−∆a∆t

h

Na∑
k=1

Π(k∆a)(ηk
1)TKÛn−1,k + σh∆a∆t

Na∑
k=1

(ηk
1)TYn,k

)
k = 0: Initialization of Ûn,0 using the values of (Ûn−1,j)Na

j=0:

Ûn,0 =

Na∑
k=0

ωkm(k∆a)Ûn−1,k

For k = 1, . . . , Na, solve the linear system

AÛn,k = b̂n,k

where

b̂n,k =
∆a

2

(
Ûn−1,k + Ûn−1,k−1

)
+

[
(∆t− ∆a

2
)I− ∆t∆a

2h2
K
]
Ûn,k−1

− σ∆a∆t θnVk
1 + σh(∆a)2∆t

(
Na∑
j=1

(
ηj
1

)T
Yn,j

)
Vk

1



End of the algorithm

P̂n,k =

p̂
n,k
1
...

p̂n,kNx

 where p̂n,ki = Π(ak)ûn,ki .
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