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The multidimensional case Introduction

Previous results

Let Ω ⊂ RN be a bounded open set with boundary Γ = Γ0 ∪ Γ1 of
class C 2, such that Γ0 ∩ Γ1 = ∅. In a previous work, Toufayli and
Wehbe considered the energy decay rate of a multidimensional system
of wave equations coupled by velocities:

utt −∆u + byt = 0, in Ω× R+, (1.1)
ytt − a∆y − but = 0, in Ω× R+, (1.2)

u = 0, on Γ× R+, (1.3)
y = 0, on Γ0 × R+, (1.4)

∂νy + yt = 0, on Γ1 × R+ (1.5)

with the following initial data

(u(x , 0), y(x , 0)) = (u0, y0), (ut(x , 0), yt(x , 0)) = (u1, y1) (1.6)

where a > 0 and b ∈ R.
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The multidimensional case Introduction

Previous results

Under the equal speed wave propagation condition (in the case
a = 1) and if the coupling parameter b is small enough, we
established an exponential energy decay estimate. However, on
the contrary, no stability type has been discussed.

Recently, Najdi and Wehbe, considered the same system in an
one-dimensional domain. They established the following stability
results

Strong if and only if

b2 6= (k2
1 − ak2

2 )(ak2
1 − k2

2 )π2

(a + 1)(k2
1 + k2

2 )
, ∀k1, k2 ∈ Z. (SC1),

Uniform iff (SC1) hods, a = 1 and b 6= kπ, ∀k ∈ Z,
Polynomial of type 1√

t
if (SC1) hods, a = 1 and b = kπ, k ∈ Z,

Polynomial of type 1√
t
if (SC1) hods, a ∈ Q and b small enough

or
√
a ∈ Q.
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The multidimensional case Introduction

Objective

Our objective is to investigate the indirect exact boundary
controllability of the following system

utt −∆u + byt = 0, in Ω× R+, (1.7)
ytt − a∆y − but = 0, in Ω× R+, (1.8)

u = 0, on Γ× R+, (1.9)
y = 0 on Γ0 × R+, (1.10)
y = v(t), on Γ1 × R+ (1.11)

with the following initial data

(u(x , 0), y(x , 0)) = (u0, y0), (ut(x , 0), yt(x , 0)) = (u1, y1) (1.12)

Control is applied only to the second equation. The first equation is
controlled indirectly by means of the coupling of the equations.
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The multidimensional case Introduction

History

The boundary indirect exact controllability of a system of wave equations
coupled through the zero order terms has been studied with different
approaches. We recall the results of Alabau and Liu-Rao

Fatiha Alabau (in 2003), studied the indirect boundary observability of
a system of wave equations coupled through the zero order terms with
same speed of propagation. Using a multiplier method, she proved
that, for sufficiently large time T , the observation of the trace of the
normal derivative of the first component of the solution on Γ1 allows us
to get back a weakened energy of the initial data. Then the system is
exactly controllable by means of a one boundary control.

Liu and Rao (in 2009), extended the result of Alabau by considering the
important case when the waves propagate with different speeds within
the two equations. Using a spectral approach, they studied how the
modes of the uncontrolled equation are influenced by the modes of the
controlled equation and to get the optimal right controllability spaces.
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The multidimensional case Observability Inequalies

Homogeneous system

We consider the following homogeneous system

ϕtt −∆ϕ+ bψt = 0, in Ω× R+, (1.13)
ψtt −∆ψ − bϕt = 0, in Ω× R+, (1.14)

ϕ = ψ = 0, on Γ× R+, (1.15)

with the following initial data

ϕ(x , 0) = ϕ0(x), ϕt(x , 0) = ϕ1(x),

ψ(x , 0) = ψ0(x), ψt(x , 0) = ψ1(x), x ∈ Ω, (1.16)

Ali WEHBE July 05, 2016 8 / 30



The multidimensional case Observability Inequalies

Well-posedness of homogeneous system

Let (ϕ,ψ) Be a regular solution of system (1.13)-(1.16), we define

EH(t) =
1
2

∫
Ω

(|ϕt |2 + |∇ϕ|2 + |ψt |2 + |∇ψ|2)dx . (1.17)

It is easy to see that E ′H(t) = 0, then system (1.13)-(1.16) is
conservative in the sens that its energy is constant. Now, we define
the Hilbert space

H = (H1
0 (Ω)× L2(Ω))2 (1.18)

such that, for all Φ = (ϕ, ξ, ψ, %), Φ̃ = (ϕ̃, ξ̃, ψ̃, %̃) in H, we have

(Φ, Φ̃)H :=

∫
Ω

(
∇ϕ · ∇ϕ̃+ ξξ̃ +∇ψ · ∇ψ̃ + %%̃

)
dx . (1.19)
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The multidimensional case Observability Inequalies

Well-posedness of homogeneous system

We define the unbounded linear operator A by :

D(A) = {Φ = (ϕ, ξ, ψ, %) ∈ H : ϕ, ψ ∈ H2(Ω)∩H1
0 (Ω), ξ, % ∈ H1

0 (Ω)},

AΦ = (ξ,∆ϕ− b%, %,∆ψ + bξ), ∀Φ = (ϕ, ξ, ψ, %) ∈ D(A).

Then system (1.13)-(1.16) is equivalent to

Φt = AΦ, Φ(0) = Φ0 ∈ H. (1.20)

By semi-group theory, system (1.20) admits unique solution Φ such
that

Φ(t) ∈ C 0(0,+∞;H), if Φ0 = (ϕ0, ϕ1, ψ0, ψ1) ∈ H,

Φ(t) ∈ C 0(0,+∞;D(A))∩C 1(0,+∞;H), if Φ0 = (ϕ0, ϕ1, ψ0, ψ1) ∈ D(A).

Ali WEHBE July 05, 2016 10 / 30



The multidimensional case Observability Inequalies

Observability Inequalities

Assume that there exists δ > 0 and x0 ∈ RN such that, putting
m(x) = x − x0, we have

(m · ν) ≥ δ−1, ∀x ∈ Γ1 and (m · ν) ≤ 0, ∀x ∈ Γ0. (GC)

Theorem

Assume that (GC) holds , a=1 and 0 < b < b0 = 1
4R+3 max{1,c0} , where c0 is

the Poincaré constant. Then, there exists T0 > 0, such that for all T > T0
and for all Φ0 ∈ H,the weak solution Φ of (1.20) verifying

c2

∫ T

0

∫
Γ1

|∂νψ|2dΓdt ≤ ‖Φ0‖2H ≤ c1

∫ T

0

∫
Γ1

|∂νψ|2dΓdt (1.21)

where c1, c2 are positive constants and

T0 =
6
b + 8R + 6max{1, c0}

1− b(4R + 3max{1, c0})
.
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The multidimensional case Observability Inequalies

Sketch of the proof

Multiply equation (1.13) by ψt and (1.14) by ϕt respectively, we
get

b

∫ T

0

∫
Ω
|ϕt |2dxdt ≤ b

∫ T

0

∫
Ω
|ψt |2dxdt + ‖Φ0‖2 . (1.22)

Multiply equation (1.14) by (N − 1)ψ + 2(m · ∇ψ), we get

2
∫ T

0

∫
Ω
|ψt |2dxdt + 2

∫ T

0

∫
Ω
|∇ψ|2dxdt

−2
∫ T

0

∫
Γ0

(m · ν)|∂νψ|2dΓdt

−2
∫ T

0

∫
Γ1

(m · ν)|∂νψ|2dΓdt

≤ C ‖Φ0‖2 + C̃bT ‖Φ0‖2 .

(1.23)
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The multidimensional case Observability Inequalies

Sketch of the proof

Multiply equation (1.13) by ϕt , we get

−
∫ T

0

∫
Ω
|ϕt |2dxdt +

∫ T

0

∫
Ω
|∇ϕ|2dxdt

≤ C ‖Φ0‖2 + C̃bT ‖Φ0‖2 .
(1.24)

Combining equations (1.22), (1.25) and (1.24) and use the
geometric condition (GC), we get

T ‖Φ0‖2 =

∫ T

0
‖Φ(t)‖2 dt −

∫ T

0

∫
Γ1

(m · ν)|∂νψ|2dΓdt

≤ C ‖Φ0‖2 + C̃bT ‖Φ0‖2 .
(1.25)

Choosing b ≤ 1
C̃

we deduce the inverse observability inequality.
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The multidimensional case Exact Controllability

Exact Controllability result

Theorem

Let T > 0 and v ∈ L2(]0,T [, L2(Γ1)). For all initial data
U0 = (u0, u1, y0, y1) ∈ (L2(Ω)× H−1(Ω))2, the system (1.5) admits a
unique weak solution

U(x , t) ∈ C 0([0,T ], (L2(Ω)× H−1(Ω))2).

In addition, we have the continuous linear mapping

(U0, v) −→ (U,Ut). (1.26)

Ali WEHBE July 05, 2016 14 / 30



The multidimensional case Exact Controllability

Controlled system

Theorem
Assume that 0 < b < b0. For all T > T0 où b0, T0 and for all

U0 ∈ (L2(Ω)× H−1(Ω))2,

there exists a control v(t) ∈ L2(0,T , L2(Γ1)) such that the solution
U = (u, ut , y , yt) of the controlled system (1.5) satisfies
u(T ) = ut(T ) = y(T ) = yt(T ) = 0.

Ali WEHBE July 05, 2016 15 / 30



The multidimensional case Exact Controllability

Sketch of the proof

Thanks to observability inequalities (1.21), we deduce that

‖ Φ0 ‖2H=

∫ T

0

∫
Γ1

|∂ψ
∂ν
|2dΓdt, (1.27)

is a norm. Choosing v = −∂ψ
∂ν
∈ L2(0,T , L2(Γ)).

and solve the following problem

χtt −∆χ+ bζt = 0, in Ω× R+,
ζtt −∆ζ − bχt = 0, in Ω× R+,
χ = 0, on Γ× R+,
ζ = 0, on Γ0 × R+,

ζ = −∂ψ
∂ν , on Γ1 × R+,

χ(T ) = χt(T ) = ζ(T ) = ζt(T ) = 0, in Ω.

(1.28)
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The multidimensional case Exact Controllability

Sketch of the proof

We define the linear operator Λ : H −→ (H−1(Ω)× L2(Ω))2

ΛΦ0 = (χt(0),−χ(0), ζt(0),−ζ(0)), ∀Φ0 ∈ H. (1.29)

Thanks to the inverse observability inequality we deduce that Λ is an
isomorphism. In particular, for all
U0 = (u1,−u0, y1,−y0) ∈ (L2(Ω)× H−1(Ω))2, there exists Φ0 ∈ H,
such that

ΛΦ0 = (u1,−u0, y1,−y0).

Then
(u, ut , y , yt) = (χ, χt , ζ, ζt).

Consequently

u(T ) = ut(T ) = y(T ) = yt(T ) = 0.
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The multidimensional case Exact Controllability

Question

What happens in the One-dimensional case??

Image
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The one-dimensional case Introduction

Controlled system

The aim of this part is to investigate the exact boundary controllability
of the following one-dimensional system:

utt − u′′ + byt = 0,
ytt − ay ′′ − but = 0,
u(1, t) = u(0, t) = y(0, t),
y(1, t) = v(t)

(2.1)

where a > 0, b ∈ R are constants and v is the control applied to the
second equation at the right boundary. We start by considering the
homogeneous system in the case a = 1.
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The one-dimensional case Observability in spectral spaces

Homogeneous system

Let us consider the following homogeneous system
ϕtt − ϕ′′ + bψt = 0,
ψtt − ψ′′ − bϕt = 0,
ϕ(0, t) = ϕ(1, t) = 0,
ψ(0, t) = ψ(1, t) = 0.

(2.2)

Let us define the energy space H = (H1
0 (0, 1)× L2(0, 1))2 such that,

for all Φ = (ϕ, ω, ψ, η), Φ̃ = (ϕ̃, ω̃, ψ̃, η̃), we have(
Φ, Φ̃

)
H

=

∫ (
ϕ′ϕ̃′ + ωω̃ + ψ′ψ̃′ + ηη̃

)
dx .

We define the linear unbounded operator A : D(A) −→ H by

D(A) = (H2(0, 1) ∩ H1
0 (0, 1))× H1

0 (0, 1))2

A = (ϕ, ω, ψ, η) = (ω, ϕ′′ − bη, η, ψ′′ + bω).
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The one-dimensional case Observability in spectral spaces

Observability inequality

We will establish the following observability result

Theorem

Assume that a = 1, there exist no k ∈ Z such that b = kπ and

T >
2π

π + |b|
. (2.3)

Then, there exists a constant c > 0 depending only on b, such that
the following inverse observability inequality holds

c ‖(φ0, φ1, ψ0, ψ1)‖2H ≤
∫ T

0

∣∣ψ′(1, t)
∣∣2 dt. (2.4)
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The one-dimensional case Observability in spectral spaces

Sketch of proof

Let us consider the following eigenvalue problem associated to
homogeneous system 

λ2φ− φ′′ + bλψ = 0,
λ2ψ − ψ′′ − bλφ = 0,
φ(0) = φ(1) = 0,
ψ(0) = ψ(1) = 0

(2.5)

where b 6= 0. For some constants C , D let

φ(x) = C sin(nπx), ψ(x) = D sin(nπx). (2.6)

Then, we have

λ4 + λ2(2(nπ)2 + b2) + (nπ)4 = 0. (2.7)
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The one-dimensional case Observability in spectral spaces

Sketch of proof

We have the following asymptotic behavior
First branch

λ1,n = inπ + i
b

2
+ i

b2

8nπ
+

O(b4)

n3 ,

second branch

λ2,n = inπ − i
b

2
+ i

b2

8nπ
+

O(b4)

n3 ,

corresponding eigenfunctions

ϕ1,n =
sin(nπx)

nπ
, ψ1,n =

−i sin(nπx)

nπ
, (2.8)

ϕ2,n = − i sin(nπx)

nπ
, ψ2,n =

sin(nπx)

nπ
. (2.9)
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The one-dimensional case Observability in spectral spaces

Sketch of proof

The two branches of eigenvalues of A satisfy an uniform gap condition

γ := inf
m,n
|λ1,m − λ2,n| > 0, (2.10)

We set the eigenfunctions of the operator A as{
E1,n = (ϕ1,n, λ1,nϕ1,n, ψ1,n, λ1,nψ1,n),
E2,n = (ϕ2,n, λ2,nϕ2,n, ψ2,n, λ2,nψ2,n).

(2.11)

Then we have

(ϕ0, ϕ1, ψ0, ψ1) =
∑
n 6=0

(α1,nE1,n + α2,nE2,n).

Finally ∫ T

0

∣∣ψ′(1, t)
∣∣2 dt ≥ c

∑
n 6=0

(|α1,n|2 + |α2,n|2).

This yields the inequality (2.4).
Ali WEHBE July 05, 2016 25 / 30



The one-dimensional case Exact controllability result

Exact controllability

We can now state the following result.

Theorem
Assume that a = 1, there exists no k ∈ Z and T satisfies (2.3). Let

(u0, u1, y0, y1) ∈ L2(0, 1)× H−1(0, 1)× L2(0, 1)× H−1(0, 1).

Then there exists a control function v ∈ L2(0,T ) such that the
solution of the non homogenous system (2.1) satisfies he null final
conditions:

u(x ,T ) = ut(x ,T ) = y(x ,T ) = yt(x ,T ).
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The one-dimensional case Exact controllability result

References I

F. Alabau-Bousouira,
Observabilité frontière indirecte de systèmes faiblement couplés,
C. R. Acad. Sci. Paris Sér.I Math, 333 :645-650, 2011.

F. Alabau-Bousouira,
A two level energy method for indirect boundary obsevability and
Controllability of weakly coupled hyperbolic systems,
SIAM j. control. Optim, 42(7) :871-906, 2003. Vol. I, Masson,
Paris, 1988.

V. Komornik,
Exact Controllability and Stabilization,
Masson, Paris, 1994.

Ali WEHBE July 05, 2016 27 / 30



The one-dimensional case Exact controllability result

References II

J. L. Lions,
Contrôlabilité exacte, perturbations et stabilisation de systèmes
distribués,
Vol. I, Masson, Paris, 1988.

J. L. Lions,
Exact Controllability, stabilizability, and perturbations for
distributed systems,
SIAM Rev. 30, 1-68, 1988.

Z. Liu, B. Rao,
A spectral approach to the indirect boundary control of a system
of weakly coupled wave equations,
Discrete and continuous dynamical systems, Vol. 23, No 1,2, 2009.

Ali WEHBE July 05, 2016 28 / 30



The one-dimensional case Exact controllability result

References III

Toufayli Laila,
Stabilisation pôlynomiale et contrôlabilité exacte des équations
des ondes par des contrôles indirects et dynamiques.
Thèse université de Strasbourg, 18 Janvier 2013.

A. Wehbe, W.Youssef,
Observabilité et contrôlabilité exacte internes indirectes d’un
système hyperbolique faiblement couplé,
C. R. Acad. Sci. Paris, Ser. I 348 (2010) 1169Ű1173.

Ali wehbe, Wael youssef,
Indirect locally internal observability and controllability of weakly
coupled wave equations,
Differential Equations and Applications-DEA, Vol. 3, No. 3,
(2011), 449-462.

Ali WEHBE July 05, 2016 29 / 30



The one-dimensional case Exact controllability result

Thanks for your Attention!

Ali WEHBE July 05, 2016 30 / 30


	Introduction
	The multidimensional case
	Introduction
	Observability Inequalies
	Exact Controllability 

	The one-dimensional case
	Introduction
	Observability in spectral spaces
	Exact controllability result



