FPGA Hardware in the Loop System for ERTMS-ETCS Train Equipment Verification

Presented by Naïm HARB PhD.
Outline

• Introduction
 – ERTMS standard
 – Actual equipment
 – Requirements and standardization

• Motivation and cause
 – Testing of equipment
 – Limitations

• Proposed solution
 – Hybrid architecture
 – Network of cards
 – Interface to train equipment
 – Testing scenarios

• Results
Introduction

• European Rail Traffic Management System (ERTMS)
 - Standard to unify European train and traffic signalizations.
 - Decomposition:
 • European Train Control System (ETCS).
 • GSM-R mobile communication unit.
Introduction

- The decomposition of the ERTMS equipment
 - ETCS
 - GSM-R
Introduction

- Requirements and standardization
 - This work concerns the **EVC testing**
 - Real time data mimicking real scenarios
 - Real communication ports (RS422, COAX...) mimicking real sensors
 - Real interface display (DMI)

Conclusion: propose a system that mimics the rail and the driver environment
Motivation

• Existing testing system:
 – Test scenario simulator (MultiRailLab) running on a Windows 7, Intel Core i7 2.4 GHz with 8 GB RAM.
 – Simulator draws speed profile, balise locations, telegram contents and radio transceivers locations.
 – Simulator surveys EVC speed readings, decode emitted balises telegrams at specified locations and verify radio transactions (information).

• Limitations:
 – Special ports communication with EVC (RS485, RS232, COAX…)
 – Real time constraints. Example: 24 Bytes (information and CRC) frames each 20 msec
Proposed Solution

- An intermediate system that can ensure real time constrains and real port configuration
Proposed Solution

- Hybrid architecture proposition:
 - Ethernet is easier when using a **processor** card
 - FPGA are great candidates for real time **constraints**, are **configurable** and **adaptable**
 - This configuration allows **remote** debugging and configuring

```
<table>
<thead>
<tr>
<th>SBC Tegra 2</th>
<th>FPGA Cyclone II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethernet</td>
<td>CDS Bus</td>
</tr>
<tr>
<td>GMI interface</td>
<td></td>
</tr>
<tr>
<td>4 UARTs</td>
<td>SPI</td>
</tr>
<tr>
<td>SPI</td>
<td>GPIO</td>
</tr>
<tr>
<td>GPIO</td>
<td>FPGA programming</td>
</tr>
</tbody>
</table>
```

Common board
Proposed Solution

- ERTMS
- Equip.
- Requir.
- Motivation
- Testing
- Real time
- Proposed solution
- Hybrid archi.
- Network of cards
- Interface to equip.
- Testing scenarios

Introduction

Motivation

Testing

Real time

Proposed solution

Hybrid archi.

Network of cards

Interface to equip.

Testing scenarios

Results

- ERTMS
- Equip.
- Requir.
- Motivation
- Testing
- Real time
- Proposed solution
- Hybrid archi.
- Network of cards
- Interface to equip.
- Testing scenarios

Results

- ERTMS
- Equip.
- Requir.
- Motivation
- Testing
- Real time
- Proposed solution
- Hybrid archi.
- Network of cards
- Interface to equip.
- Testing scenarios

Results

- ERTMS
- Equip.
- Requir.
- Motivation
- Testing
- Real time
- Proposed solution
- Hybrid archi.
- Network of cards
- Interface to equip.
- Testing scenarios

Results

- ERTMS
- Equip.
- Requir.
- Motivation
- Testing
- Real time
- Proposed solution
- Hybrid archi.
- Network of cards
- Interface to equip.
- Testing scenarios

Results

- ERTMS
- Equip.
- Requir.
- Motivation
- Testing
- Real time
- Proposed solution
- Hybrid archi.
- Network of cards
- Interface to equip.
- Testing scenarios

Results
Proposed Solution
Proposed Solution

- Testing scenarios:
 - Real time constraints by verifying CDS time tags compared to the simulator configuration
 - Test communication ports transmissions and reception correct functionality
 - Verify ODO speed signals to DMI and telegrams
 - BSG transmitter signals
Results

• Acquired results, advantages and solutions
 – Easy to use software to EVC testing while the complicated intermediate hardware system is invisible
 – Remote updates and testing possibilities
 – Easy to adapt to new communication ports/standard by replacing the application board and updating the software of the common board
 – Reliable test environment before deployment
 • Real-time simulations
 • Real EVC communication ports
 – Cost reduction with new reduced time-to-market thanks to new FPGA development tools
FPGA Hardware in the Loop System for ERTMS-ETCS Train Equipment Verification

Thank You