Journée Thématique du GDR CNRS SoC SiP Systèmes Embarqués pour les Transports de Demain 15 Mars 2016, UVHC

FPGA Hardware in the Loop System for ERTMS-ETCS Train Equipment Verification

Presented by Naïm HARB PhD.

Outline

- Introduction
 - ERTMS standard
 - Actual equipment
 - Requirements and standardization
- Motivation and cause
 - Testing of equipment
 - Limitations
- Proposed solution
 - Hybrid architecture
 - Network of cards
 - Interface to train equipment
 - Testing scenarios
- Results

Introduction

Introduction
Introduction
ERTMS
Equip.
Requir.
Motivation
Testing
Real time
Proposed
solution
Hybrid
archi.

- Network of cards
- Interface to equip.
- Testing scenarios

Results

- European Rail Traffic Management System (ERTMS)
 - Standard to unify European train and traffic signalizations.

BOMBARDIER

Ansaldosts SMERMEC ALSTOM

ertms

SIEMENS

THALES

- Decomposition:
 - European Train Control System (ETCS).
 - GSM-R mobile communication unit.

Introduction

Introduction • ERTMS • Equip. • Requir. Motivation • Testing • Real time Proposed solution • Hybrid archi. • Network of cards

- Interface to equip.
- Testing scenarios
- Results

- The decomposition of the ERTMS equipment
 - ETCS
 - GSM-R

Introduction

- Requirements and standardization
 - This work concerns the EVC testing
 - Real time data mimicking real scenarios
 - Real communication ports (RS422, COAX...) mimicking real sensors
 - Real interface display (DMI)

<u>Conclusion</u>: propose a system that mimics the rail and the driver environment

Equip.
Requir.
Motivation
Testing
Real time
Proposed
solution
Hybrid archi.

Introduction

ERTMS

- Network
 of cards
 Interface
- to equip. • Testing

scenarios

Motivation

- Introduction

 ERTMS
 Equip.
 Requir.

 Motivation

 Testing
 Real time

 Proposed

 solution
 Hybrid
 archi.
- Network of cards
- Interface to equip.
- Testing scenarios

Results

- Existing testing system:
 - Test scenario simulator (MultiRailLab) running on a Windows 7, Intel Core i7 2,4 GHz with 8 GB RAM.
 - Simulator draws speed profile, balise locations, telegram contents and radio transceivers locations.
 - Simulator surveys EVC speed readings, decode emitted balises telegrams at specified locations and verify radio transactions (information).

Limitations:

- Special ports communication with EVC (RS485, RS232, COAX...)
- Real time constraints. Example: 24 Bytes (information and CRC) frames each 20 msec

- Introduction
- ERTMS
- Equip.
- Requir.
- Motivation
- Testing
- Real time
 Proposed
- solution
- Hybrid archi.
- Network of cards
- Interface to equip.
- Testing scenarios

Results

 An intermediate system that can ensure real time constrains and real port configuration

- Hybrid architecture proposition:
 - Ethernet is easier when using a processor card
 - FPGA are great candidates for real time constraints, are configurable and adaptable
 - This configuration allows remote debugging and configuring

Introduction

ERTMS

Equip.

Requir.

- Network
 of cards
 Interface
- to equip. • Testing scenarios

 Testing scenarios

Introduction • ERTMS • Equip. • Requir. Motivation • Testing • Real time Proposed solution • Hybrid archi.

- Network of cards
- Interface to equip.
- Testing scenarios

- Testing scenarios:
 - Real time constraints by verifying CDS time tags compared to the simulator configuration
 - Test communication ports transmissions and reception correct functionality
 - Verify ODO speed signals to DMI and telegrams
 - BSG transmitter signals

Results

- Introduction

 ERTMS
 Equip.
 Requir.

 Motivation

 Testing
 Real time

 Proposed

 solution
 Hybrid
 archi.
- Network of cards
- Interface to equip.
- Testing scenarios

- Acquired results, advantages and solutions
 - Easy to use software to EVC testing while the complicated intermediate hardware system is invisible
 - Remote updates and testing possibilities
 - Easy to adapt to new communication ports/standard by replacing the application board and updating the software of the common board
 - Reliable test environment before deployment
 - Real-time simulations
 - Real EVC communication ports
 - Cost reduction with new reduced time-to-market thanks to new FPGA development tools

Journée Thématique du GDR CNRS SoC SiP Systèmes Embarqués pour les Transports de Demain 15 Mars 2016, UVHC

