
Multicore for safety-critical embedded systems:
challenges and opportunities

Giuseppe Lipari

CRIStAL - Émeraude

March 15, 2016

Giuseppe Lipari (CRIStAL - Émeraude) Multicore for safety-critical embedded systems: challenges and opportunitiesMarch 15, 2016 1 / 28



Outline

1 An history of multicore in automotive

2 Multicore scheduling

3 Current platforms

Giuseppe Lipari (CRIStAL - Émeraude) Multicore for safety-critical embedded systems: challenges and opportunitiesMarch 15, 2016 2 / 28



Outline

1 An history of multicore in automotive

2 Multicore scheduling

3 Current platforms

Giuseppe Lipari (CRIStAL - Émeraude) Multicore for safety-critical embedded systems: challenges and opportunitiesMarch 15, 2016 3 / 28



Why multicore systems?

In the past:
one functionality æ one board (ECU)
lot of network cables
high end car æ tens of ECUs

Need to integrate functions
into single boards (ECUs)

Reduces cabling
Reduces total cost

Example:
Power train and gear-shift
in one single board
Increased chances of fast
coordination

Giuseppe Lipari (CRIStAL - Émeraude) Multicore for safety-critical embedded systems: challenges and opportunitiesMarch 15, 2016 4 / 28



Challenges

From single core to multi-core, what exactly is going to change?
do we need a new programming model?
can we re-use existing code?
how can we perform (real-time) analysis?

We will come back to these questions after a historical perspective

Giuseppe Lipari (CRIStAL - Émeraude) Multicore for safety-critical embedded systems: challenges and opportunitiesMarch 15, 2016 5 / 28



Historical perspective

A typical processor architecture for automotive applications in 1998/2000:

Sample SoC
68HC11 micro
12Kb ROM
512 bytes RAM in approximately the
same space
No cache, no MMU

Processors for automotive would feature up to 16 Kb RAM
Need to optimise RAM as much as it was possible
Put all constants and code into ROM

Giuseppe Lipari (CRIStAL - Émeraude) Multicore for safety-critical embedded systems: challenges and opportunitiesMarch 15, 2016 6 / 28



The OSEK/VDX standard

Automotive applications are programmed in C using the OSEK/VDX
interface standard

Interrupts + simple tasks
Application code and kernel linked together in the same memory space
Periodic (clock-driven) tasks:

periodic sampling of sensor data, execution of control algorithms

Aperiodic (event-driven) tasks:
Activated by external events (interrupts)

Example: network drivers, drive shaft

Heavy use of global variables
to reduce the amount of stack memory

A configuration file (OIL) is used to create the tasks and initialize the
static parameters

Giuseppe Lipari (CRIStAL - Émeraude) Multicore for safety-critical embedded systems: challenges and opportunitiesMarch 15, 2016 7 / 28



Run-to-completion

OSEK adopts two models of tasks

Normal tasks
Task mytask() {

int local;

initialization();

for (;;) {

do_instance();

end_instance();

}

}

One stack per task is needed

Run-to-completion tasks
int local;

TASK(mytask) {

do_instance();

}

int main() {

initialization();

}

Stack frame is created and
destroyed at each instance

Giuseppe Lipari (CRIStAL - Émeraude) Multicore for safety-critical embedded systems: challenges and opportunitiesMarch 15, 2016 8 / 28



Priority-based execution and stack

How much stack space do we need?
Suppose we have one RTC task for each priority level
then, in the worst case

Stack
tot

=
ÿ

i

Stack
i

To reduce the size of the stack, we can reduce preemption
increasing delay

Free preemption
C can preempt B

Preemption threshold
C cannot preempt B

Giuseppe Lipari (CRIStAL - Émeraude) Multicore for safety-critical embedded systems: challenges and opportunitiesMarch 15, 2016 9 / 28



Blocking

The technique for reducing stack works if the task does never block
However, tipically a task access shared memory

and given the high number of global variables, this is quite likely to
happen

How to guarantee that the program remains consistent?
use mutex semaphores

However, two problems arise
Interleaving (no stack can be shared)
priority inversion

Giuseppe Lipari (CRIStAL - Émeraude) Multicore for safety-critical embedded systems: challenges and opportunitiesMarch 15, 2016 10 / 28



Priority Inversion

Priority inversion:

0 2 4 6 8 10 12 14 16 18 20 22 24

·
1

·
2

·
3

Two problems
unbounded priority inversion: ·

2

delays ·
1

Interleaving (no stack-based execution)

Giuseppe Lipari (CRIStAL - Émeraude) Multicore for safety-critical embedded systems: challenges and opportunitiesMarch 15, 2016 11 / 28



Priority Inversion

Priority inversion:

0 2 4 6 8 10 12 14 16 18 20 22 24

·
1

·
2

·
3

L(S)
S

Two problems
unbounded priority inversion: ·

2

delays ·
1

Interleaving (no stack-based execution)

Giuseppe Lipari (CRIStAL - Émeraude) Multicore for safety-critical embedded systems: challenges and opportunitiesMarch 15, 2016 11 / 28



Priority Inversion

Priority inversion:

0 2 4 6 8 10 12 14 16 18 20 22 24

·
1

·
2

·
3

L(S)
S

L(S)

Two problems
unbounded priority inversion: ·

2

delays ·
1

Interleaving (no stack-based execution)

Giuseppe Lipari (CRIStAL - Émeraude) Multicore for safety-critical embedded systems: challenges and opportunitiesMarch 15, 2016 11 / 28



Priority Inversion

Priority inversion:

0 2 4 6 8 10 12 14 16 18 20 22 24

·
1

·
2

·
3

L(S)
S

L(S)

S

Two problems
unbounded priority inversion: ·

2

delays ·
1

Interleaving (no stack-based execution)

Giuseppe Lipari (CRIStAL - Émeraude) Multicore for safety-critical embedded systems: challenges and opportunitiesMarch 15, 2016 11 / 28



Priority Inversion

Priority inversion:

0 2 4 6 8 10 12 14 16 18 20 22 24

·
1

·
2

·
3

L(S)
S

L(S)

S

Two problems
unbounded priority inversion: ·

2

delays ·
1

Interleaving (no stack-based execution)

Giuseppe Lipari (CRIStAL - Émeraude) Multicore for safety-critical embedded systems: challenges and opportunitiesMarch 15, 2016 11 / 28



Priority Inversion

Priority inversion:

0 2 4 6 8 10 12 14 16 18 20 22 24

·
1

·
2

·
3

L(S)
S

L(S)

S S
U(S)

Two problems
unbounded priority inversion: ·

2

delays ·
1

Interleaving (no stack-based execution)

Giuseppe Lipari (CRIStAL - Émeraude) Multicore for safety-critical embedded systems: challenges and opportunitiesMarch 15, 2016 11 / 28



Priority Inversion

Priority inversion:

0 2 4 6 8 10 12 14 16 18 20 22 24

·
1

·
2

·
3

L(S)
S

L(S)

S S
U(S)

S
U(S)

Two problems
unbounded priority inversion: ·

2

delays ·
1

Interleaving (no stack-based execution)

Giuseppe Lipari (CRIStAL - Émeraude) Multicore for safety-critical embedded systems: challenges and opportunitiesMarch 15, 2016 11 / 28



Priority Inheritance

Priority Inheritance consisting in giving the locking tasks the priority
of the locked task

0 2 4 6 8 10 12 14 16 18 20 22 24

·
1

·
2

·
3

L(S)
S

We still have interleavings, so it cannot be used in a stack-based
execution

Giuseppe Lipari (CRIStAL - Émeraude) Multicore for safety-critical embedded systems: challenges and opportunitiesMarch 15, 2016 12 / 28



Priority Inheritance

Priority Inheritance consisting in giving the locking tasks the priority
of the locked task

0 2 4 6 8 10 12 14 16 18 20 22 24

·
1

·
2

·
3

L(S)
S

L(S)

We still have interleavings, so it cannot be used in a stack-based
execution

Giuseppe Lipari (CRIStAL - Émeraude) Multicore for safety-critical embedded systems: challenges and opportunitiesMarch 15, 2016 12 / 28



Priority Inheritance

Priority Inheritance consisting in giving the locking tasks the priority
of the locked task

0 2 4 6 8 10 12 14 16 18 20 22 24

·
1

·
2

·
3

L(S)
S

L(S)

S

We still have interleavings, so it cannot be used in a stack-based
execution

Giuseppe Lipari (CRIStAL - Émeraude) Multicore for safety-critical embedded systems: challenges and opportunitiesMarch 15, 2016 12 / 28



Priority Inheritance

Priority Inheritance consisting in giving the locking tasks the priority
of the locked task

0 2 4 6 8 10 12 14 16 18 20 22 24

·
1

·
2

·
3

L(S)
S

L(S)

S

We still have interleavings, so it cannot be used in a stack-based
execution

Giuseppe Lipari (CRIStAL - Émeraude) Multicore for safety-critical embedded systems: challenges and opportunitiesMarch 15, 2016 12 / 28



Priority Inheritance

Priority Inheritance consisting in giving the locking tasks the priority
of the locked task

0 2 4 6 8 10 12 14 16 18 20 22 24

·
1

·
2

·
3

L(S)
S

L(S)

S
U(S)

We still have interleavings, so it cannot be used in a stack-based
execution

Giuseppe Lipari (CRIStAL - Émeraude) Multicore for safety-critical embedded systems: challenges and opportunitiesMarch 15, 2016 12 / 28



Priority Inheritance

Priority Inheritance consisting in giving the locking tasks the priority
of the locked task

0 2 4 6 8 10 12 14 16 18 20 22 24

·
1

·
2

·
3

L(S)
S

L(S)

S
U(S)

S
U(S)

We still have interleavings, so it cannot be used in a stack-based
execution

Giuseppe Lipari (CRIStAL - Émeraude) Multicore for safety-critical embedded systems: challenges and opportunitiesMarch 15, 2016 12 / 28



Priority Inheritance

Priority Inheritance consisting in giving the locking tasks the priority
of the locked task

0 2 4 6 8 10 12 14 16 18 20 22 24

·
1

·
2

·
3

L(S)
S

L(S)

S
U(S)

S
U(S)

We still have interleavings, so it cannot be used in a stack-based
execution

Giuseppe Lipari (CRIStAL - Émeraude) Multicore for safety-critical embedded systems: challenges and opportunitiesMarch 15, 2016 12 / 28



The Stack Resource Policy

Solution: selectively disable preemption
resource ceiling: highest priority of all tasks that use that semaphore
system ceiling: highest resource ceiling of all locked semaphores
A task cannot start execution unless prio > sysceiling

The previous example

0 2 4 6 8 10 12 14 16 18 20 22 24

·
1

·
2

·
3

L(S)
S

No interleavings!

Max blocking time = maximum lenght of critical sections

Giuseppe Lipari (CRIStAL - Émeraude) Multicore for safety-critical embedded systems: challenges and opportunitiesMarch 15, 2016 13 / 28



The Stack Resource Policy

Solution: selectively disable preemption
resource ceiling: highest priority of all tasks that use that semaphore
system ceiling: highest resource ceiling of all locked semaphores
A task cannot start execution unless prio > sysceiling

The previous example

0 2 4 6 8 10 12 14 16 18 20 22 24

·
1

·
2

·
3

L(S)
S

No interleavings!

Max blocking time = maximum lenght of critical sections

Giuseppe Lipari (CRIStAL - Émeraude) Multicore for safety-critical embedded systems: challenges and opportunitiesMarch 15, 2016 13 / 28



The Stack Resource Policy

Solution: selectively disable preemption
resource ceiling: highest priority of all tasks that use that semaphore
system ceiling: highest resource ceiling of all locked semaphores
A task cannot start execution unless prio > sysceiling

The previous example

0 2 4 6 8 10 12 14 16 18 20 22 24

·
1

·
2

·
3

L(S)
S

U(S)

No interleavings!

Max blocking time = maximum lenght of critical sections

Giuseppe Lipari (CRIStAL - Émeraude) Multicore for safety-critical embedded systems: challenges and opportunitiesMarch 15, 2016 13 / 28



The Stack Resource Policy

Solution: selectively disable preemption
resource ceiling: highest priority of all tasks that use that semaphore
system ceiling: highest resource ceiling of all locked semaphores
A task cannot start execution unless prio > sysceiling

The previous example

0 2 4 6 8 10 12 14 16 18 20 22 24

·
1

·
2

·
3

L(S)
S

U(S)

L(S)
S

U(S)

No interleavings!

Max blocking time = maximum lenght of critical sections

Giuseppe Lipari (CRIStAL - Émeraude) Multicore for safety-critical embedded systems: challenges and opportunitiesMarch 15, 2016 13 / 28



The Stack Resource Policy

Solution: selectively disable preemption
resource ceiling: highest priority of all tasks that use that semaphore
system ceiling: highest resource ceiling of all locked semaphores
A task cannot start execution unless prio > sysceiling

The previous example

0 2 4 6 8 10 12 14 16 18 20 22 24

·
1

·
2

·
3

L(S)
S

U(S)

L(S)
S

U(S)

No interleavings!

Max blocking time = maximum lenght of critical sections

Giuseppe Lipari (CRIStAL - Émeraude) Multicore for safety-critical embedded systems: challenges and opportunitiesMarch 15, 2016 13 / 28



The Stack Resource Policy

Solution: selectively disable preemption
resource ceiling: highest priority of all tasks that use that semaphore
system ceiling: highest resource ceiling of all locked semaphores
A task cannot start execution unless prio > sysceiling

The previous example

0 2 4 6 8 10 12 14 16 18 20 22 24

·
1

·
2

·
3

L(S)
S

U(S)

L(S)
S

U(S)

No interleavings!
Max blocking time = maximum lenght of critical sections

Giuseppe Lipari (CRIStAL - Émeraude) Multicore for safety-critical embedded systems: challenges and opportunitiesMarch 15, 2016 13 / 28



Outline

1 An history of multicore in automotive

2 Multicore scheduling

3 Current platforms

Giuseppe Lipari (CRIStAL - Émeraude) Multicore for safety-critical embedded systems: challenges and opportunitiesMarch 15, 2016 14 / 28



Going multicore

This was the state of the art for automotive RT software in 1999
Around 2000, ST Microelectronics, Magneti Marelli (FIAT Group),
and PARADES, decided to design a double core chip, code name
JANUS

symmetric dual processor (2
ARM7TDMI)
2 RAM banks, connected
through a crossbar switch
specialized I/O for engine
control
11% additional silicon area with
respect to single-ARM solution

Giuseppe Lipari (CRIStAL - Émeraude) Multicore for safety-critical embedded systems: challenges and opportunitiesMarch 15, 2016 15 / 28



Challenges: partitioned or global?

Main problem: how to program this new architecture?
Need to adapt the OSEK standard to deal with multicore systems
simplest choice: partitioned scheduling

tasks are statically allocated to processors
Requirements:

Stack minimization
Same interface

Proposal:
Researchers at Scuola Sant’Anna founded a spin-o� Evidence S.r.l.

to produce a new µ-kernel called ERIKA
Main ideas:

Static allocation of tasks to processors (extending OIL language)
Extension of the SRP protocol to support multicore systems

Giuseppe Lipari (CRIStAL - Émeraude) Multicore for safety-critical embedded systems: challenges and opportunitiesMarch 15, 2016 16 / 28



Challenges: shared resources

Tasks allocated to di�erent processors may access the same memory
need semaphores
however, priority tricks do not work

We proposed the M-SRP protocol
uses spin-locks to extend SRP

Giuseppe Lipari (CRIStAL - Émeraude) Multicore for safety-critical embedded systems: challenges and opportunitiesMarch 15, 2016 17 / 28



The M-SRP
Local resources = used only by tasks allocated on the same processor

use standard SRP technique
Global resources = used by tasks on di�erent processors

use spin-lock

Spin-lock (BW – Busy Waiting)
if a task accesses a semaphores locked by another task on a di�erent
processor, it start to busy-wait
while in BW, raises the ceiling to the maximum (no preemption is
possible)

if necessary, disables interrupts

Multiple tasks in BW are served in FIFO order
Giuseppe Lipari (CRIStAL - Émeraude) Multicore for safety-critical embedded systems: challenges and opportunitiesMarch 15, 2016 18 / 28



M-SRP properties

Paper:
Paolo Gai, Giuseppe Lipari, Marco Di Natale, Stack Size Minimization for

Embedded Real-Time Systems-on-a-Chip, Design Automation for Embedded

Systems, vol. 7, n. 1-2, pp. 53–87 2002

Stack-based execution
can be used to reduce the total stack size using preemption thresholds

Deadlock
still possible if nested critical sections on global resources
can be detected by static analysis

Bounded blocking time
one critical section for local resources
sum of critical sections for global resources

Minimise global resources
by properly allocating tasks

Accepted in the AUTOSAR 4.0 standard in 2014

Giuseppe Lipari (CRIStAL - Émeraude) Multicore for safety-critical embedded systems: challenges and opportunitiesMarch 15, 2016 19 / 28



The end

Unfortunately, the Janus project was cancelled after 2 years for lack of

interest

Clients in automotive did not know how to use a multicore
They were too afraid of possible software problems

Multicore systems have started to be accepted in automotive since
2010, more than 10 years after the Janus project
Evidence continued development of ERIKA for

single and multi-core platforms
reconfigurable FPGAs (Altera Nios)

Giuseppe Lipari (CRIStAL - Émeraude) Multicore for safety-critical embedded systems: challenges and opportunitiesMarch 15, 2016 20 / 28



Outline

1 An history of multicore in automotive

2 Multicore scheduling

3 Current platforms

Giuseppe Lipari (CRIStAL - Émeraude) Multicore for safety-critical embedded systems: challenges and opportunitiesMarch 15, 2016 21 / 28



Toward a "real" symmetric processor

Since 2000, many things have changed
Memory is less costly, chips can feature several kB of memory
they now include MMU and caches

Freescale Qorivva 32-bit MCU

Giuseppe Lipari (CRIStAL - Émeraude) Multicore for safety-critical embedded systems: challenges and opportunitiesMarch 15, 2016 22 / 28



Additional features

Fault-tolerance
there is an interest in using the two processors in lock-step mode
The two processors execute the same instructions and results are
compared, to quickly detect faults

Certification and isolation are the two main keywords
Certification of multicore automotive software is still an open
challenge

a lot of work in proof of µ-kernel
Still di�cult for a complex distributed system

Memory and temporal isolation are needed
when integrating software from third parties into the same ECU,
guarantee that one does not jeopardise the others

Additional functionalities

Giuseppe Lipari (CRIStAL - Émeraude) Multicore for safety-critical embedded systems: challenges and opportunitiesMarch 15, 2016 23 / 28



Isolation

One of the main drivers of multi-core technology
possibility to integrate di�erent applications in the same ECU
thus reducing the number of ECUs and the lenght of the network cables

It is important to isolate one application from another
Applications can have di�erent level of criticalities
But they share the same memory, bus, etc.
They are developed by di�erent companies / teams

Isolation:
Memory protection via MMU
Time Triggered Access to bus
Separate caches, cache coloring or cache locking

Giuseppe Lipari (CRIStAL - Émeraude) Multicore for safety-critical embedded systems: challenges and opportunitiesMarch 15, 2016 24 / 28



Single core equivalence

It uses a technique called MemGuard for sharing the bus
Can be implemented in software on all architectures
At the OS level: the task is blocked after a certain number of cache
misses
Done @ UIUC

Giuseppe Lipari (CRIStAL - Émeraude) Multicore for safety-critical embedded systems: challenges and opportunitiesMarch 15, 2016 25 / 28



Experiments with Virtualization

One core runs Linux, for the command interfaces
One core runs ERIKA for low level – critical control sw
Timing isolation for separating access to processors and resources

Giuseppe Lipari (CRIStAL - Émeraude) Multicore for safety-critical embedded systems: challenges and opportunitiesMarch 15, 2016 26 / 28



Certification?

Interactions: From Linux it is possible to
Stop and reload the RTOS (ERIKA)
Set an Alarm
Activate a critical task
Increment a counter

Verifying the whole system is impossible
Linux is too big to be verified

However, there is some hope to verify
The hypervisor (XEN)
the RTOS (ERIKA)

One viable approach?
By reasoning in terms of isolation, we could perform a
"component-based" verification of the critical part

Giuseppe Lipari (CRIStAL - Émeraude) Multicore for safety-critical embedded systems: challenges and opportunitiesMarch 15, 2016 27 / 28



Conclusions

Automotive Embedded Systems have evolved during the last 15 years
Introduction of multi-core chips
MMU and caches

Requirements are always the same
Reduce the amount of memory used by the application
Real-time constraints
Certification

New requirements
Fault-tolerance
Reduce energy consumption
Integrate application with di�erent criticality levels in the same ECU
Component-based certification

There is still space for doing research at the system level
timing isolation
predictability

Giuseppe Lipari (CRIStAL - Émeraude) Multicore for safety-critical embedded systems: challenges and opportunitiesMarch 15, 2016 28 / 28


	An history of multicore in automotive
	Multicore scheduling
	Current platforms

