Stability of non-conservative systems

Valenciennes, July 4th - July 7th, 2016

Qualitative propagation and decay patterns of frequency band limited signals in interacting media
F. Ali Mehmeti (Université de Valenciennes, France)

Geometries:

- Line
- Tadpole

- Star shaped network, 2 problems

Overview: Problems

	Equation	Potential	Medium	Initial condition	Publications
A	Schrödinger	-	line	frequency band, \exists singular frequency	Dewez/FAM Math. Meth. Appl. Sci. 2016 Dewez, arXiv 2016
B	Schrödinger	-	tadpole	high frequency cutoff	Ammari/Nicaise/FAM arXiv 2015
C	Schrödinger	sufficiently localized	star-shaped network	low frequency cutoff	Ammari/Nicaise/FAM Port. Math. 2016
D	Klein-Gordon	semi-infinite different on branches	star-shaped network	frequency band	Haller-Dintelmann/Régnier/FAM Operator Theory 2012 + 2013 J. Evol. Eq. 2012

Overview: Equations

	Problem	Parametrizations	Equations, $\quad t \geq 0$
A	Schrödinger line	\mathbb{R}	$\left[i \partial_{t}+\partial_{x}^{2}\right] u(t, x)=0, x \in \mathbb{R}$ $u(0, x)=u_{0}(x), x \in \mathbb{R}, \quad \mathcal{F} u_{0}$ has a singularity
B	Schrödinger tadpole	$\begin{aligned} & R_{1} \cong[0, \infty) \\ & R_{2} \cong[0, L] \end{aligned}$	$\begin{array}{ll} {\left[i \partial_{t}-\partial_{x}^{2}+V_{j}(x)\right] u_{j}(t, x)=0,} & x \in R_{j}, j=1,2 \\ \left(T_{0}\right) u_{1}(t, 0)=u_{2}(t, 0) \\ \left(T_{1}\right) \sum_{j=1}^{2} \partial_{x} u_{j}\left(t, 0^{+}\right)-\partial_{x} u_{2}\left(t, L^{-}\right)=0, & \\ u_{j}(0, x)=u_{0, j}(x) & \end{array}$
C	Schrödinger star-shaped network	$\begin{aligned} & N_{j} \cong[0, \infty) \\ & j=1, \ldots n \end{aligned}$	$\begin{aligned} & {\left[i \partial_{t}-\partial_{x}^{2}+V_{j}(x)\right] u_{j}(t, x)=0, \quad x \in N_{j}, j=1, ., n} \\ & \left(T_{0}\right) u_{1}(t, 0)=u_{2}(t, 0)=\ldots=u_{n}(t, 0), \\ & \left(T_{1}\right) \sum_{j=1}^{n} c_{j} \partial_{x} u_{j}\left(t, 0^{+}\right)=0, \\ & u_{j}(0, x)=u_{0, j}(x) \end{aligned}$
D	Klein-Gordon star-shaped network	$\begin{aligned} & N_{j} \cong[0, \infty) \\ & j=1, \ldots n \end{aligned}$	$\begin{aligned} & {\left[\partial_{t}^{2}-c_{j} \partial_{x}^{2}+a_{j}\right] u_{j}(t, x)=0, \quad x \in N_{j}, j=1, ., n} \\ & \left(T_{0}\right) u_{1}(t, 0)=u_{2}(t, 0)=\ldots=u_{n}(t, 0), \\ & \left(T_{1}\right) \sum_{j=1}^{n} c_{j} \partial_{x} u_{j}\left(t, 0^{+}\right)=0, \\ & u_{j}(0, x)=u_{0, j}(x), \partial_{t} u_{j}(0, x)=v_{0, j}(x) \end{aligned}$

Overview: Applications

	Problem	Applications
A	Schrödinger line	Quantum mechanics: free particle with a preferred value for the momentum
B	Schrödinger tadpole	Mathematical interest: simplest network with loop Quantum mechanics: particle in tadpole world, local pattern in molecules
C	Schrödinger star-shaped network	Quantum mechanics: simplified model of electrons in molecules close in to an atomic nucleus wave guides of nano tubes
D	Klein-Gordon star-shaped network	Classical wave theory: simplified models of networks of transmission lines, wave guides a_{j} large \rightsquigarrow good conductor, bad medium for waves very good test setting for the study of the dynamics of tunnel effect

Principles:

- Semi-infinite geometry \rightsquigarrow local study without reflections
- Initial conditions in frequency bands
\rightsquigarrow propagation speed of wave packets in interval
\rightsquigarrow detectable spatial propagation patterns

Functional analytic reformulations

	Problem	Operator
A	Schrödinger line	Space: $H=L^{2}(\mathbb{R})$ Operator: $A: D(A) \rightarrow H$ with $D(A)=H^{2}(\mathbb{R})$ and $A u=-\partial_{x}^{2} u$ Equation: $i u \bar{u}-A u=0$
B	Schrödinger tadpole	Space: $H=L^{2}\left(R_{1}\right) \times L^{2}\left(R_{2}\right)$ Operator: $A: D(A) \rightarrow H$ with $D(A)=H^{2}(\mathbb{R})$ and $A u=-\partial_{x}^{2} u$ Equation: $i \ddot{u}+A u=0$
C	Schrödinger star-shaped network	```Space: \(H=\prod_{k=1}^{n} L^{2}\left(N_{k}\right)\) Operator: \(A: D(A) \rightarrow H\) with \(D(A)=\left\{\left(u_{k}\right)_{k=1, \ldots, n} \in \prod_{k=1}^{n} H^{2}\left(N_{k}\right):\left(u_{k}\right)_{k=1, \ldots, n}\right.\) sat. \(\left(T_{0}\right)\) and \(\left.\left(T_{1}\right)\right\}\) \(A\left(\left(u_{k}\right)_{k=1, \ldots, n}\right)=\left(\left[-\partial_{x}^{2}+V_{k}(x)\right] u_{k}\right)_{k=1, \ldots, n}\) Equation: \(i \dot{u}+A u=0\)```
D	Klein-Gordon star-shaped network	$\begin{aligned} & \text { Space: } H=\prod_{k=1}^{n} L^{2}\left(N_{k}\right) \\ & \text { Operator: } A: D(A) \rightarrow H \\ & \text { with } D(A)=\left\{\left(u_{k}\right)_{k=1, \ldots, n} \in \prod_{k=1}^{n} H^{2}\left(N_{k}\right):\left(u_{k}\right)_{k=1, \ldots, n} \text { sat. }\left(T_{0}\right) \text { and }\left(T_{1}\right)\right\} \\ & A\left(\left(u_{k}\right)_{k=1, \ldots, n)=\left(A_{k} u_{k}\right)_{k=1, \ldots, n}=\left(-c_{k} \cdot \partial_{x}^{2} u_{k}+a_{k} u_{k}\right)_{k=1, \ldots, n}}^{\text {Equation: } \ddot{u}+A u=0}\right. \end{aligned}$

Functional analytic solution formulas

	Problem	Solution formula	Time invariant		
A	Schrödinger line	$u(t)=f(t, A) u_{0}$ $f(t, A)=e^{-i t A}$	$\\|u(t)\\|_{H}$		
\mathbf{B}	Schrödinger tadpole	$u(t)=f(t, A) u_{0}$ $f(t, A)=e^{i t A}$	$\\|u(t)\\|_{H}$		
\mathbf{C}	Schrödinger star-shaped network	$u(t)=f(t, A) u_{0}$ $f(t, A)=e^{i t A}$	$\\|u(t)\\|_{H}$		
\mathbf{D}	Klein-Gordon star-shaped network	$u(t)=f_{1}(t, A) u_{0}+f_{2}(t, A) u_{0}$ $f_{1}(t, A)=\cos (\sqrt{A} t)$ $f_{2}(t, A)=(\sqrt{A})^{-1} \sin (\sqrt{A} t) v_{0}$	$E(u(t, \cdot))=(A u, u)_{H}+\\|\dot{u}(t)\\|_{H}$		

- The operator $A: D(A) \rightarrow H$ is selfadjoint
- Case A,B: $\sigma(A)=\sigma_{a c}(A)=[0, \infty)$
- Case C: $\int_{R_{k}}\left|V_{k}(x)\right|\left(1+|x|^{2}\right)^{1 / 2} d x<\infty \Rightarrow \sigma(A)=[0, \infty) \cup\{$ neg. ev. $\}$
\bullet Case D: $0<c_{j}, j=1, \ldots, n$ and $0<a_{1} \leq a_{2} \leq \ldots \leq a_{n}$
$\Rightarrow \sigma(A)=\sigma_{a c}(A)=\left[a_{1}, \infty\right)$

Strategy:

- Stationary problem

$$
A F_{\lambda}=\lambda F_{\lambda}
$$

find a 'complete' family of generalized eigenfunctions $\left\{F_{\lambda} \mid \lambda \in \sigma(A)\right\}$.

- Show that

$$
(V f)(\lambda)=\int_{N} \overline{F_{\lambda}(x)} f(x) d x
$$

is a spectral repr. of H relative to A and construct a formula for V^{-1}. Tool:
Stone's formula

$$
(h(H) E(a, b) f, g)_{\mathcal{H}}=\lim _{\delta \rightarrow 0} \lim _{\varepsilon \rightarrow 0} \frac{1}{2 i \pi}\left(\int_{a+\delta}^{b-\delta}[h(\lambda) R(\lambda-i \varepsilon, H)-R(\lambda+i \varepsilon, H)]\right.
$$

- Functional calculus

$$
f(A) u=V^{-1}[f(\lambda)(V u)(\lambda)]
$$

- Solution formula

$$
u(t)=f(t, A) u_{0}=V^{-1}[f(t, \lambda)(V u)(\lambda)]
$$

- Solutions in frequency bands

$$
\chi_{[a, b]}(A) u(t)=V^{-1}\left[\chi_{[a, b]}(\lambda) f(t, \lambda)\left(V u_{0}\right)(\lambda)\right]=f(t, A) \chi_{[a, b]}(A) u_{0}
$$

- Solution formula leads to oscillatory integrals:

Apply the stationary phase method or van der Corput type estimates

Stationary phase method. Theorem: (Hörmander book 1984)
Let K be a compact interval in \mathbb{R}, X an open neighborhood of K. Let $U \in$ $C_{0}^{2}(K), \Psi \in C^{4}(X)$ and $\operatorname{Im} \Psi \geq 0$ in X. If there exists $p_{0} \in X$ such that $\frac{\partial}{\partial p} \Psi\left(p_{0}\right)=0, \frac{\partial^{2}}{\partial p^{2}} \Psi\left(p_{0}\right) \neq 0$, and $\operatorname{Im} \Psi\left(p_{0}\right)=0, \frac{\partial}{\partial p} \Psi(p) \neq 0, p \in K \backslash\left\{p_{0}\right\}$, then
$\left|\int_{K} U(p) e^{i \omega \Psi(p)} d p-U\left(p_{0}\right) e^{i \omega \Psi\left(p_{0}\right)}\left[\frac{\omega}{2 \pi i} \frac{\partial^{2}}{\partial p^{2}} \Psi\left(p_{0}\right)\right]^{-1 / 2}\right| \leq C(K)\|U\|_{C^{2}(K)} \omega^{-1}$ for all $\omega>0$. Moreover $C(K)$ is bounded when Ψ stays in a bounded set in $C^{4}(X)$.

Van der Corput type estimate. Theorem: (Dewez arXiv 2015) Suppose $\psi \in \mathcal{C}^{1}(I) \cap \mathcal{C}^{2}\left(I \backslash\left\{p_{0}\right\}\right)$ and the existence of $\tilde{\psi}: I \longrightarrow \mathbb{R}$ such that

$$
\forall p \in I \quad \psi^{\prime}(p)=\left|p-p_{0}\right|^{\rho-1} \tilde{\psi}(p),
$$

where $|\tilde{\psi}|: I \longrightarrow \mathbb{R}$ is assumed continuous and does not vanish on I. and $\forall p \in\left(p_{1}, p_{2}\right] \quad U(p)=\left(p-p_{1}\right)^{\mu-1} \tilde{u}(p)$, Moreover suppose that ψ^{\prime} is monotone on $\left\{p \in I \mid p<p_{0}\right\}$ and $\left\{p \in I \mid p>p_{0}\right\}$. Then we have

$$
\left|\int_{p_{1}}^{p_{2}} U(p) e^{i \omega \psi(p)} d p\right| \leq C(U, \psi) \omega^{-\frac{\mu}{\rho}},
$$

for all $\omega>0$, and the constant $C(U, \psi)>0$ is given in the proof.

A.

The free Schrödinger equation on the line, initial condition with singular frequency

Solution formula free equation on the line

$$
u(t, x)=\frac{1}{2 \pi} \int_{p_{1}}^{p_{2}} \mathcal{F} u_{0}(p) e^{-i t p^{2}+i x p} d p
$$

With

$$
U(p):=\mathcal{F} u_{0}(p) \quad, \quad \psi(p):=-p^{2}+\frac{x}{t} p
$$

the solution

$$
u(t, x)=\frac{1}{2 \pi} \int_{p_{1}}^{p_{2}} U(p) e^{i t \psi(p)} d p
$$

takes the form of an oscillatory integral with respect to the large parameter t, where U is called amplitude and ψ the phase.

Idea: Use a stationary phase method to obtain an asymptotic expansion of

$$
t \longmapsto \int_{p_{1}}^{p_{2}} U(p) e^{i t \psi(p)} d p
$$

Stationary points of the phase: $\frac{d}{d p} \psi(p)=-2 p+\frac{x}{t}=0 \Leftrightarrow p=\frac{x}{2 t}$.
\rightsquigarrow frequency band $\left[p_{1}, p_{2}\right]$ corresponds to a cone $p_{1} \leq \frac{x}{2 t} \leq p_{2}$ in space time.

Asymptotic expansions in cones.

Theorem:

Fix $\mu \in(0,1)$ and let $p_{1}<p_{2}$ be two finite real numbers. Suppose that u_{0} satisfies supp $\mathcal{F} u_{0}=\left[p_{1}, p_{2}\right], \mathcal{F} u_{0}\left(p_{2}\right)=0$ and $\mathcal{F} u_{0}=\left(p-p_{1}\right)^{\mu} f(p)$ with $f \in C^{1}\left(\left[p_{1}, p_{2}\right], \mathbb{C}\right.$. Fix $\delta \in\left(\max \left\{\mu, \frac{1}{2}\right\}, 1\right)$ and $\varepsilon>0$ such that $p_{1}+\varepsilon<p_{2}$.
We define the cone $\mathfrak{C}_{\varepsilon}\left(p_{1}, p_{2}\right)$ as follows

$$
p_{1}+\varepsilon \leq \frac{x}{2 t} \leq p_{2}
$$

Then for all $(t, x) \in \mathfrak{C}_{\varepsilon}\left(p_{1}, p_{2}\right)$, there exist complex numbers $K_{\mu}\left(t, x, u_{0}\right)$, $H\left(t, x, u_{0}\right) \in \mathbb{C}$ and a constant $c\left(u_{0}, \varepsilon, \delta\right) \geq 0$ satisfying

$$
\left|u(t, x)-H\left(t, x, u_{0}\right) t^{-\frac{1}{2}}-K_{\mu}\left(t, x, u_{0}\right) t^{-\mu}\right| \leq \sum_{k=1}^{8} R_{k}\left(u_{0}, \varepsilon\right) t^{-\alpha_{k}}
$$

where $R_{k}\left(u_{0}, \varepsilon\right) \geq 0(k=1, \ldots 8)$ are constants independent from t and x, and $\alpha_{k}>\max \left\{\mu, \frac{1}{2}\right\}$.

Explicit Formulas.

$-\quad H\left(t, x, u_{0}\right)=\frac{1}{2 \sqrt{\pi}} e^{-i \frac{\pi}{4}} e^{i \frac{x^{2}}{4 t}} f\left(\frac{x}{2 t}\right)\left(\frac{x}{2 t}-p_{1}\right)^{\mu-1}$
$-\quad K_{\mu}\left(t, x, u_{0}\right)=\frac{\Gamma(\mu)}{2^{\mu+1} \pi} e^{i \frac{\pi \mu}{2}} e^{i\left(-t p_{1}^{2}+x p_{1}\right)} f\left(p_{1}\right)\left(\frac{x}{2 t}-p_{1}\right)^{-\mu}$
$-R_{k}\left(u_{0}, \varepsilon\right)=r_{k}\left(u_{0}\right)\left(\frac{x}{2 t}-p_{1}\right)^{-\beta_{k}}$, formulas for $r_{k}\left(u_{0}\right), \alpha_{k}, \beta_{k}$ available.

Method.

- The proof uses a improved and refined version of the stationary phase formula sketched by A. Erdélyi.
- This formula is based on complex analysis in one variable. The integration path is deformed in regions with less oscillations.
- Smooth cut-off functions (used in most versions) are replaced by characteristic functions.
- Advantages: stationary points of real order, singular amplitudes, lossless error estimates.

Summary.

- Case $\mu \in\left(0, \frac{1}{2}\right]$:

- Case $\mu \in\left(\frac{1}{2}, 1\right):($ physical case)

L^{2}-norm estimate inside $\mathfrak{C}_{\varepsilon_{1}, \varepsilon_{2}}\left(p_{1}, p_{2}\right)$

The preceeding Theorem leads to an estimate of the L^{2}-norm inside the cone when $\mu \in\left(\frac{1}{2}, 1\right)$.

Theorem:
Suppose that u_{0} satisfies Condition $\left(C_{p_{1}, p_{2}, \mu}\right)$ with $\mu \in\left(\frac{1}{2}, 1\right)$. Fix $\varepsilon_{1}, \varepsilon_{2}>0$ such that $p_{1}+\varepsilon_{1}<p_{2}-\varepsilon_{2}$. Then there exists a constant $c\left(u_{0}, \varepsilon_{1}, \varepsilon_{2}\right) \geq 0$ such that for all $t \geq 1$,

$$
\left|\|u(t, .)\|_{L^{2}\left(I_{t}\right)}-\frac{1}{\sqrt{2 \pi}}\left\|\mathcal{F} u_{0}\right\|_{L^{2}\left(p_{1}+\varepsilon_{1}, p_{2}-\varepsilon_{2}\right)}\right| \leq c\left(u_{0}, \varepsilon_{1}, \varepsilon_{2}\right) t^{\frac{1}{2}-\mu}
$$

where

$$
I_{t}:=\left[2\left(p_{1}+\varepsilon_{1}\right) t, 2\left(p_{2}-\varepsilon_{2}\right) t\right] .
$$

- According to Plancherel's Theorem, a large part of the norm is concentrated in the cone
- The probability amplitude behaves time-asymptotically as a laminar flow.

Idea of the proof

Estimates in regions bounded by curves
Let the region \Re_{ε} be described as follows:

Estimates in regions defined by curves

Suppose that u_{0} satisfies Condition $\left(C_{p_{1}, p_{2}, \mu}\right)$.
Fix $\delta \in\left[\frac{\mu+1}{2}, 1\right)$ and $\varepsilon \in\left(0, \delta-\frac{1}{2}\right)$.
Then there exist three constants $C_{1}\left(u_{0}\right), C_{2}\left(u_{0}\right), C_{3}\left(u_{0}\right)>0$ such that for all $(t, x) \in \mathfrak{R}_{\varepsilon}$, the following estimates hold:

$$
|u(t, x)| \leq \begin{cases}C_{1}\left(u_{0}\right) t^{-\frac{1}{2}+\varepsilon(1-\mu)}, & \text { if } \mu>\frac{1}{2} \\ C_{2}\left(u_{0}\right) t^{-\frac{1}{2}+\frac{\varepsilon}{2}}, & \text { if } \mu=\frac{1}{2} \\ C_{3}\left(u_{0}\right) t^{-\mu+\varepsilon \mu} & , \quad \text { if } \mu<\frac{1}{2} .\end{cases}
$$

The decay rates are attained on the left boundary of $\mathfrak{\Re}_{\varepsilon}$.
Remarks: When ε tends to the critical value $\frac{1}{2}$,

- the decay rates tend to $t^{-\frac{\mu}{2}}$,
- the constants tend to infinity.

Global estimate (F. Dewez, 2015)

$$
\|u(t, .)\|_{L^{\infty}(\mathbb{R})} \leq \text { const } t^{-\frac{\mu}{2}}
$$

- Cannot be derived from an expansion to one term: when the critical direction in space-time is attained, the expansion changes its nature. The coefficient blows up in the vicinity of the critical direction.
- Optimal
- Proof uses a van der Corput type estimate for oscillating integrals with an amplitude with an integrable singularity (F. Dewez, 2015).
- physical case: $\mu \in\left(\frac{1}{2}, 1\right) \rightarrow u_{0} \in L^{2}(\mathbb{R})$. By Strichartz:

$$
\|u(t, .)\|_{L^{\infty}(\mathbb{R})} \leq \text { const } t^{-\frac{1}{4}}
$$

The above result is more precise: $\frac{\mu}{2} \in\left(\frac{1}{4}, \frac{1}{2}\right)$.
$-\mu \in\left(0, \frac{1}{2}\right] \rightarrow u_{0} \notin L^{2}(\mathbb{R})$.
In any case $u_{0} \notin L^{1}(\mathbb{R}) \rightsquigarrow$ known results not applicable.

Bibliography

i) F. Ali Mehmeti, F. Dewez, Lossless error estimates for the stationary phase method with applications to propagation features for the Schrödinger equation. Math. Meth. Appl. Sci., 2016.
ii) F. Dewez, Estimates of oscillatory integrals with general phase and singular amplitude: Applications to dispersive equations. arXiv, 2015.
iii) A. Erdélyi, Asymptotics expansions. Dover Publications, New York, 1956.
iv) L. Hörmander, The Analysis of Linear Partial Differential Operators I. Springer-Velag, Berlin Heidelberg New York Tokyo, 1983.
v) M. Reed, B. Simon, Methods of modern mathematical physics II : Fourier Analysis, Self-Adjointness. Academics press, San Diego New York Boston London Sydney Tokyo Toronto, 1975.
vi) R.S. Strichartz, Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of the wave equations. Duke Math. J., 44 (1977), 705-714.

B.
 The free Schrödinger equation on tadpole network

- Tadpole

Results

Theorem:

Dispersive estimate: For all $t \neq 0$,

$$
\left\|e^{i t A} P_{a c}\right\|_{L^{1}(\mathcal{R}) \rightarrow L^{\infty}(\mathcal{R})} \leq C|t|^{-1 / 2}
$$

where C is a positive constant independent of L and $t, P_{a c} f$ is the projection onto the absolutely continuous spectral subspace and
$L^{1}(\mathbb{R})=\prod_{k=1}^{2} L^{1}\left(R_{k}\right), L^{\infty}(\mathbb{R})=\prod_{k=1}^{2} L^{\infty}\left(R_{k}\right)$.
Scale invariance:
If the above inequality holds for a certain constant C and circumference L_{0} then it holds for all circumferences with the same C.

Theorem:

Dispersive perturbation estimate: Let A_{0} be the negative laplacian on the half line with Neumann boundary conditions. Let $0 \leq a<b<\infty$. Let $u_{0} \in \mathcal{H} \cap L^{1}\left(R_{1}\right)$ such that

$$
\begin{equation*}
\operatorname{supp} u_{0} \subset R_{1} \tag{1}
\end{equation*}
$$

Then for all $t \neq 0$, we have

$$
\begin{aligned}
\| e^{i t A} \chi_{(a, b)}(A) u_{0} & -e^{i t A_{0}} \chi_{(a, b)}\left(A_{0}\right) u_{0} \|_{L^{\infty}\left(R_{1}\right)} \\
& \leq t^{-1 / 2} L 2 \sqrt{2}(4(2 \sqrt{b}-\sqrt{a})+L(b-a))\left\|u_{0}\right\|_{L^{1}\left(R_{1}\right)}
\end{aligned}
$$

Spectral Theory.

Theorem:

Take $f, g \in \mathcal{H}$ with a compact support and let $0<a<b<+\infty$. Then for any holomorphic function h on the complex plane, we have

$$
\begin{aligned}
\left(h(A) \chi_{(a, b)}(A) f, g\right)_{\mathcal{H}} & =-\frac{1}{\pi} \int_{\mathcal{R}}\left(\int_{(a, b)} h(\lambda) \int_{\mathcal{R}} f\left(x^{\prime}\right) \operatorname{Im} K_{c}\left(x, x^{\prime}, \lambda\right) d x^{\prime} d \lambda\right) \bar{g}(x) d x \\
& +\sum_{k \in \mathbb{N} *: a<\lambda_{2 k}^{2}<b} h\left(\lambda_{2 k}^{2}\right)\left(f, \varphi^{(2 k)}\right)_{\mathcal{H}}\left(\varphi^{(2 k)}, g\right)_{\mathcal{H}},
\end{aligned}
$$

where an explicit expression for $K_{c}\left(x, x^{\prime}, \lambda\right)$ available and for all $k \in \mathbb{N}^{*}$, the number $\lambda_{2 k}^{2}=\frac{4 k^{2} \pi^{2}}{L^{2}}$ is an eigenvalue of H of the associated eigenvector $\varphi^{(2 k)} \in D(A)$ given by

$$
\varphi_{1}^{(2 k)}=0 \text { in } R_{1}, \varphi_{2}^{(2 k)}(x)=\frac{\sqrt{2}}{\sqrt{L}} \sin \left(\lambda_{2 k} x\right), \forall x \in R_{2} .
$$

Corollary:

$$
\sigma_{a c}(A)=[0, \infty), \quad \sigma_{p p}(A)=\left\{\lambda_{2 k}^{2}, k \in \mathbb{N}^{*}\right\}, \quad \sigma_{s c}(A)=\emptyset .
$$

Interpretation:

$-\sigma_{a c}(A) \rightsquigarrow$ interaction circle - half line.
$-\sigma_{p p}(A) \rightsquigarrow$ states confined in circle.

- The terms of the series appear by the residue theorem.

Perturbation.

Theorem:

Let $\left(e^{i t A} \chi_{(a, b)}(A) P_{a c}\right)(x, y)$ and $\left(e^{i t A_{0}} \chi_{(a, b)}\left(A_{0}\right)\right)(x, y)$ be the kernels of the operator groups in the brackets. For $0 \leq a<b<\infty$ and $x, y \in R_{1} \cong$ $(0, \infty)$ we have
i)

$$
\begin{aligned}
\left(e^{i t A} \chi_{(a, b)}(A) P_{a c}\right)(x, y) & -\left(e^{i t A_{0}} \chi_{(a, b)}(A)\left(A_{0}\right)\right)(x, y) \\
& =\int_{\sqrt{a}}^{\sqrt{b}} e^{i\left(t \mu^{2}+\mu(x+y)\right)} \frac{4\left(1-e^{i \mu L}\right)}{e^{i \mu L}-3} e^{i \mu(x+y)} d \mu
\end{aligned}
$$

ii)

$$
\begin{aligned}
\mid\left(e^{i t A} \chi_{(a, b)}(A) P_{a c}\right)(x, y) & -\left(e^{i t A_{0}} \chi_{(a, b)}(A)\left(A_{0}\right)\right)(x, y) \mid \\
& \leq t^{-1 / 2} L 2 \sqrt{2}(4(2 \sqrt{b}-\sqrt{a})+L(b-a))
\end{aligned}
$$

Corollary:

Let $0 \leq a<b<\infty$. Let $u_{0} \in H \cap L^{1}\left(R_{1}\right)$ such that

$$
\operatorname{supp} u_{0} \subset R_{1} .
$$

Then we have

$$
\begin{aligned}
\| e^{i t A} \chi_{(a, b)}(A) u_{0} & -e^{i t A_{0}} \chi_{(a, b)}\left(A_{0}\right) u_{0} \|_{L^{\infty}\left(R_{1}\right)} \\
& \leq t^{-1 / 2} L 2 \sqrt{2}(4(2 \sqrt{b}-\sqrt{a})+L(b-a))\left\|u_{0}\right\|_{L^{1}\left(R_{1}\right)}
\end{aligned}
$$

Interpretation:

- Rescaled by decay:

Solution on queue with upper frequency cutoff
\rightarrow solution of the half-line Neumann problem with the same upper frequency cutoff
(support of initial condition in queue).

- The upper frequency cutoff introduces in physical terms an upper limit for the (group) velocity of wave packets and thus a lower limit for the localization of wave packets.
- This destroys the scale invariance: low frequency signals do not see the head
- Technically this estimate can be reduced to the inequality

$$
\left|1-e^{i \mu L}\right| \leq \mu L
$$

\rightsquigarrow couples circumference and frequency.

- Interpretation of formula i) in the Theorem:

$$
\frac{1}{e^{i \mu L}-3}=-\frac{1}{3} \sum_{k=0}^{+\infty} \frac{e^{i k \mu L}}{3^{k}}
$$

is a series representation of the difference of the solutions of the tadpole problem on its queue and the half-line Neumann problem:
signals passing from the head of the tadpole into its queue after k cycles around the head.

Bibliography

i) C. Cacciapuoti, D. Finco and D. Noja, Topology-induced bifurcations for the nonlinear Schrödinger equation on the tadpole graph, Phys. Rev. E 91, 013206, 2015.
ii) F. Ali Mehmeti, K. Ammari, S. Nicaise, Dispersive effects for the Schrödinger equation on a tadpole graph. arXiv 2016.

Abstract

C.

The Schrödinger equation with localized potential on a star shaped network

- Star shaped network

Dispersive Estimate:

Consider the space $L_{s}^{1}(\mathcal{R}):=\left\{\phi=\left(\phi_{1}, \ldots, \phi_{N}\right): \mathcal{R} \rightarrow \mathbb{C} \mid\right.$
$\left.\|\phi\|_{L_{s}^{1}(\mathcal{R})}:=\sum_{k=1}^{N} \int_{R_{k}}\left|\phi_{k}(x)\right|\left(1+|x|^{2}\right)^{s / 2}<\infty d x\right\}$.

Theorem: (AM/Ammari/Nicaise)
Let $V=\left(V_{k}\right)_{k=1, \ldots, n} \in L_{\gamma}^{1}(\mathcal{R})$ be real valued, with $\gamma>5 / 2$ and assume a (generic) condition of non resonance. Then for all $t \neq 0$,

$$
\left\|e^{i t A} P_{a c}(A)\right\|_{L^{1}(\mathcal{R}) \rightarrow L^{\infty}(\mathcal{R})} \leq C|t|^{-1 / 2}
$$

where C is a positive constant and $P_{a c}(A)$ is the projection onto the absolutely continuous spectral subspace.

- Free particle in \mathbb{R}^{n} : Reed/Simon II $\left(t^{-n / 2}\right)$
- Expresses dynamics of the uncertainty relation.
- Particle submitted to potential on the line: R. Weder 2000, M. Goldberg, W. Schlag (2004), on the half-line: R. Weder 2003.
- Spectral theory: reduction to sacattering theory on the line: Goldberg/Schlag, on the star shaped network: R. Haller-Dintelmann/V. Régnier/FAM 2008
- Dispersion: treat differently low and high frequencies.

High energy perturbation estimate:

Theorem: (AM/Ammari/Nicaise)

Under the assumptions of the preceding theorem and for $\lambda_{0}>\lambda_{*}$ we have

$$
\begin{gathered}
\left\|e^{i t A} \chi_{\lambda_{0}}(A)\right\|_{1, \infty} \leq\left(a+b \frac{\|V\|_{1}}{\sqrt{\lambda_{0}}}\right)|t|^{-1 / 2}, t \neq 0 \\
\left\|e^{i t A} \chi_{\lambda_{0}}(A)-e^{i t A_{0}} \chi_{\lambda_{0}}\left(A_{0}\right)\right\|_{1, \infty} \leq b \frac{\|V\|_{1}}{\sqrt{\lambda_{0}}}|t|^{-1 / 2}, t \neq 0
\end{gathered}
$$

Here $\chi_{\lambda_{0}}$ is smoothly cutting off the frequencies below λ_{0}. Expressions for a, b in terms of the cutoff function but independent of λ_{0} as well for λ_{*} are given in the article.
In particular we have for any $f \in L^{1}(\mathcal{R})$ that

$$
e^{i t A} \chi_{\lambda_{0}}(A) f \rightarrow e^{i t A_{0}} \chi_{\lambda_{0}}\left(A_{0}\right) f \text { for } \lambda_{0} \rightarrow \infty
$$

uniformly on \mathcal{R} for every fixed $t>0$.
Observation: Rescaled by the decay, the interacting solution is close to the free solution
in the high frequencies, if

- the potential is small, or
- the cutoff frequency is high.

Bibliography

i) F. Ali Mehmeti, K. Ammari, S. Nicaise, Dispersive effects and high frequency behaviour for the Schrödinger equation in star-shaped networks., Port. Math., Vol. 72, Fasc. 4, 2015, 309?355.
ii) M. Goldberg and W. Schlag, Dispersive estimates for Schrödinger operators in dimensions one and three, Commun. Math. Phys., 251 (2004), 157-178.
iii) R. Weder, $L^{p}-L^{p^{\prime}}$ estimates for the Schrödinger equation on the line and inverse scattering for the nonlinear Schrödinger equation with a potential, Journal of Functional Analysis, 170 (2000), 37-68.

D.

The Klein-Gordon equation with potential steps on a star shaped network

- Star shaped network

Generalized Eigenfunctions:

For $\lambda \in \mathbb{C}, j \in\{1, \ldots, n\}$, let $F_{\lambda}^{ \pm, j}: N \rightarrow \mathbb{C}$ be defined by

$$
F_{\lambda}^{ \pm, j}(x)= \begin{cases}\cos \left(\xi_{j}(\lambda) x\right) \pm i s_{j}(\lambda) \sin \left(\xi_{j}(\lambda) x\right), \\ \exp \left(\pm i \xi_{k}(\lambda) x\right), & \text { for } k \neq j .\end{cases}
$$

for $x \in \overline{N_{k}}$. Here

$$
\xi_{k}(\lambda):=\sqrt{\frac{\lambda-a_{k}}{c_{k}}} \quad \text { and } \quad s_{k}(\lambda):=-\frac{\sum_{l \neq k} c_{l} \xi_{l}(\lambda)}{c_{k} \xi_{k}(\lambda)} .
$$

- $F_{\lambda}^{ \pm, j}$ satisfies $\left(T_{0}\right), T\left({ }_{1}\right)$ and $A u=\lambda u$
$-F_{\lambda}^{ \pm, j} \notin H \rightsquigarrow$ "generalized" eigenfunctions.
\rightsquigarrow vectorvalued transform

$$
(V g)(\lambda):=\int_{N} \overline{F_{\lambda}\left(x^{\prime}\right)} g\left(x^{\prime}\right) d x^{\prime}
$$

where

$$
F_{\lambda}\left(x^{\prime}\right):=\left(F_{\lambda}^{-, 1}\left(x^{\prime}\right), \ldots, F_{\lambda}^{-, n}\left(x^{\prime}\right)\right)^{T}
$$

Problem:
Find space setting such that V is an isometry and a formula for V^{-1} :

$$
\left(V^{-1} G\right)(x)=\int_{\sigma(A)} F_{\lambda}(x)^{T} q(\lambda) G(\lambda) d \lambda
$$

Spectral Representation:

Definition:
For $\lambda \in \mathbb{R}$ and $l \in\{1, \ldots, n\}$ such that $a_{l}<\lambda<a_{l+1}$ where $a_{n+1}=\infty$ we define

$$
q(\lambda)=\frac{1}{|w(\lambda)|^{2}}\left(\begin{array}{cccccc}
c_{1} \xi_{1} & \ldots & 0 & 0 & \ldots & 0 \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
0 & \ldots & c_{1} \xi_{l} & 0 & \ldots & 0 \\
0 & \ldots & 0 & 0 & \ldots & 0 \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
0 & \ldots & 0 & 0 & \ldots & 0
\end{array}\right)
$$

and $q(\lambda)=0$ for $\lambda \leq a_{1}$.
Theorem:
For $h \in C(\mathbb{R})$ we have
i)

$$
\begin{aligned}
h(A) E(a, b) g & =\int_{a}^{b} h(\lambda) F_{\lambda}^{T} q(\lambda)(V g) d \lambda \\
& =V^{-1}\left[h \mathbf{1}_{[a, b]}(V g)\right], g \in H
\end{aligned}
$$

ii) $V: H \rightarrow L_{q}^{2}$ isometry, spectral representation
iii) $u \in D\left(A^{j}\right) \Leftrightarrow \lambda \mapsto \lambda^{j}(V u)_{k}(\lambda) \in L^{2}\left(\left(a_{k},+\infty\right)\right.$, $\left.q_{k}\right)$, for all $k=$ $1, \ldots, n$.

Multiple tunnel effect:

Denoting $P_{j}=\binom{I_{j} \mid 0}{$\hline $0 \mid 0}$, where I_{j} is the $j \times j$ identity matrix, for $\lambda \in$ $\left(a_{j}, a_{j+1}\right)$ it holds: $F_{\lambda}^{T} q(\lambda) F_{\lambda}=\left(P_{j} F_{\lambda}\right)^{T} q(\lambda)\left(P_{j} F_{\lambda}\right)$ and

$$
P_{j} F_{\lambda}=\left(\begin{array}{c}
\left(+, *, *, \ldots, *, e^{-\left|\xi_{j+1}\right| x}, \ldots, e^{-\left|\xi_{n}\right| x}\right) \tag{2}\\
\left(*,+, *, \ldots, *, e^{-\left|\xi_{j+1}\right| x}, \ldots, e^{-\left|\xi_{n}\right| x}\right) \\
\left(*, *,+, \ldots, *, e^{-\left|\xi_{j+1}\right| x}, \ldots, e^{-\left|\xi_{n}\right| x}\right) \\
\vdots \\
\left(*, *, \ldots, *,+, e^{-\left|\xi_{j+1}\right| x}, \ldots, e^{-\left|\xi_{n}\right| x}\right) \\
0 \\
\vdots \\
0
\end{array}\right) .
$$

Here $*$ means $e^{-i \xi_{k}(\lambda)}$ and + means $\cos \left(\xi_{k}(\lambda) x\right)-i s_{k}(\lambda) \sin \left(\xi_{k}(\lambda) x\right)$ in the k-th column for $k=1, \ldots, j$.
\rightsquigarrow Tunnel effect in the last $(n-j)$ branches with different exponential decay rates

L^{∞}-time asymptotics:

- Solution formula

$$
\begin{gathered}
u=\cos (\sqrt{A} t) u_{0}+(\sqrt{A})^{-1} \sin (\sqrt{A} t) v_{0}= \\
=V^{-1}\left[\cos (\sqrt{\lambda} t)\left(V u_{0}\right)(\lambda)\right]+V^{-1}\left[(\sqrt{\lambda})^{-1} \sin (\sqrt{\lambda} t)\left(V v_{0}\right)(\lambda)\right]
\end{gathered}
$$

is now concrete!

- Model case: $n=2, c_{1}=c_{2}=1, v_{0} \equiv 0$.

Theorem: Let u_{+}be the solution in N_{2} moving away from 0 .
Suppose $0<\alpha<\beta<1$ and $\psi \in C_{c}^{2}((\alpha, \beta))$ with $\|\psi\|_{\infty}=1$.
Choose $u_{0} \in H$ with $\left(V u_{0}\right)_{2} \equiv 0$ and $\left(V u_{0}(\lambda)\right)_{1}=\psi\left(\lambda-a_{2}\right)$
Then there is a constant $C(\psi, \alpha, \beta)$ independent of a_{1} and a_{2}, such that for all $t \in \mathbb{R}^{+}$and all $x \in N_{2}$ with

$$
\sqrt{\frac{a_{2}+\beta}{\beta}} \leq \frac{t}{x} \leq \sqrt{\frac{a_{2}+\alpha}{\alpha}}
$$

we have

$$
\left|u_{+}(t, x)-H\left(t, x, u_{0}\right) \cdot t^{-1 / 2}\right| \leq C(\psi, \alpha, \beta) \cdot t^{-1}
$$

with

$$
\left|H\left(t, x, u_{0}\right)\right| \leq \sqrt{2 \pi} \frac{\sqrt{\beta}\left(a_{2}+\beta\right)^{3 / 4}}{\sqrt{a_{2}} \sqrt{a_{2}-a_{1}+\beta}} \sim \sqrt{2 \pi \beta} a_{2}^{-1 / 4}, a_{2} \rightarrow \infty
$$

Estimate from below $\sim \sqrt{2 \pi \alpha} a_{2}^{-1 / 4}, a_{2} \rightarrow \infty$, If $\psi \geq m>0$ on subinterval

Interpretation as electromagnetic wave propagation

a_{2} small
$\tilde{a}_{2} \mathrm{big}$

- Frequency band at constant distance above cutoff frequency \rightsquigarrow Wavelength constant in N_{2}
- Growing cutoff frequency $\sqrt{a_{2}}$ \rightsquigarrow medium in N_{2} is a better conductor (more metal-like $=$ reflecting) or diameter of the wave guide N_{2} decreases.
- Cone more inclined towards t-axis \rightsquigarrow diminished group velocity in N_{2}

Bibliography

i) F. Ali Mehmeti, V. Régnier, Delayed reflection of the energy flow at a potential step for dispersive wave packets. Math. Methods Appl. Sci., 27 (2004), 11451195.
ii) F. Ali Mehmeti, R. Haller-Dintelmann, V. Régnier, Multiple tunnel effect for dispersive waves on a star-shaped network: an explicit formula for the spectral representation, J. Evol. Equ. 12 (2012), 513-545
iii) F. Ali Mehmeti, R. Haller-Dintelmann, V. Régnier, The Influence of the Tunnel Effect on the L^{∞}-time Decay. Operator theory: Advances and Applications, 221 (2012), 11-24.
iv) F. Ali Mehmeti, R. Haller-Dintelmann, V. Régnier, Energy Flow Above the Threshold of Tunnel Effect. Operator Theory: Advances and Applications, 229 (2013), 65-76.
v) L. Hörmander, The Analysis of Linear Partial Differential Operators I. Springer-Velag, Berlin Heidelberg New York Tokyo, 1983.
vi) B. Marshall, W. Strauss, S. Wainger, $L^{p}-L^{q}$ estimates for the KleinGordon equation. J. Math. pures et appl., 59 (1980), 417-440.

Overview: Propagation features

	Problem	Propagation features
\mathbf{A}	Schrödinger line	Propagation of wave packets, spatial dissociation of frequencies
\mathbf{B}	Schrödinger tadpole	(Circle \rightarrow point) + high frequency cutoff \Rightarrow solution \rightarrow solution on half line (Neumann conditions) with known propagation features
\mathbf{C}	Schrödinger star-shaped network	Lower cutoff frequency $\rightarrow \infty$ \Rightarrow
solution \rightarrow solution of free problem (with known propagation features)		
Klein- Gordon star-shaped network	Propagation features as in A. + Exact impact of coefficients and frequency band on reflection, splitting, and propagation	

Challenges:

- Generalized notion of reflexion and transmission for general (localized) potetials
- Nonlinear equations
- Higher space dimensions
- Higher propagation features (Ehrenfest principle)
- Functional analysis

