Stability of non-conservative systems

Valenciennes, July 4th - July 7th, 2016

Qualitative propagation and decay patterns of frequency band limited
signals in interacting media

F. Ali Mehmeti (Université de Valenciennes, France)



Geometries:

e Line

e Tadpole

Ry Kirchhoff transmission law

O

e Star shaped network, 2 problems
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Overview: Problems

Equation |Potential Medium |Initial condition |Publications
A | Schrodinger | — line frequency band, Dewez/FAM
3 singular frequency | Math. Meth. Appl. Sci. 2016
Dewez, arXiv 2016
B | Schrodinger | — tadpole high frequency cutoff | Ammari/Nicaise/FAM
arXiv 2015
C | Schrodinger | sufficiently | star-shaped | low frequency cutoff | Ammari/Nicaise/FAM
localized network Port. Math. 2016
D | Klein-Gordon | semi-infinite | star-shaped | frequency band Haller-Dintelmann /Régnier /FAM
different network Operator Theory 2012 + 2013
on branches J. Evol. Eq. 2012




Overview: Equations

Problem Parame- Equations, ¢ >0
trizations
A Schrédinger R [’Lat + (9%] U(t, LE) = 0, reR
line u(0,z) = up(z), v € R, Fug has a singularity
10y — 0% + Vj(x)|u;(t,z) = 0, reR;,j=12
B Schrodinger | Ry = |0, 00) (To) u(t,0) = us(t, 0
tadpole Ry, = [0, L] (T7) 2321 Opui(t,07) — Opua(t,L™) = 0,
u](07 'CU) — Uo’j(-’ﬁ)
Sl 10, — 0, + V(@) (t, ) 0, rEN;j=1.n
oo e [N = [0,00) | (To) wi(t,0) = walt,0) = ... = wun(t, 0),
i&@iﬁpe J=1..n (Th) >_j1 ¢0su;(t, 07 ) 0
uj (0, ) = uo,;(x)
. [Gf—cj8§+aj]uj(t,x) = 0, T € Nj,jz 1,..n
0 Klein-Gordon N, 2 [0, 0) (To) w1 (t,0) = us(t,0) = ... = uy(t,0),
star-shaped i=1,...n (T)) Z;}:l ¢;0pu;(t,07) = 0,

network

u;(0,2) = ug (@), O (0, ) = vy(x)




Overview: Applications

Problem

Applications

A Schrodinger

line

Quantum mechanics:
free particle with a preferred value for the momentum

Mathematical interest: simplest network with loop

Schrodinger _
B tadpole Quantum mechanics:
particle in tadpole world, local pattern in molecules
Schrodinger | Quantum mechanics:
C | star-shaped simplified model of electrons in molecules close in to an atomic nucleus
network wave guides of nano tubes

Klein-Gordon
D | star-shaped
network

Classical wave theory:

simplified models of networks of transmission lines, wave guides

a; large ~~ good conductor, bad medium for waves

very good test setting for the study of the dynamics of tunnel effect

Principles:

e Semi-infinite geometry ~» local study without reflections
e [nitial conditions in frequency bands

~ propagation speed of wave packets in interval

~+ detectable spatial propagation patterns




Functional analytic reformulations

Problem

Operator

A Schrodinger

Space: H = L*(R)
Operator: A : D(A) — H with D(A) = H*(R) and Au = —d?u

line . .
Equation: 1t — Au =0
o Schrédinger Space: H = L*(R;) X L2(R2.) , ,
tadpole Operator: A : D(A) — H with D(A) = H*(R) and Au = —0-u
Equation: 1t + Au =0
Space: H = [[,_, L*(Ng)
Schrodinger | Operator: A : D(A) — H
C | star-shaped | with D(A) = {(ug)k=1..n € [T1—; H*(Ny) : (ug)=1...n sat. (Tp) and (T7)}
network A((uk)k—1 n) = ( {_ag% + V}c(x)]uk‘ )k—l ----- n

.....

Equation: su + Au =0

Klein-Gordon
D | star-shaped
network

Space: H = [[,_, L*(N)
Operator: A: D(A) - H

.........

geeey — L.

Equation: % + Au =0




Functional analytic solution formulas

Problem Solution formula Time invariant

Schrodinger | u(t) = f(t, A)u

Alle ey )l
Schrodinger | u(t) = f(t, A)uyg

B g |ult) = 6.4 Ju®)]la
Schrodinger

C | star-shaped u(i) N _(t,;le)uo )| a
network flt, A)=e

Klein-Gordon | u
D |star-shaped | f

)
(t os(v/At) E(u(t,-)) = (Au,u)g + ||[a(t)||m
network folt

e The operator A : D(A) — H is selfadjoint
e Case AB: 0(A) = g,.(A) =0, 00)
o Case C: [ [Vi(2)|(1+ z[*) 2 dx < 0o = 0(A) = [0, 00) U {neg. ev.}
eCase D: 0<¢j,j=1,...,nand 0 <a; <ax < ... <a,
= 0(A) = 04.(A) = |ag, o0)



Strategy:

e Stationary problem
AF\ = \F),
find a 'complete’ family of generalized eigenfunctions { FA|\A € o(A)}.
e Show that

V() = / (@) f(2)da

N
is a spectral repr. of H relative to A and construct a formula for V=!. Tool:

Stone’s formula
(h(H)E(a,b)f, g)x = lims_olim._g ﬁ <

e Functional calculus

f(A)u = V) (V) (M)

J7 Y R(AR(A — ie, H) — R(A + ic, H)

a

e Solution formula
u(t) = f(t, Ayug = V7 F(t, N)(Va) (N)
e Solutions in frequency bands

X[a,b]<A>u<t) — v_l[X[a,b]()‘>f(t7 )‘><Vu0><)‘)] — f(tv A)X[a,b]<A>u0

e Solution formula leads to oscillatory integrals:
Apply the stationary phase method or van der Corput type estimates



Stationary phase method. Theorem: (Hormander book 1984)
Let K be a compact interval in R, X an open neighborhood of K. Let U &€
C3K), U € C’4( ) and ImW > 0 in X. If there exists py € X such that

2W(py) = 0, Z3W(py) # 0, and Im¥(pg) = 0, 2W(p) £0, p € K\ {po},
then
—1/2

/
| [ Up)e = Wdp — Ulpg)e“*® | 280 (p)| | < CUK) U]| ooy

271 Op
for all w > 0. Moreover C(K) is bounded when ¥ stays in a bounded set

in CH(X).

Van der Corput type estimate. Theorem: (Dewez arXiv 2015)
Suppose ¢ € CH(I) N C*(I\{po}) and the existence of Y I — R such
that )

vpel  ¢'(p)=Ip—pl " ¥),
where W! : I — R is assumed continuous and does not vanish on /. and

Vp € (ppal  Ulp) = (p— p1)" ' alp) , Moreover suppose that ¢’ is
monotone on {p el ‘p < po} and {p cl ‘p > po}. Then we have

P2 |
/ U(p) "% dp| < C(Up)w 7
p1
for all w > 0, and the constant C(U, ) > 0 is given in the proof.




A.

The free Schrodinger equation on the line, initial condition
with singular frequency




10

Solution formula free equation on the line

1 [P L
ult, z) = / Fug(p) e~ dp
2T 1
With
Up) = Fuolp) , ) =-p +-p.

the solution

1 [P |
u(t,x) = %/ U(p) ™) dp .
P

takes the form of an oscillatory integral with respect to the large parameter
t, where U is called amplitude and v the phase.

Idea: Use a stationary phase method to obtain an asymptotic expansion

of
t|—>/ W) qp

Stationary points of the phase: 7 d ¢< )=-2p+i=0&p=4%
~ frequency band [py, po] corresponds to a cone p; < - < pyin Space time.
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Asymptotic expansions in cones.

Theorem:

Fix € (0,1) and let p; < ps be two finite real numbers. Suppose that ug
satisfies supp Fug = [p1, pa], Fuo(p2) = 0 and Fug = (p — p1)" f(p) with
f € CHlpr,p2),C. Fix § € (max{p,1},1) and € > 0 such that

p1+ € < Po.
We define the cone €.(p1, pa) as follows

T
p1‘|‘5§2—t§p2-

Then for all (t,z) € €.(p1, p2), there exist complex numbers K, (¢, x, up),
H(t,x,up) € C and a constant c(ug, e,d) > 0 satisfying

[ult,2) = H(ta,u0) 4 — K, (b, u0) £ < 355, Rilun, )%

where Ry(ug,e) > 0 (k = 1,...8) are constants independent from t and =,
and ayj > max {u, %}
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Explicit Formulas.

1
X

F:u iTL i (—tpPtx —H
- K, (t,z,u) = 2#3126 3 ei(—trit p1)f(p1) (Q—t—m)

T Z%f(a:) (:1: )ul
Co T g\ T

— Ri(ug, &) = ri(uo) (& — pr1)~ 7, formulas for r4(up), cu, By available.

Method.

— The proof uses a improved and refined version of the stationary phase
formula sketched by A. Erdélyi.

— This formula is based on complex analysis in one variable. The integra-
tion path is deformed in regions with less oscillations.

— Smooth cut-off functions (used in most versions) are replaced by charac-
teristic functions.

— Advantages: stationary points of real order, singular amplitudes, lossless
error estimates.



Summary.
— Case 1 € (0,

2

| :

13
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L?-norm estimate inside €51,52(p1, p2)

The preceeding Theorem leads to an estimate of the L*-norm inside the
cone when u € (%, 1).

Theorem.:

Suppose that ug satisfies Condition (Cy, ,, ,) with € (3,1). Fixey, e > 0
such that p; + €1 < pa — 9. Then there exists a constant ¢(ug, €1,€2) > 0
such that for all ¢ > 1,

1

1 1
HU(t, '>||L2([t) o \/—2? "qu’|L2(p1+€1,p2—52) < C<u07 €1, 52) ez )

where
I, = [2 (pl + 51) t, 2 (p2 — 82) t] :

— According to Plancherel’s Theorem, a large part of the norm is concen-
trated in the cone
— The probability amplitude behaves time-asymptotically as a laminar flow.



Idea of the proof

H(t,x, uo)t*% ~

15
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Estimates in regions bounded by curves

Let the region R, be described as follows:

(X
5 D1 >t
(t,z) € R. — § T <2pot,

_— = pl 6,6 xX

1

t> (2(p2—p1)) °
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Estimates in regions defined by curves

Suppose that ug satisfies Condition (Cp, ,, ,)-

Fix § € [”Tﬂ,l) and € € (0,5—%).

Then there exist three constants C}(ug), Co(ug), Cs(ug) > 0 such that for
all (t,z) € R, the following estimates hold:

( Cl(u()) t—%—l—g(l—u) ) if = % )
’u(t,x)’ <X Co(ug) t—%+% Cif p= % 7
| Ca(ug) t™H7 if p < 5

The decay rates are attained on the left boundary of fA..

Remarks: When ¢ tends to the critical value %,

e the decay rates tend to ¢ 2.

e the constants tend to infinity.
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Global estimate (F. Dewez, 2015)

Jult, )| o) < comst 2 .

— Cannot be derived from an expansion to one term: when the critical
direction in space-time is attained, the expansion changes its nature.
The coefficient blows up in the vicinity of the critical direction.

— Optimal

— Proof uses a van der Corput type estimate for oscillating integrals with
an amplitude with an integrable singularity (F. Dewez, 2015).

— physical case: p1 € (3,1) = up € L*(R). By Strichartz:

lu(t, ) gy < const 75,

The above result is more precise: £ € (i, %)

2
— € (0,3] = up & LAR).
In any case ug € L*(R) ~ known results not applicable.
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B.
The free Schrodinger equation on tadpole network

e Tadpole

Ry Kirchhoff transmission law

\_ - "

@

.



(1)

H €itAX(a,b)(A)uo — €
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Results

Theorem:
Dispersive estimate: For all ¢ # 0,

HeitAPaCHLl(RHLoo(R) <C ‘t|_1/27

where C'is a positive constant independent of L and ¢, P,.f is the projection
onto the absolutely continuous spectral subspace and

L'(R) = Hz:1 LY(Ry), L¥(R) = Hi:1 L>(Ry).

Scale invariance:

If the above inequality holds for a certain constant C' and circumference L
then it holds for all circumferences with the same C.

Theorem:

Dispersive perturbation estimate: Let Ay be the negative laplacian on the

half line with Neumann boundary conditions. Let 0 < a < b < oo. Let
ug € H N LY Ry) such that

supp ug C Ry .
Then for all ¢ # 0, we have

ZMO)((@,Z))(Ao)uo | zoo(y)

< 121 23 (4(2@ —Va)+ L(b— a)) ol 1y -
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Spectral Theory.
Theorem:

Take f,g € H with a compact support and let 0 < a < b < +o00. Then
for any holomorphic function A on the complex plane, we have

(A gl = [ ( /( R [ fa K (oo, A) d’ 4N gla)da
’ R

R
+ ) RSP0, g)a,

kE€Nx:a<\3, <b

where an explicit expression for K.(z,z', \) available and for all £k € N*,
the number A%, = 4/“5—572 is an eigenvalue of H of the associated eigenvector

©?*) € D(A) given by

2
Qﬁg%) = 0 1n Rl, gOéQk)<QI> — iSiH()\QkCC),\V/CC < RQ.

V'L

Corollary:
0ac(A) = [0,00), 0p(A) = {N5), k €N}, 0(A) = 0.
Interpretation:

— 04c(A) ~~ interaction circle - half line.
—o,(A) ~» states confined in circle.
— The terms of the series appear by the residue theorem.



Perturbation.

Theorem:
Let (€"X(ap)(A)Puc) (z,y) and (e"0x(,4(Ag)) (z,y) be the kernels
the operator groups in the brackets. For 0 < a < b < oo and z,y € Ry

(0, 00) we have
1)
(eitAX(a,b)<A>PaC) (CE, y) o (eitAOX(a,b)(A> (AO)) (ajv y)

vh i(t,u2+,u(x+y))4(1 _ GWL> ip(r+y)
e - € d
Va e

if)
(eitAX(a,b)<A)PaC> (CIZ, y) o (eitAOX(a,b)(A> (AO)) <£13, y)
< 7121 94/2 (4(2@ — Va)+ L(b— a))

Corollary:
Let 0 <a <b< oo. Let ug € HN L'(Ry) such that

supp ug C Ry .
Then we have
H €ZtAX(a,b)(A)U0 — € X(a,b)<A0>uO ||LOO(R1)

< t712194/2 (4(2\@ —va)+ L(b— a)) [woll 1Ry

itAg

23
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Interpretation:

— Rescaled by decay:
Solution on queue with upper frequency cutoft
— solution of the half-line Neumann problem with the same upper fre-
quency cutoft
(support of initial condition in queue).

— The upper frequency cutoft introduces in physical terms an upper limit
for the (group) velocity of wave packets and thus a lower limit for the
localization of wave packets.

— This destroys the scale invariance: low frequency signals do not see the
head

— Technically this estimate can be reduced to the inequality
[1—e" < ul
~ couples circumference and frequency:.
— Interpretation of formula ¢) in the Theorem:
1 1 o= efful
e R DO
k=0
is a series representation of the difference of the solutions of the tadpole
problem on its queue and the half-line Neumann problem:
signals passing from the head of the tadpole into its queue after k cycles

around the head.
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C.
The Schrodinger equation with localized potential on a star
shaped network

e Star shaped network
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Dispersive Estimate:

Consider the space L1 (R) := {¢ = (¢1,...,0n): R — C |
161ln1m) = Sonis [, |66(@)](1+ [2])¥2 < 0o da}.

Theorem: (AM/Ammari/Nicaise)

.....

(generic) condition of non resonance. Then for all ¢ # 0,

Hez'tAPac R S O ‘t|_1/2

<A) HLl(R)—>LOO(

where C'is a positive constant and P,.(A) is the projection onto the abso-
lutely continuous spectral subspace.

— Free particle in R”: Reed/Simon II (¢t="/?)

— Expresses dynamics of the uncertainty relation.

— Particle submitted to potential on the line: R. Weder 2000, M. Goldberg,

W. Schlag (2004), on the half-line: R. Weder 2003.

— Spectral theory: reduction to sacattering theory on the line: Gold-
berg/Schlag, on the star shaped network: R. Haller-Dintelmann /V. Régnier/FAM
2008

— Dispersion: treat differently low and high frequencies.
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High energy perturbation estimate:

Theorem: (AM/Ammari/Nicaise)
Under the assumptions of the preceding theorem and for Ay > A, we have

- Vi, -
le™7x, (Alloo < (a+ b—m)!t\ t#0,

i i Vv _
e, (A) = ey (Ag) o0 < B2 8 2 0.

Here X, I8 smoothly cutting off the frequencies below \y. Expressions for
0

a, b in terms of the cutoft function but independent of Ay as well for A, are
given in the article.
In particular we have for any f € L'(R) that

e’“xA (A)f — ey (Ay)f for \g = 00
0

A0
uniformly on R for every fixed ¢t > 0.

Observation: Rescaled by the decay, the

interacting solution is close to the free solution
in the high frequencies, if

— the potential is small, or

— the cutoff frequency is high.
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D.
The Klein-Gordon equation with potential steps on a star
shaped network

e Star shaped network




Generalized Eigenfunctions:

For)\E(C,jE{1,...,n},leth’j:N—>(Cbedeﬁnedby

cos(&;(A :I: zs]()\) sin(&;(\)x),
{ exp isz for k # .

for x € N. Here

_ Ao o 2amasiM)
— ” and  sp(A) = — A

— F77 satisfies (Tp), T(1) and Au = Mu
— F J & H ~ “generalized” eigenfunctions.

~ vectorvalued transform

(Vo)A = /N o) da!

where

Problem:

Find space setting such that V is an isometry and a formula for V1 :

VLG)(z) = / B a6

31



32

Spectral Representation:

Definition:
For A € Rand [l € {1,...,n} such that a; < A\ < a;+1 where a,,1 = o

we define
(lel... 0 00\

and g(A) = 0 for A < ay.

Theorem:
For h € C'(R) we have

1)
b
hAE(@b)g = [ hOF N (Vgax
= V' hy(Vg)l, g€ H
i) V:H— Lg isometry, spectral representation

ii)u € DA) & X = MVu)r(\) € L*((ay, +0),q), for all k& =
L,...,n.
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Multiple tunnel effect:

: 110
Denoting P; = ( 6 i
(aj,a;.1) it holds: FY q(A)Fy = (P;F)\) q(\)(P;F)) and
(—|—, ) %, Lk e |Gl eIl
R o
(*7 kLK, e_‘§j+1|5’77 e 6—\§n|$>
(

), where [; is the j X j identity matrix, for A €

Pyl =

k

—1&i11]x —én|T
N e &5+11 NG ‘571')

0

\ ) )

Here * means e WM and + means cos(&(N)x) — isp(A\)sin(&p(N)z)
in the k-th column for k =1,...,7.

~ Tunnel effect in the last (n — j) branches with different exponential
decay rates
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L>*—time asymptotics:

— Solution formula
u = cos(V At)ug + (VA) " sin(V At )vy =
=V Heos(VAE) (Vug)(N)] + VHVN) Esin(VAE) (V) (A)]
is now concrete!
— Model case: n =2, ¢c; =cy =1, vy = 0.

Theorem: Let uy be the solution in Ny moving away from 0.

Suppose 0 < a < 8 < 1 and ¥ € C?((«, 8)) with ||¥]|e = 1.

Choose ug € H with (Vug), =0 and (Vug(A))1 = (A — ag)

Then there is a constant C'(¢, «, ) independent of a; and as, such that for
all t € R" and all x € N, with

a2+ t as + «
:c

g (t, @) — H(t,m,up) - 2 < C(,a,8) -t

we have

with
VB(ag + )34 ~1/4
H(t,x,uy)| < V2m ~ A/ 2mBa, ', ay — 0.
H( ) \/072\/@2 —a;+ ’
Estimate from below ~ +/2mraa, 1/4, ay — oo, If ¢ > m > 0 on sub-

Intartral
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Interpretation as electromagnetic wave propagation

ao small

— Frequency band at constant distance above cutoff frequency
~+ Wavelength constant in Ny

— Growing cutofl frequency /as
~» medium in Ny is a better conductor (more metal-like = reflecting) or
diameter of the wave guide Ny decreases.

— Cone more inclined towards t-axis ~» diminished group velocity in Vo
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Overview: Propagation features

Problem |Propagation features

A Schrodinger

line Propagation of wave packets, spatial dissociation of frequencies

(Circle — point) + high frequency cutoft
Schrodinger | =

B
tadpole solution — solution on half line (Neumann conditions)
with known propagation features
Schrédinger Lower cutoft frequency — oo
C | star-shaped - .
solution — solution of free problem
network . .
(with known propagation features)
Klein- . .
Goerl(glon Propagation features as in A.
D + Exact impact of coefficients and frequency band on reflection,

star-shaped
network

splitting, and propagation
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Challenges:

— Generalized notion of reflexion and transmission for general (localized)
potetials

— Nonlinear equations
— Higher space dimensions
— Higher propagation features (Ehrenfest principle)

— Functional analysis



