Stability of non-conservative systems

Valenciennes, July 4th - July 7th, 2016

Qualitative propagation and decay patterns of frequency band limited signals in interacting media

F. Ali Mehmeti (Université de Valenciennes, France)

Geometries:

- Line
- Tadpole

• Star shaped network, 2 problems

Overview: Problems

	Equation	Potential	Medium	Initial condition	Publications
Α	Schrödinger		line	frequency band,	Dewez/FAM
				\exists singular frequency	Math. Meth. Appl. Sci. 2016
					Dewez, arXiv 2016
B	Schrödinger		tadpole	high frequency cutoff	Ammari/Nicaise/FAM
					arXiv 2015
C	Schrödinger	sufficiently	star-shaped	low frequency cutoff	Ammari/Nicaise/FAM
		localized	network		Port. Math. 2016
D	Klein-Gordon	semi-infinite	star-shaped	frequency band	Haller-Dintelmann/Régnier/FAM
		different	network		Operator Theory $2012 + 2013$
		on branches			J. Evol. Eq. 2012

Overview: Equations

	Problem	Parame- trizations	Equations, $t \ge 0$
A	Schrödinger line	\mathbb{R}	$\begin{bmatrix} i\partial_t + \partial_x^2 \end{bmatrix} u(t, x) = 0, \ x \in \mathbb{R}$ $u(0, x) = u_0(x), \ x \in \mathbb{R}, \mathcal{F}u_0 \text{ has a singularity}$
в	Schrödinger tadpole	$R_1 \cong [0, \infty)$ $R_2 \cong [0, L]$	$ \begin{array}{ll} [i\partial_t - \partial_x^2 + V_j(x)]u_j(t,x) &= 0, & x \in R_j, j = 1,2 \\ (T_0) \ u_1(t,0) = u_2(t,0) \\ (T_1) \ \sum_{j=1}^2 \partial_x u_j(t,0^+) - \partial_x u_2(t,L^-) &= 0, \\ u_j(0,x) = u_{0,j}(x) \end{array} $
С	Schrödinger star-shaped network	$N_j \cong [0, \infty)$ $j = 1, \dots n$	$ \begin{array}{ll} & [i\partial_t - \partial_x^2 + V_j(x)]u_j(t,x) = 0, & x \in N_j, j = 1,.,n \\ & (T_0) \ u_1(t,0) = u_2(t,0) = \ldots = u_n(t,0), \\ & (T_1) \ \sum_{j=1}^n c_j \partial_x u_j(t,0^+) = 0, \\ & u_j(0,x) = u_{0,j}(x) \end{array} $
D	Klein-Gordon star-shaped network	$N_j \cong [0, \infty)$ $j = 1, \dots n$	$ \begin{array}{ll} & [\partial_t^2 - c_j \partial_x^2 + a_j] u_j(t, x) = 0, & x \in N_j, j = 1, ., n \\ & (T_0) \ u_1(t, 0) = u_2(t, 0) = \ldots = u_n(t, 0), \\ & (T_1) \ \sum_{j=1}^n c_j \partial_x u_j(t, 0^+) = 0, \\ & u_j(0, x) = u_{0,j}(x), \ \partial_t u_j(0, x) = v_{0,j}(x) \end{array} $

Overview: Applications

	Problem	Applications	
A	Schrödinger line	Quantum mechanics: free particle with a preferred value for the momentum	
в	Schrödinger tadpole	Mathematical interest: simplest network with loop Quantum mechanics: particle in tadpole world, local pattern in molecules	
С	Schrödinger star-shaped network	Quantum mechanics: simplified model of electrons in molecules close in to an atomic nucleus wave guides of nano tubes	
D	Klein-Gordon star-shaped network	Classical wave theory: simplified models of networks of transmission lines, wave guides a_j large \rightsquigarrow good conductor, bad medium for waves very good test setting for the study of the dynamics of tunnel effect	

Principles:

- \bullet Semi-infinite geometry \leadsto local study without reflections
- Initial conditions in frequency bands
 - \rightsquigarrow propagation speed of wave packets in interval
 - \leadsto detectable spatial propagation patterns

Functional analytic reformulations

	Problem	Operator
A	Schrödinger line	Space: $H = L^2(\mathbb{R})$ Operator: $A : D(A) \to H$ with $D(A) = H^2(\mathbb{R})$ and $Au = -\partial_x^2 u$ Equation: $i\dot{u} - Au = 0$
В	Schrödinger tadpole	Space: $H = L^2(R_1) \times L^2(R_2)$ Operator: $A : D(A) \to H$ with $D(A) = H^2(\mathbb{R})$ and $Au = -\partial_x^2 u$ Equation: $i\dot{u} + Au = 0$
С	Schrödinger star-shaped network	Space: $H = \prod_{k=1}^{n} L^2(N_k)$ Operator: $A : D(A) \to H$ with $D(A) = \{(u_k)_{k=1,,n} \in \prod_{k=1}^{n} H^2(N_k) : (u_k)_{k=1,,n} \text{ sat. } (T_0) \text{ and } (T_1)\}$ $A((u_k)_{k=1,,n}) = ([-\partial_x^2 + V_k(x)]u_k)_{k=1,,n}$ Equation: $i\dot{u} + Au = 0$
D	Klein-Gordon star-shaped network	Space: $H = \prod_{k=1}^{n} L^2(N_k)$ Operator: $A : D(A) \to H$ with $D(A) = \{(u_k)_{k=1,,n} \in \prod_{k=1}^{n} H^2(N_k) : (u_k)_{k=1,,n} \text{ sat. } (T_0) \text{ and } (T_1)\}$ $A((u_k)_{k=1,,n}) = (A_k u_k)_{k=1,,n} = (-c_k \cdot \partial_x^2 u_k + a_k u_k)_{k=1,,n}$ Equation: $\ddot{u} + Au = 0$

Functional analytic solution formulas

	Problem	Solution formula	Time invariant
Α	Schrödinger line	$u(t) = f(t, A)u_0$ $f(t, A) = e^{-itA}$	$\ u(t)\ _H$
В	Schrödinger tadpole	$u(t) = f(t, A)u_0$ $f(t, A) = e^{itA}$	$\ u(t)\ _H$
С	Schrödinger star-shaped network	$u(t) = f(t, A)u_0$ $f(t, A) = e^{itA}$	$\ u(t)\ _H$
D	Klein-Gordon star-shaped network	$ \begin{aligned} u(t) &= \overline{f_1(t, A)u_0 + f_2(t, A)u_0} \\ f_1(t, A) &= \cos(\sqrt{A}t) \\ f_2(t, A) &= (\sqrt{A})^{-1}\sin(\sqrt{A}t)v_0 \end{aligned} $	$E(u(t, \cdot)) = (Au, u)_H + \ \dot{u}(t)\ _H$

- The operator $A: D(A) \to H$ is selfadjoint
- Case A,B: $\sigma(A) = \sigma_{ac}(A) = [0, \infty)$
- Case C: $\int_{R_k} |V_k(x)| (1+|x|^2)^{1/2} dx < \infty \Rightarrow \sigma(A) = [0,\infty) \cup \{\text{neg. ev.}\}$
- Case D: $0 < c_j, j = 1, ..., n$ and $0 < a_1 \le a_2 \le ... \le a_n$ $\Rightarrow \sigma(A) = \sigma_{ac}(A) = [a_1, \infty)$

Strategy:

• Stationary problem

$$AF_{\lambda} = \lambda F_{\lambda}$$

find a 'complete' family of generalized eigenfunctions $\{F_{\lambda} | \lambda \in \sigma(A)\}$.

• Show that

$$(Vf)(\lambda) = \int_{N} \overline{F_{\lambda}(x)} f(x) dx$$

is a spectral repr. of H relative to A and construct a formula for V^{-1} . Tool: Stone's formula

$$(h(H)E(a,b)f,g)_{\mathcal{H}} = \lim_{\delta \to 0} \lim_{\varepsilon \to 0} \frac{1}{2i\pi} \left(\int_{a+\delta}^{b-\delta} \left[h(\lambda)R(\lambda - i\varepsilon, H) - R(\lambda + i\varepsilon, H) \right] \right)$$

• Functional calculus

$$f(A)u = V^{-1}[f(\lambda)(Vu)(\lambda)]$$

• Solution formula

$$u(t) = f(t, A)u_0 = V^{-1}[f(t, \lambda)(Vu)(\lambda)]$$

- Solutions in frequency bands $\chi_{[a,b]}(A)u(t) = V^{-1}[\chi_{[a,b]}(\lambda)f(t,\lambda)(Vu_0)(\lambda)] = f(t,A)\chi_{[a,b]}(A)u_0$
- Solution formula leads to oscillatory integrals: Apply the stationary phase method or van der Corput type estimates

Stationary phase method. *Theorem:* (Hörmander book 1984)

Let K be a compact interval in \mathbb{R} , X an open neighborhood of K. Let $U \in C_0^2(K)$, $\Psi \in C^4(X)$ and $\operatorname{Im}\Psi \geq 0$ in X. If there exists $p_0 \in X$ such that $\frac{\partial}{\partial p}\Psi(p_0) = 0$, $\frac{\partial^2}{\partial p^2}\Psi(p_0) \neq 0$, and $\operatorname{Im}\Psi(p_0) = 0$, $\frac{\partial}{\partial p}\Psi(p) \neq 0$, $p \in K \setminus \{p_0\}$, then

 $\left|\int_{K} U(p)e^{i\omega\Psi(p)}dp - U(p_{0})e^{i\omega\Psi(p_{0})}\left[\frac{\omega}{2\pi i}\frac{\partial^{2}}{\partial p^{2}}\Psi(p_{0})\right]^{-1/2}\right| \leq C(K) \|U\|_{C^{2}(K)} \omega^{-1}$ for all $\omega > 0$. Moreover C(K) is bounded when Ψ stays in a bounded set in $C^{4}(X)$.

Van der Corput type estimate. *Theorem:* (Dewez arXiv 2015) Suppose $\psi \in C^1(I) \cap C^2(I \setminus \{p_0\})$ and the existence of $\tilde{\psi} : I \longrightarrow \mathbb{R}$ such that

$$\forall p \in I \qquad \psi'(p) = |p - p_0|^{\rho - 1} \tilde{\psi}(p) ,$$

where $|\tilde{\psi}|: I \longrightarrow \mathbb{R}$ is assumed continuous and does not vanish on I. and $\forall p \in (p_1, p_2] \quad U(p) = (p - p_1)^{\mu - 1} \tilde{u}(p)$, Moreover suppose that ψ' is monotone on $\{p \in I \mid p < p_0\}$ and $\{p \in I \mid p > p_0\}$. Then we have $\left| \int_{p_1}^{p_2} U(p) e^{i\omega\psi(p)} dp \right| \leq C(U, \psi) \, \omega^{-\frac{\mu}{\rho}}$,

for all $\omega > 0$, and the constant $C(U, \psi) > 0$ is given in the proof.

The free Schrödinger equation on the line, initial condition with singular frequency

Α.

9

Solution formula free equation on the line

$$u(t,x) = \frac{1}{2\pi} \int_{p_1}^{p_2} \mathcal{F}u_0(p) \, e^{-itp^2 + ixp} \, dp \; ,$$

With

$$U(p) := \mathcal{F}u_0(p)$$
 , $\psi(p) := -p^2 + \frac{x}{t}p$.

the solution

$$u(t,x) = \frac{1}{2\pi} \int_{p_1}^{p_2} U(p) \, e^{it\psi(p)} \, dp \; .$$

takes the form of an oscillatory integral with respect to the large parameter t, where U is called amplitude and ψ the phase.

<u>Idea:</u> Use a stationary phase method to obtain an asymptotic expansion of

$$t \longmapsto \int_{p_1}^{p_2} U(p) \, e^{it\psi(p)} \, dp \; .$$

Stationary points of the phase: $\frac{d}{dp}\psi(p) = -2p + \frac{x}{t} = 0 \Leftrightarrow p = \frac{x}{2t}$. \rightsquigarrow frequency band $[p_1, p_2]$ corresponds to a cone $p_1 \leq \frac{x}{2t} \leq p_2$ in space time.

Asymptotic expansions in cones.

Theorem:

Fix $\mu \in (0, 1)$ and let $p_1 < p_2$ be two finite real numbers. Suppose that u_0 satisfies supp $\mathcal{F}u_0 = [p_1, p_2], \mathcal{F}u_0(p_2) = 0$ and $\mathcal{F}u_0 = (p - p_1)^{\mu} f(p)$ with $f \in C^1([p_1, p_2], \mathbb{C}$. Fix $\delta \in (\max\{\mu, \frac{1}{2}\}, 1)$ and $\varepsilon > 0$ such that $p_1 + \varepsilon < p_2$. We define the cone $\mathfrak{C}_{\varepsilon}(p_1, p_2)$ as follows

$$p_1 + \varepsilon \leq \frac{x}{2t} \leq p_2$$
.

Then for all $(t, x) \in \mathfrak{C}_{\varepsilon}(p_1, p_2)$, there exist complex numbers $K_{\mu}(t, x, u_0)$, $H(t, x, u_0) \in \mathbb{C}$ and a constant $c(u_0, \varepsilon, \delta) \ge 0$ satisfying

$$\left| u(t,x) - H(t,x,u_0) t^{-\frac{1}{2}} - K_{\mu}(t,x,u_0) t^{-\mu} \right| \le \sum_{k=1}^{8} R_k(u_0,\varepsilon) t^{-\alpha_k} ,$$

where $R_k(u_0, \varepsilon) \ge 0$ (k = 1, ...8) are constants independent from t and x, and $\alpha_k > \max\left\{\mu, \frac{1}{2}\right\}$.

Explicit Formulas. $- H(t, x, u_0) = \frac{1}{2\sqrt{\pi}} e^{-i\frac{\pi}{4}} e^{i\frac{x^2}{4t}} f\left(\frac{x}{2t}\right) \left(\frac{x}{2t} - p_1\right)^{\mu - 1}$ $- K_{\mu}(t, x, u_0) = \frac{\Gamma(\mu)}{2^{\mu + 1}\pi} e^{i\frac{\pi\mu}{2}} e^{i(-tp_1^2 + xp_1)} f(p_1) \left(\frac{x}{2t} - p_1\right)^{-\mu}$

- $R_k(u_0,\varepsilon) = r_k(u_0)(\frac{x}{2t}-p_1)^{-\beta_k}$, formulas for $r_k(u_0), \alpha_k, \beta_k$ available.

Method.

- The proof uses a improved and refined version of the stationary phase formula sketched by A. Erdélyi.
- This formula is based on complex analysis in one variable. The integration path is deformed in regions with less oscillations.
- Smooth cut-off functions (used in most versions) are replaced by characteristic functions.
- Advantages: stationary points of real order, singular amplitudes, lossless error estimates.

L^2 -norm estimate inside $\mathfrak{C}_{\varepsilon_1,\varepsilon_2}(p_1,p_2)$

The preceding Theorem leads to an estimate of the L^2 -norm inside the cone when $\mu \in (\frac{1}{2}, 1)$.

Theorem:

Suppose that u_0 satisfies Condition $(C_{p_1,p_2,\mu})$ with $\mu \in (\frac{1}{2}, 1)$. Fix $\varepsilon_1, \varepsilon_2 > 0$ such that $p_1 + \varepsilon_1 < p_2 - \varepsilon_2$. Then there exists a constant $c(u_0, \varepsilon_1, \varepsilon_2) \ge 0$ such that for all $t \ge 1$,

$$\left| \|u(t,.)\|_{L^{2}(I_{t})} - \frac{1}{\sqrt{2\pi}} \|\mathcal{F}u_{0}\|_{L^{2}(p_{1}+\varepsilon_{1},p_{2}-\varepsilon_{2})} \right| \leq c(u_{0},\varepsilon_{1},\varepsilon_{2}) t^{\frac{1}{2}-\mu} ,$$

where

$$I_t := \left[2 \left(p_1 + \varepsilon_1 \right) t, \ 2 \left(p_2 - \varepsilon_2 \right) t \right] \ .$$

- According to Plancherel's Theorem, a large part of the norm is concentrated in the cone
- The probability amplitude behaves time-asymptotically as a laminar flow.

Idea of the proof

Estimates in regions bounded by curves

Let the region $\mathfrak{R}_{\varepsilon}$ be described as follows:

Estimates in regions defined by curves

Suppose that u_0 satisfies Condition $(C_{p_1,p_2,\mu})$. Fix $\delta \in \left[\frac{\mu+1}{2}, 1\right)$ and $\varepsilon \in \left(0, \delta - \frac{1}{2}\right)$. Then there exist three constants $C_1(u_0), C_2(u_0), C_3(u_0) > 0$ such that for all $(t, x) \in \mathfrak{R}_{\varepsilon}$, the following estimates hold:

$$|u(t,x)| \leq \begin{cases} C_1(u_0) t^{-\frac{1}{2} + \varepsilon(1-\mu)} , & \text{if } \mu > \frac{1}{2} , \\ C_2(u_0) t^{-\frac{1}{2} + \frac{\varepsilon}{2}} , & \text{if } \mu = \frac{1}{2} , \\ C_3(u_0) t^{-\mu + \varepsilon\mu} , & \text{if } \mu < \frac{1}{2} . \end{cases}$$

The decay rates are attained on the left boundary of $\mathfrak{R}_{\varepsilon}$.

<u>Remarks</u>: When ε tends to the critical value $\frac{1}{2}$,

- the decay rates tend to $t^{-\frac{\mu}{2}}$,
- the constants tend to infinity.

Global estimate (F. Dewez, 2015)

$$||u(t,.)||_{L^{\infty}(\mathbb{R})} \le \text{ const } t^{-\frac{\mu}{2}}.$$

- Cannot be derived from an expansion to one term: when the critical direction in space-time is attained, the expansion changes its nature.
 The coefficient blows up in the vicinity of the critical direction.
- Optimal
- Proof uses a van der Corput type estimate for oscillating integrals with an amplitude with an integrable singularity (F. Dewez, 2015).
- physical case: $\mu \in (\frac{1}{2}, 1) \to u_0 \in L^2(\mathbb{R})$. By Strichartz:

$$\|u(t,.)\|_{L^{\infty}(\mathbb{R})} \le const \ t^{-\frac{1}{4}}$$

The above result is more precise: $\frac{\mu}{2} \in (\frac{1}{4}, \frac{1}{2}).$

$$-\mu \in (0, \frac{1}{2}] \to u_0 \notin L^2(\mathbb{R}).$$

In any case $u_0 \notin L^1(\mathbb{R}) \rightsquigarrow$ known results not applicable.

Bibliography

- i) F. Ali Mehmeti, F. Dewez, Lossless error estimates for the stationary phase method with applications to propagation features for the Schrödinger equation. Math. Meth. Appl. Sci., 2016.
- ii) F. Dewez, Estimates of oscillatory integrals with general phase and singular amplitude: Applications to dispersive equations. arXiv, 2015.
- iii) A. Erdélyi, Asymptotics expansions. Dover Publications, New York , 1956.
- iv) L. Hörmander, The Analysis of Linear Partial Differential Operators I. Springer-Velag, Berlin Heidelberg New York Tokyo, 1983.
- v) M. Reed, B. Simon, Methods of modern mathematical physics II : Fourier Analysis, Self-Adjointness. Academics press, San Diego New York Boston London Sydney Tokyo Toronto, 1975.
- vi) R.S. Strichartz, Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of the wave equations. Duke Math. J., 44 (1977), 705-714.

The free Schrödinger equation on tadpole network

• Tadpole

Results

Theorem:

Dispersive estimate: For all $t \neq 0$,

$$\left\| e^{itA} P_{ac} \right\|_{L^1(\mathcal{R}) \to L^\infty(\mathcal{R})} \le C \left| t \right|^{-1/2},$$

where C is a positive constant independent of L and t, $P_{ac}f$ is the projection onto the absolutely continuous spectral subspace and $L^1(\mathbb{R}) = \prod_{k=1}^2 L^1(R_k), \ L^{\infty}(\mathbb{R}) = \prod_{k=1}^2 L^{\infty}(R_k).$ <u>Scale invariance</u>:

If the above inequality holds for a certain constant C and circumference L_0 then it holds for all circumferences with the same C.

Theorem:

Dispersive perturbation estimate: Let A_0 be the negative laplacian on the half line with Neumann boundary conditions. Let $0 \leq a < b < \infty$. Let $u_0 \in \mathcal{H} \cap L^1(R_1)$ such that

supp
$$u_0 \subset R_1$$
.

Then for all $t \neq 0$, we have

$$| e^{itA}\chi_{(a,b)}(A)u_0 - e^{itA_0}\chi_{(a,b)}(A_0)u_0 \|_{L^{\infty}(R_1)}$$

 $\leq t^{-1/2}L \ 2\sqrt{2} \left(4(2\sqrt{b}-\sqrt{a}) + L(b-a) \right) \|u_0\|_{L^1(R_1)}.$

Spectral Theory.

Theorem:

Take $f, g \in \mathcal{H}$ with a compact support and let $0 < a < b < +\infty$. Then for any holomorphic function h on the complex plane, we have

$$\begin{split} (h(A)\chi_{(a,b)}(A)f,g)_{\mathcal{H}} &= -\frac{1}{\pi} \int_{\mathcal{R}} \Big(\int_{(a,b)} h(\lambda) \int_{\mathcal{R}} f(x') \mathrm{Im} K_c(x,x',\lambda) \ dx' \ d\lambda \Big) \bar{g}(x) dx \\ &+ \sum_{k \in \mathbb{N} * : a < \lambda_{2k}^2 < b} h(\lambda_{2k}^2) (f,\varphi^{(2k)})_{\mathcal{H}} (\varphi^{(2k)},g)_{\mathcal{H}}, \end{split}$$

where an explicit expression for $K_c(x, x', \lambda)$ available and for all $k \in \mathbb{N}^*$, the number $\lambda_{2k}^2 = \frac{4k^2\pi^2}{L^2}$ is an eigenvalue of H of the associated eigenvector $\varphi^{(2k)} \in D(A)$ given by

$$\varphi_1^{(2k)} = 0 \text{ in } R_1, \varphi_2^{(2k)}(x) = \frac{\sqrt{2}}{\sqrt{L}} \sin(\lambda_{2k}x), \forall x \in R_2.$$

Corollary:

 $\sigma_{ac}(A) = [0, \infty), \quad \sigma_{pp}(A) = \{\lambda_{2k}^2, k \in \mathbb{N}^*\}, \quad \sigma_{sc}(A) = \emptyset.$ Interpretation:

- $-\sigma_{ac}(A) \rightsquigarrow$ interaction circle half line.
- $-\sigma_{pp}(A) \rightsquigarrow$ states confined in circle.
- The terms of the series appear by the residue theorem.

Perturbation.

Theorem:

Let $(e^{itA}\chi_{(a,b)}(A)P_{ac})(x,y)$ and $(e^{itA_0}\chi_{(a,b)}(A_0))(x,y)$ be the kernels of the operator groups in the brackets. For $0 \le a < b < \infty$ and $x, y \in R_1 \cong$ $(0,\infty)$ we have i) $\left(e^{itA}\chi_{(a,b)}(A)P_{ac}\right)(x,y) - \left(e^{itA_0}\chi_{(a,b)}(A)(A_0)\right)(x,y)$ $= \int_{-\infty}^{\sqrt{b}} e^{i(t\mu^2 + \mu(x+y))} \frac{4(1 - e^{i\mu L})}{e^{i\mu L} - 3} e^{i\mu(x+y)} d\mu$ ii) $\left| \left(e^{itA} \chi_{(a,b)}(A) P_{ac} \right) (x,y) - \left(e^{itA_0} \chi_{(a,b)}(A)(A_0) \right) (x,y) \right|$ $\leq t^{-1/2}L 2\sqrt{2} \left(4(2\sqrt{b}-\sqrt{a})+L(b-a)\right)$

Corollary:

Let $0 \le a < b < \infty$. Let $u_0 \in H \cap L^1(R_1)$ such that supp $u_0 \subset R_1$.

Then we have

$$\| e^{itA} \chi_{(a,b)}(A) u_0 - e^{itA_0} \chi_{(a,b)}(A_0) u_0 \|_{L^{\infty}(R_1)}$$

 $\leq t^{-1/2} L \ 2\sqrt{2} \left(4(2\sqrt{b} - \sqrt{a}) + L(b-a) \right) \| u_0 \|_{L^1(R_1)}$

Interpretation:

– Rescaled by decay:

Solution on queue with upper frequency cutoff

 \rightarrow solution of the half-line Neumann problem with the same upper frequency cutoff

(support of initial condition in queue).

- The upper frequency cutoff introduces in physical terms an upper limit for the (group) velocity of wave packets and thus a lower limit for the localization of wave packets.
- This destroys the scale invariance: low frequency signals do not see the head
- Technically this estimate can be reduced to the inequality

$$\mid 1 - e^{i\mu L} \mid \leq \mu L$$

 \rightsquigarrow couples circumference and frequency.

- Interpretation of formula i) in the Theorem:

$$\frac{1}{e^{i\mu L} - 3} = -\frac{1}{3} \sum_{k=0}^{+\infty} \frac{e^{ik\mu L}}{3^k},$$

is a series representation of the difference of the solutions of the tadpole problem on its queue and the half-line Neumann problem: signals passing from the head of the tadpole into its queue after k cycles

signals passing from the head of the tadpole into its queue after k cycles around the head.

Bibliography

- i) C. Cacciapuoti, D. Finco and D. Noja, Topology-induced bifurcations for the nonlinear Schrödinger equation on the tadpole graph, Phys. Rev. E 91, 013206, 2015.
- ii) F. Ali Mehmeti, K. Ammari, S. Nicaise, *Dispersive effects for the* Schrödinger equation on a tadpole graph. arXiv 2016.

The Schrödinger equation with localized potential on a star shaped network

• Star shaped network

Dispersive Estimate:

Consider the space $L_s^1(\mathcal{R}) := \{ \phi = (\phi_1, \dots, \phi_N) : \mathcal{R} \to \mathbb{C} \mid \|\phi\|_{L_s^1(\mathcal{R})} := \sum_{k=1}^N \int_{R_k} |\phi_k(x)| (1+|x|^2)^{s/2} < \infty \, dx \}.$

Theorem: (AM/Ammari/Nicaise) Let $V = (V_k)_{k=1,...,n} \in L^1_{\gamma}(\mathcal{R})$ be real valued, with $\gamma > 5/2$ and assume a (generic) condition of non resonance. Then for all $t \neq 0$,

$$\left\| e^{itA} P_{ac}(A) \right\|_{L^{1}(\mathcal{R}) \to L^{\infty}(\mathcal{R})} \le C \left| t \right|^{-1/2}$$

where C is a positive constant and $P_{ac}(A)$ is the projection onto the absolutely continuous spectral subspace.

- Free particle in \mathbb{R}^n : Reed/Simon II $(t^{-n/2})$
- Expresses dynamics of the uncertainty relation.
- Particle submitted to potential on the line: R. Weder 2000, M. Goldberg,
 W. Schlag (2004), on the half-line: R. Weder 2003.
- Spectral theory: reduction to sacattering theory on the line: Goldberg/Schlag, on the star shaped network: R. Haller-Dintelmann/V. Régnier/FAM 2008
- Dispersion: treat differently low and high frequencies.

High energy perturbation estimate:

Theorem: (AM/Ammari/Nicaise) Under the assumptions of the preceding theorem and for $\lambda_0 > \lambda_*$ we have

$$\begin{split} \|e^{itA}\chi_{\lambda_0}(A)\|_{1,\infty} &\leq (a+b\frac{\|V\|_1}{\sqrt{\lambda_0}})|t|^{-1/2}, t\neq 0,\\ \|e^{itA}\chi_{\lambda_0}(A)-e^{itA_0}\chi_{\lambda_0}(A_0)\|_{1,\infty} &\leq b\frac{\|V\|_1}{\sqrt{\lambda_0}}|t|^{-1/2}, t\neq 0\,. \end{split}$$

Here χ_{λ_0} is smoothly cutting off the frequencies below λ_0 . Expressions for a, b in terms of the cutoff function but independent of λ_0 as well for λ_* are given in the article.

In particular we have for any $f \in L^1(\mathcal{R})$ that

$$e^{itA}\chi_{\lambda_0}(A)f \to e^{itA_0}\chi_{\lambda_0}(A_0)f$$
 for $\lambda_0 \to \infty$

uniformly on \mathcal{R} for every fixed t > 0.

Observation: Rescaled by the decay, the interacting solution is close to the free solution in the high frequencies, if - the potential is small, or

- the cutoff frequency is high.

Bibliography

- i) F. Ali Mehmeti, K. Ammari, S. Nicaise, Dispersive effects and high frequency behaviour for the Schrödinger equation in star-shaped networks., Port. Math., Vol. 72, Fasc. 4, 2015, 309?355.
- ii) M. Goldberg and W. Schlag, Dispersive estimates for Schrödinger operators in dimensions one and three, Commun. Math. Phys., 251 (2004), 157-178.
- iii) R. Weder, $L^p L^{p'}$ estimates for the Schrödinger equation on the line and inverse scattering for the nonlinear Schrödinger equation with a potential, Journal of Functional Analysis, **170** (2000), 37-68.

The Klein-Gordon equation with potential steps on a star shaped network

• Star shaped network

Generalized Eigenfunctions:

For
$$\lambda \in \mathbb{C}$$
, $j \in \{1, \dots, n\}$, let $F_{\lambda}^{\pm, j} : N \to \mathbb{C}$ be defined by

$$F_{\lambda}^{\pm, j}(x) = \begin{cases} \cos(\xi_j(\lambda)x) \pm is_j(\lambda)\sin(\xi_j(\lambda)x), \\ \exp(\pm i\xi_k(\lambda)x), & \text{for } k \neq j. \end{cases}$$

for $x \in \overline{N_k}$. Here

$$\xi_k(\lambda) := \sqrt{\frac{\lambda - a_k}{c_k}}$$
 and $s_k(\lambda) := -\frac{\sum_{l \neq k} c_l \xi_l(\lambda)}{c_k \xi_k(\lambda)}.$

$$-F_{\lambda}^{\pm,j}$$
 satisfies $(T_0), T(1)$ and $Au = \lambda u$
 $-F_{\lambda}^{\pm,j} \notin H \rightsquigarrow$ "generalized" eigenfunctions.

 \rightsquigarrow vector valued transform

$$(Vg)(\lambda) := \int_N \overline{F_{\lambda}(x')}g(x')dx'$$

where

$$F_{\lambda}(x') := \left(F_{\lambda}^{-,1}(x'), \dots, F_{\lambda}^{-,n}(x')\right)^{T}$$

Problem:

Find space setting such that V is an isometry and a formula for V^{-1} :

$$(V^{-1}G)(x) = \int_{\sigma(A)} F_{\lambda}(x)^T q(\lambda) G(\lambda) d\lambda$$

Spectral Representation:

Definition:

For $\lambda \in \mathbb{R}$ and $l \in \{1, \ldots, n\}$ such that $a_l < \lambda < a_{l+1}$ where $a_{n+1} = \infty$ we define

$$q(\lambda) = \frac{1}{|w(\lambda)|^2} \begin{pmatrix} c_1\xi_1 & \dots & 0 & 0 & \dots & 0\\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & \dots & c_l\xi_l & 0 & \dots & 0\\ 0 & \dots & 0 & 0 & \dots & 0\\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & \dots & 0 & 0 & \dots & 0 \end{pmatrix}$$
for $\lambda \le a_1$.

and $q(\lambda) = 0$ for $\lambda \leq a_1$.

Theorem: For $h \in C(\mathbb{R})$ we have i)

$$\begin{split} h(A)E(a,b)g \ &= \ \int_{a}^{b} h(\lambda)F_{\lambda}^{T}q(\lambda)(Vg)d\lambda \\ &= \ V^{-1}[h\mathbf{1}_{[a,b]}(Vg)], \ g\in H \end{split}$$

ii) $V: H \to L^2_q$ isometry, spectral representation iii) $u \in D(A^j) \Leftrightarrow \lambda \mapsto \lambda^j (Vu)_k(\lambda) \in L^2((a_k, +\infty), q_k)$, for all $k = 1, \ldots, n$. Multiple tunnel effect:

Denoting
$$P_j = \left(\frac{I_j \mid 0}{0 \mid 0}\right)$$
, where I_j is the $j \times j$ identity matrix, for $\lambda \in (a_j, a_{j+1})$ it holds: $F_{\lambda}^T q(\lambda) F_{\lambda} = (P_j F_{\lambda})^T q(\lambda) (P_j F_{\lambda})$ and

$$\begin{pmatrix} (+, *, *, \dots, *, e^{-|\xi_{j+1}|x}, \dots, e^{-|\xi_n|x}) \\ (*, +, *, \dots, *, e^{-|\xi_{j+1}|x}, \dots, e^{-|\xi_n|x}) \\ (*, *, +, \dots, *, e^{-|\xi_{j+1}|x}, \dots, e^{-|\xi_n|x}) \\ \vdots \\ (*, *, \dots, *, +, e^{-|\xi_{j+1}|x}, \dots, e^{-|\xi_n|x}) \\ 0 \\ \vdots \\ 0 \end{pmatrix}.$$
Here $*$ means $e^{-i\xi_k(\lambda)}$ and $+$ means $\cos(\xi_k(\lambda)x) - is_k(\lambda)\sin(\xi_k(\lambda)x)$ in the k -th column for $k = 1, \dots, j$.

 \rightsquigarrow Tunnel effect in the last (n-j) branches with different exponential decay rates

L^{∞} -time asymptotics:

– Solution formula

$$u = \cos(\sqrt{At})u_0 + (\sqrt{A})^{-1}\sin(\sqrt{At})v_0 =$$
$$= V^{-1}[\cos(\sqrt{\lambda}t)(Vu_0)(\lambda)] + V^{-1}[(\sqrt{\lambda})^{-1}\sin(\sqrt{\lambda}t)(Vv_0)(\lambda)]$$
is now concrete!

- Model case: $n = 2, c_1 = c_2 = 1, v_0 \equiv 0.$

Theorem: Let u_+ be the solution in N_2 moving away from 0. Suppose $0 < \alpha < \beta < 1$ and $\psi \in C_c^2((\alpha, \beta))$ with $\|\psi\|_{\infty} = 1$. Choose $u_0 \in H$ with $(Vu_0)_2 \equiv 0$ and $(Vu_0(\lambda))_1 = \psi(\lambda - a_2)$ Then there is a constant $C(\psi, \alpha, \beta)$ independent of a_1 and a_2 , such that for all $t \in \mathbb{R}^+$ and all $x \in N_2$ with

$$\sqrt{\frac{a_2 + \beta}{\beta}} \le \frac{t}{x} \le \sqrt{\frac{a_2 + \alpha}{\alpha}}$$

we have

$$|u_+(t,x) - H(t,x,u_0) \cdot t^{-1/2}| \le C(\psi,\alpha,\beta) \cdot t^{-1}$$

with

$$|H(t, x, u_0)| \le \sqrt{2\pi} \frac{\sqrt{\beta} (a_2 + \beta)^{3/4}}{\sqrt{a_2} \sqrt{a_2 - a_1 + \beta}} \sim \sqrt{2\pi\beta} a_2^{-1/4}, \ a_2 \to \infty.$$

Estimate from below ~ $\sqrt{2\pi\alpha}a_2^{-1/4}$, $a_2 \to \infty$, If $\psi \ge m > 0$ on subinterval

Interpretation as electromagnetic wave propagation

- Frequency band at constant distance above cutoff frequency \rightsquigarrow Wavelength constant in N_2
- Growing cutoff frequency $\sqrt{a_2}$ \rightsquigarrow medium in N_2 is a better conductor (more metal-like = reflecting) or diameter of the wave guide N_2 decreases.
- Cone more inclined towards t-axis \rightsquigarrow diminished group velocity in N_2

Bibliography

- i) F. Ali Mehmeti, V. Régnier, Delayed reflection of the energy flow at a potential step for dispersive wave packets. Math. Methods Appl. Sci., 27 (2004), 11451195.
- ii) F. Ali Mehmeti, R. Haller-Dintelmann, V. Régnier, Multiple tunnel effect for dispersive waves on a star-shaped network: an explicit formula for the spectral representation, J. Evol. Equ. 12 (2012), 513-545
- iii) F. Ali Mehmeti, R. Haller-Dintelmann, V. Régnier, The Influence of the Tunnel Effect on the L[∞]-time Decay. Operator theory: Advances and Applications, **221** (2012), 11-24.
- iv) F. Ali Mehmeti, R. Haller-Dintelmann, V. Régnier, Energy Flow Above the Threshold of Tunnel Effect. Operator Theory: Advances and Applications, 229 (2013), 65-76.
- v) L. Hörmander, *The Analysis of Linear Partial Differential Operators* I. Springer-Velag, Berlin Heidelberg New York Tokyo, 1983.
- vi) B. Marshall, W. Strauss, S. Wainger, $L^p L^q$ estimates for the Klein-Gordon equation. J. Math. pures et appl., **59** (1980), 417-440.

Overview: Propagation features

	Problem	Propagation features
A	Schrödinger line	Propagation of wave packets, spatial dissociation of frequencies
в	Schrödinger tadpole	(Circle \rightarrow point) + high frequency cutoff \Rightarrow solution \rightarrow solution on half line (Neumann conditions) with known propagation features
С	Schrödinger star-shaped network	Lower cutoff frequency $\rightarrow \infty$ \Rightarrow solution \rightarrow solution of free problem (with known propagation features)
D	Klein- Gordon star-shaped network	Propagation features as in A. + Exact impact of coefficients and frequency band on reflection, splitting, and propagation

Challenges:

- Generalized notion of reflexion and transmission for general (localized) potetials
- Nonlinear equations
- Higher space dimensions
- Higher propagation features (Ehrenfest principle)
- Functional analysis