Null controllability of hypoelliptic quadratic PDEs

Karine Beauchard

ENS Rennes, IRMAR
Valenciennes, 7 Juillet 2016 Stability of nonconservative systems

We aim at studying the null controllability of parabolic equations posed on the whole space \mathbb{R}^{n}, by means of a source term u locally distributed on an open subset $\omega \subset \mathbb{R}^{n}$

$$
\left\{\begin{array}{l}
\left(\partial_{t}+P\right) f(t, x)=u(t, x) \mathbf{1}_{\omega}(x), \quad x \in \mathbb{R}^{n}, \\
\left.f\right|_{t=0}=f_{0} \in L^{2}\left(\mathbb{R}^{n}\right),
\end{array}\right.
$$

where $P=q^{w}\left(x, D_{x}\right)$ is an accretive quadratic operator. They are non self-adjoint differential operators, with explicit expression

$$
x^{\alpha} \xi^{\beta} \longrightarrow \frac{1}{2}\left(x^{\alpha} D_{x}^{\beta}+D_{x}^{\beta} x^{\alpha}\right)
$$

$$
\forall f_{0} \in L^{2}\left(\mathbb{R}^{n}\right), \exists u \in L^{2}\left((0, T) \times \mathbb{R}^{n}\right) \text { such that } f(T)=0
$$

We want to understand to which extend the null controllability results known for the heat equation still hold for degenerate parabolic equations of hypoelliptic type.
Motivation : nonlinear models such as Boltzmann, Prandtl,...

For the heat equation on the whole space

$$
\left(\partial_{t}-\Delta_{x}\right) f(t, x)=u(t, x) \mathbb{1}_{\omega}(x), \quad x \in \mathbb{R}^{n}
$$

no NSC on ω is known for null-controllability to hold in any positive time. We know [Miller 2005]

- a necessary condition : $\sup _{x \in \mathbb{R}^{n}} d(x, \omega)<+\infty$,
- a sufficient condition :

$$
\exists \delta, r>0, \forall y \in \mathbb{R}^{n}, \exists y^{\prime} \in \omega, \quad B\left(y^{\prime}, r\right) \subset \omega \text { and }\left|y-y^{\prime}\right|<\delta
$$

Goal : Identify classes of hypoelliptic operators for which the same null controllability result holds.

Assume that $\sup _{x \in \mathbb{R}} d(x, \omega)=+\infty$. We consider $\left(x_{k}\right)_{k \geq 0} \subset \mathbb{R}^{n}$ s.t. $a_{k}:=\operatorname{dist}\left(x_{k}, \omega\right) \underset{k \rightarrow \infty}{\longrightarrow}+\infty$ and $g(t, x)=G_{\epsilon+t}\left(x-x_{k}\right)$ where G_{t} denotes the heat kernel

$$
G_{t}(y)=\frac{1}{\sqrt{4 \pi t}} e^{-\frac{y^{2}}{4 t}}, \quad t>0, y \in \mathbb{R}
$$

If the heat equation was observable on ω in time $T>0$, then

$$
\begin{array}{r}
\exists C_{T}>0, \forall g_{0} \in L^{2}(\mathbb{R}), \quad \int_{\mathbb{R}}|g(T, x)|^{2} d x \leqslant C_{T} \int_{0}^{T} \int_{\omega}|g(t, x)|^{2} d x d t \\
\text { i.e. } \frac{c_{0}}{\sqrt{T+\epsilon}}=\int_{\mathbb{R}}\left|G_{\epsilon+T}(y)\right|^{2} d y
\end{array}
$$

$\mathbf{R k}: \frac{1}{\sqrt{\pi}} \int_{|x| \geq a} e^{-x^{2}} d x \leq e^{-a^{2}}, \quad \forall a \geqslant 0$

A previous result

Le Rousseau and Moyano [2015] proved that the Kolmogorov equation

$$
\partial_{t} f+v . \nabla_{x} f-\Delta_{v} f=u(t, x, v) 1_{\omega}(x, v), \quad(t, x, v) \in(0, T) \times \mathbb{R}^{n} \times \mathbb{R}^{n}
$$

is null controllable from $\omega=\omega_{x} \times \omega_{v}$ when both ω_{x} and ω_{v} satisfy

$$
\exists \delta, r>0, \forall y \in \mathbb{R}^{n}, \exists y^{\prime} \in \omega, \quad B\left(y^{\prime}, r\right) \subset \omega_{x} \text { and }\left|y-y^{\prime}\right|<\delta
$$

Strategy :

(1) Partial Fourier transform in variable x :

$$
\partial_{t} \hat{f}+i \xi v \hat{f}-\Delta_{v} \hat{f}(t, \xi, v)=1_{\omega_{v}} \hat{u}(t, \xi, v), \quad(\xi, v) \in \mathbb{R}^{n} \times \mathbb{R}^{n}
$$

(2) Global Carleman parabolic estimates on $(t, v) \mapsto \hat{f}(t, \xi, v) \quad \longrightarrow \quad$ localization in variable v
(3) Lebeau-Robbiano's method \longrightarrow localization in variable x

$$
\left(\partial_{t}-\Delta\right) f(t, x)=u(t, x) 1_{\omega}(x) \text { in } \Omega \quad f(t, .)=0 \text { on } \partial \Omega
$$

- Spectral inequality : $\quad-\Delta \phi_{j}=\mu_{j} \phi_{j}$ in $\Omega \quad \phi_{j}=0$ on $\partial \Omega$

$$
\left\|\sum_{\mu_{j} \leqslant \mu} \alpha_{j} \phi_{j}\right\|_{L^{2}(\Omega)} \leqslant K e^{K \sqrt{\mu}}\left\|\sum_{\mu_{j} \leqslant \mu} \alpha_{j} \phi_{j}\right\|_{L^{2}(\omega)} \quad \forall\left(\alpha_{j}\right)
$$

- Iterative procedure : $0=T_{0}<T_{1}<\ldots<T_{j} \rightarrow T$
- on $\left[T_{j}, T_{j+1 / 2}\right.$], one applies a control that steers to zero $\Pi_{j} f\left(T_{j+1 / 2}\right)$, the projection onto the energy levels $\leqslant \mu=2^{2 j}$

$$
\|u\| \leqslant K e^{K 2^{j}}\left\|f\left(T_{j}\right)\right\| \quad\left\|f\left(T_{j+1 / 2}\right)\right\| \leqslant K e^{K 2^{j}}\left\|f\left(T_{j}\right)\right\|
$$

- on $\left[T_{j+1 / 2}, T_{j+1}\right.$], no control \rightarrow dissipation

$$
\left\|f\left(T_{j+1}\right)\right\| \leqslant\left\|f\left(T_{j+1 / 2}\right)\right\| e^{-2^{2 j} \tau_{j}} \leqslant K e^{K 2^{j}-2^{2 j} \tau_{j}}\left\|f\left(T_{j}\right)\right\|
$$

Key point : dissipation $2^{2 j} \quad \ggg$ spectral inequality's cst 2^{j} RK : The projections Π_{j} need to commute with the semi-group

Lebeau-Robbiano's method for the Kolmogorov equation

$$
\partial_{t} f+v . \nabla_{x} f-\Delta_{v} f=u(t, x, v) 1_{\omega}(x, v), \quad(x, v) \in \mathbb{R}^{n} \times \mathbb{R}^{n}
$$

Packets for the form $f(t, x, v)=\frac{1}{(2 \pi)^{n}} \int_{-N}^{N} \hat{f}(t, \xi, v) e^{i x . \xi} d \xi$
(1) For a fixed ξ, the cost of the null controllability from ω_{v} of $(t, v) \mapsto \hat{f}(t, \xi, v)$ is $\leqslant e^{c\left(1+\frac{1}{T}+\sqrt{|\xi|}\right)}$
(2) Spectral inequality : $\exists c_{1}>0$ such that, $\forall N \geq 0$ and $g \in L^{2}\left(\mathbb{R}^{n}\right)$ with $\operatorname{supp}(\hat{g}) \subset B(0, N)$

$$
\|g\|_{L^{2}\left(\mathbb{R}^{n}\right)} \leqslant c_{1} e^{c_{1} N}\|g\|_{L^{2}\left(\omega_{x}\right)}
$$

(3) Dissipation speed without control
(explicit Fourier transform)

$$
\|\hat{f}(t, \xi, .)\|_{L^{2}\left(\mathbb{R}^{\boldsymbol{n}}\right)} \leqslant\left\|\hat{f}_{0}(\xi)\right\|_{L^{\mathbf{2}}\left(\mathbb{R}^{\boldsymbol{n}}\right)} e^{-c \xi^{2} t^{3}}
$$

Key points dissipation $N^{2} \ggg$ cost \sqrt{N} and spectral inequality's cst N The semi-group commutes with the frequency cutoff projections.

Drawback of this method

(1) Use of partial Fourier transform : fails for

$$
\partial_{t} f+v \cdot \nabla_{x} f+x \cdot \nabla_{v} f-\Delta_{v} f=u(t, x, v) 1_{\omega}(x, v)
$$

(2) Cartesian structure : commutation between the semi-group and the frequency cutoff projections.
(3) Cartesian structure of control supports
(4) Greedy in spectral analysis :
eigenvalues + eigenfunctions + spectral inequality
We propose a variation of the Lebeau-Robbiano's method, that avoids these restrictions, and allows to extend Le Rousseau and Moyano's result to a large class of equations, with less restrictive control supports
$\left\{\begin{array}{l}\partial_{t} f(t, x)-\frac{1}{2} \operatorname{Tr}\left[Q \nabla_{x}^{2} f(t, x)\right]-\left\langle B x, \nabla_{x} f(t, x)\right\rangle=u(t, x) \mathbf{1}_{\omega}(x), \quad x \in \mathbb{R}^{n} \\ \left.f\right|_{t=0}=f_{0} \in L^{2}\left(\mathbb{R}^{n}\right)\end{array}\right.$
$Q, B \in \mathcal{M}_{n}(\mathbb{R}), Q \geqslant 0$ symmetric and $\operatorname{rank}\left[Q^{\frac{1}{2}}, B Q^{\frac{1}{2}}, \ldots, B^{n-1} Q^{\frac{1}{2}}\right]=n$ (hypoellipticity=Kalman).

$$
P=\frac{1}{2} \sum_{i, j=1}^{n} q_{i, j} \partial_{x_{i}, x_{j}}^{2}+\sum_{i, j=1}^{n} b_{i, j} x_{j} \partial_{x_{i}}
$$

Theorem [KB, Pravda-Starov 2016] Let $T>0$ and ω be an open subset of \mathbb{R}^{n} such that

$$
\exists \delta, r>0, \forall y \in \mathbb{R}^{n}, \exists y^{\prime} \in \omega, \quad B\left(y^{\prime}, r\right) \subset \omega \text { and }\left|y-y^{\prime}\right|<\delta .
$$

Then, the Ornstein-Uhlenbeck equation posed on $L^{2}\left(\mathbb{R}^{n}\right)$ is null controllable from ω in time $T>0$.

$$
\frac{1}{2} \operatorname{Tr}\left(Q \nabla_{x}^{2}\right)+\left\langle B x, \nabla_{x}\right\rangle=\frac{1}{2} \sum_{i, j=1}^{n} q_{i, j} \partial_{x_{i}, x_{j}}^{2}+\sum_{i, j=1}^{n} b_{i, j} x_{j} \partial_{x_{i}}
$$

Application :

(1) Heat equation: $Q=I_{n}$, whatever B
(2) $\left(\partial_{t}+v \partial_{x}+(a x+b v) \partial_{v}-\partial_{v}^{2}\right) f(t, x, v)=u(t, x, v) \mathbf{1}_{\omega}(x, v)$ whatever $(a, b) \in \mathbb{R}^{2}: Q=\left(\begin{array}{cc}0 & 0 \\ 0 & 1\end{array}\right)$ and $B=\left(\begin{array}{cc}0 & 1 \\ a & b\end{array}\right)$
Kolmogorov corresponds to $(a, b)=(0,0)$.
Using partial Fourier transform wrt x is impossible when $a \neq 0$.

$$
\left\{\begin{array}{l}
\partial_{t} f(t, x)-\frac{1}{2} \operatorname{Tr}\left[Q \nabla_{x}^{2} f(t, x)\right]-\left\langle B x, \nabla_{x} f(t, x)\right\rangle-\frac{1}{2} \operatorname{Tr}(B) f(t, x)=0, \\
f(0, x)=f_{0}(x) .
\end{array}\right.
$$

The function h defined by $f(t, x)=h\left(t, e^{t B} x\right) e^{\frac{1}{2} \operatorname{Tr}(B) t}$ solves

$$
\left\{\begin{array}{l}
\partial_{t} h(t, y)-\frac{1}{2} \operatorname{Tr}\left[e^{t B} Q e^{t B^{T}} \nabla_{y}^{2} h(t, y)\right]=0, \\
h(0, y)=f_{0}(y)
\end{array}\right.
$$

Thus,

$$
\begin{gather*}
\widehat{h}(t, \xi)=\widehat{f}_{0}(\xi) e^{-\frac{1}{2} \int_{0}^{t}\left|Q^{1 / 2} e^{s B^{T}} \xi\right|^{2} d s}, \\
\widehat{f}(t, \xi)=\left|\operatorname{det}\left(e^{-t B}\right)\right| \widehat{h}\left(t, e^{-t B^{T}} \xi\right) e^{\frac{1}{2} \operatorname{Tr}(B) t} \\
=e^{-\frac{1}{2} \operatorname{Tr}(B) t} \widehat{f_{0}}\left(e^{-t B^{T}} \xi\right) e^{-\frac{1}{2} \int_{0}^{t}\left|Q^{1 / 2} e^{(s-t) B^{T}} \xi\right|^{2} d s} . \tag{1}
\end{gather*}
$$

Even if a bounded set of modes could be steered to zero at some time, the passive control phase in the Lebeau-Robbiano method would make them all revive again.

Appropriate dissipation: Gevrey- $-\frac{1}{2}$ smoothing

$$
\begin{gathered}
\partial_{t} f(t, x)-\frac{1}{2} \operatorname{Tr}\left[Q \nabla_{x}^{2} f(t, x)\right]-\left\langle B x, \nabla_{x} f(t, x)\right\rangle-\frac{1}{2} \operatorname{Tr}(B) f(t, x)=0 \\
\widehat{f}(t, \xi)=e^{-\frac{1}{2} \operatorname{Tr}(B) t} \widehat{f}_{0}\left(e^{-t B^{T}} \xi\right) e^{-\frac{1}{2} \int_{0}^{t}\left|Q^{1 / 2} e^{(s-t) B^{T}} \xi\right|^{2} d s}
\end{gathered}
$$

Lemma : Under Kalman condition, there exists $c, t_{0}, k_{0}>0$ such that

$$
\forall 0 \leq t \leq t_{0}, \forall \xi \in \mathbb{R}^{n}, \quad \int_{0}^{t}\left|Q^{\frac{1}{2}} e^{s B^{T}} \xi\right|^{2} d s \geq c t^{2 k_{0}+1}|\xi|^{2}
$$

Let $\pi_{k}: L^{2}\left(\mathbb{R}^{n}\right) \rightarrow E_{k}$ the projection onto the closed subspace

$$
E_{k}=\left\{f \in L^{2}\left(\mathbb{R}^{n}\right): \operatorname{supp}(\hat{f}) \subset\left\{\xi \in \mathbb{R}^{n}:|\xi| \leq k\right\}\right\}
$$

Then, $\forall T>0, \exists C_{T}>1, \forall 0 \leq t \leq T, \forall k \geq 0, \forall g_{0} \in L^{2}\left(\mathbb{R}^{n}\right)$,

$$
\left\|\left(1-\pi_{k}\right)\left(e^{t \tilde{P}} g_{0}\right)\right\|_{L^{2}\left(\mathbb{R}^{\boldsymbol{n}}\right)} \leq e^{-\delta(t) k^{2}}\left\|g_{0}\right\|_{L^{\mathbf{2}}\left(\mathbb{R}^{\boldsymbol{n}}\right)}
$$

where

$$
\delta(t)=\frac{1}{C_{T}} \inf \left(t, t_{0}\right)^{2 k_{0}+1} \geq 0, \quad t \geq 0
$$

$\mathbf{R k}:\left\|g_{0}\right\|_{L^{2}\left(\mathbb{R}^{n}\right)}$ instead of $\left\|\left(1-\pi_{k}\right) g_{0}\right\|_{L^{2}\left(\mathbb{R}^{n}\right)}$ in the rhs.

Direct proof of the observability inequality by induction

$$
\begin{gathered}
\tilde{P}:=\frac{1}{2} \operatorname{Tr}\left(Q \nabla_{x}^{2}\right)+\left\langle B x, \nabla_{x}\right\rangle+\frac{1}{2} \operatorname{Tr}(B) \\
\forall T>0, \exists C_{T}>0, \forall g \in L^{2}\left(\mathbb{R}^{n}\right), \quad\left\|e^{T \tilde{P}} g\right\|_{L^{2}\left(\mathbb{R}^{n}\right)}^{2} \leq C_{T} \int_{0}^{T}\left\|e^{t \tilde{P}} g\right\|_{L^{2}(\omega)}^{2} d t
\end{gathered}
$$

Key tools

(1) Dissipation: $\left\|\left(1-\pi_{k}\right)\left(e^{t \tilde{P}} g_{0}\right)\right\|_{L^{2}\left(\mathbb{R}^{n}\right)} \leq e^{-\delta(t) k^{2}}\left\|g_{0}\right\|_{L^{2}\left(\mathbb{R}^{n}\right)}$
(2) Le Rousseau-Moyano spectral inequality: $\exists c_{1}>0$ such that, $\forall N \geq 0, \forall g \in L^{2}\left(\mathbb{R}^{n}\right)$ with $\operatorname{supp}(\hat{g}) \subset B(0, N)$

$$
\|g\|_{L^{2}\left(\mathbb{R}^{n}\right)} \leqslant c_{1} e^{c_{1} N}\|g\|_{L^{2}(\omega)}
$$

(3) $0<\rho<\frac{1}{2 k_{0}+1}, \quad \tau_{k}=\frac{k}{4^{k \rho}}, \quad \alpha_{0}=0, \quad \alpha_{k}=\sum_{j=1}^{k} 2 \tau_{j} \underset{k \rightarrow \infty}{\longrightarrow} T$, $J_{k}=\left[T-\alpha_{k-1}-\tau_{k}, T-\alpha_{k-1}\right]$
(9) Projections with 2 different scaling : 2^{k} and $\ell_{k}:=\left[2^{k \beta}\right]$ where $1+\rho\left(2 k_{0}+1\right)<\beta<2$ J_{k}

Second result : hypoelliptic quadratic equations

- Quadratic operator : their Weyl symbol is a quadratic form $q:(x, \xi) \in \mathbb{R}^{2 n} \mapsto \mathbb{C}$. They are non self-adjoint differential operators, with explicit expression $x^{\alpha} \xi^{\beta} \longrightarrow \frac{1}{2}\left(x^{\alpha} D_{x}^{\beta}+D_{x}^{\beta} x^{\alpha}\right)$
- Hamilton map and singular space

$$
\begin{aligned}
F & :=\frac{1}{2}\left(\begin{array}{cc}
\nabla_{\xi} \nabla_{x} q & \nabla_{\xi}^{2} q \\
-\nabla_{x}^{2} q & -\nabla_{x} \nabla_{\xi} q
\end{array}\right) \in \mathcal{M}_{2 n}(\mathbb{R}) \\
S & :=\left(\bigcap_{0 \leqslant j \leqslant 2 n-1} \operatorname{Ker}\left[\operatorname{Re} F(\operatorname{Im} F)^{j}\right]\right) \cap \mathbb{R}^{2 n}
\end{aligned}
$$

We study the class of quadratic operators with $\Re(q) \geqslant 0$ and $S=\{0\}$. They generate contraction semi-groups on $L^{2}\left(\mathbb{R}^{n}\right)$.

Ex : Kramers-Fokker-Planck equation, with quadratic potential

$$
-\Delta_{v}+\frac{v^{2}}{4}-\frac{1}{2}+v \partial_{x}-a x \partial_{v} \quad(x, v) \in \mathbb{R}^{2}
$$

Smoothing in the Gelfand-Shilov space $S_{1 / 2}^{1 / 2}\left(\mathbb{R}^{n}\right)$

Theorem : [Hitrik, Viola, Pravda-Strarov 2015] Let $q: \mathbb{R}_{x, \xi}^{2 n} \rightarrow \mathbb{C}$ be a quadratic form with $\operatorname{Re} q \geq 0$ and $S=\{0\}$. Then, there exist $C_{0}, t_{0}>0$ such that for all $t \in\left(0, t_{0}\right), u \in L^{2}\left(\mathbb{R}^{n}\right), \alpha, \beta \in \mathbb{N}^{n}$

$$
\begin{aligned}
& \left\|x^{\alpha} \partial_{x}^{\beta}\left(e^{-t q^{w}} u\right)\right\|_{L^{\infty}\left(\mathbb{R}^{n}\right)} \leqslant \frac{C_{0}^{1+|\alpha|+|\beta|}}{t^{\frac{2 k_{0}+1}{2}(|\alpha|+|\beta|+2 n+s)}}(\alpha!)^{1 / 2}(\beta!)^{1 / 2}\|u\|_{L^{2}\left(\mathbb{R}^{n}\right)} \\
& \left\|e^{\delta(t)\left(D_{x}^{2}+x^{2}\right)} e^{-t q^{w}}\right\|_{\mathcal{L}\left(L^{2}\left(\mathbb{R}^{n}\right)\right)} \leq C_{0} \text { where } \delta(t):=\frac{\inf \left(t, t_{0}\right)^{2 k_{0}+1}}{C_{0}}
\end{aligned}
$$

Corollary : $\left\|\left(1-\pi_{k}\right)\left(e^{-t q^{w}} u\right)\right\|_{L^{2}\left(\mathbb{R}^{n}\right)} \leq C_{0} e^{-k \delta(t)}\|u\|_{L^{2}\left(\mathbb{R}^{n}\right)}$ where π_{k} is the orthogonal projection onto the energy levels lower than k associated to the Harmonic oscillator on \mathbb{R}^{n}

$$
\pi_{k} u:=\sum_{\substack{\alpha \in \mathbb{N}^{n} \\|\alpha| \leq k}}\left(u, \psi_{\alpha}\right) \psi_{\alpha} \quad\left(D_{x}^{2}+x^{2}\right) \psi_{\alpha}=(2|\alpha|+n) \psi_{\alpha}
$$

Null controllability result

Theorem : [B, Pravda-Starov 2015] Let $q: \mathbb{R}_{x, \xi}^{2 n} \rightarrow \mathbb{C}$ be a quadratic form with Re $q \geq 0, S=\{0\}$ and P be the associated differential operator. Let $T>0$ and ω be an open subset of \mathbb{R}^{n} that satisfies

$$
\begin{equation*}
\exists \delta, r>0 / \forall y \in \mathbb{R}^{d}, \exists y^{\prime} \in \omega / B\left(y^{\prime}, r\right) \subset \omega \text { and }\left|y-y^{\prime}\right|<\delta \tag{2}
\end{equation*}
$$

Then, for every $f_{0} \in L^{2}\left(\mathbb{R}^{n}\right)$, there exists $u \in L^{2}((0, T) \times \omega)$ such that the solution of

$$
\begin{cases}\left(\partial_{t}+P\right) f(t, x)=u(t, x) 1_{\omega}(x), & x \in \mathbb{R}^{n} \\ f(0, x)=f_{0}, & x \in \mathbb{R}^{n},\end{cases}
$$

satisfies $f(T,)=$.0 .

- Spectral inequality for Hermite functions: There exists $C_{1}>0$ such that for every $k \in \mathbb{N}^{*}$ and $\left(b_{\alpha}\right)_{\alpha \in \mathbb{N}^{n}} \in \mathbb{C}^{\mathbb{N}^{\boldsymbol{n}}}$,

$$
\left(\int_{\mathbb{R}^{n}}\left|\sum_{|\alpha| \leqslant k} b_{\alpha} \psi_{\alpha}(x)\right|^{2} d x\right)^{1 / 2} \leqslant C_{1} e^{C_{1} \sqrt{k}}\left(\int_{\omega}\left|\sum_{|\alpha| \leqslant k} b_{\alpha} \psi_{\alpha}(x)\right|^{2} d x\right)^{1 / 2}
$$

The proof relies on a global Carleman elliptic estimate for $D_{s}^{2}+D_{x}^{2}+x^{2} \quad \sim$ [Le Rousseau-Moyano 2015].

- Lebeau-Robbiano's method : direct approach for observability (induction).

$$
\left\|\left(1-\pi_{k}\right)\left(e^{-t q^{w}} u\right)\right\|_{L^{2}\left(\mathbb{R}^{n}\right)} \leq C_{0} e^{-k \delta(t)}\|u\|_{L^{2}\left(\mathbb{R}^{n}\right)}
$$

Application

- Kramers-Fokker-Planck : $-\Delta_{v}+\frac{v^{2}}{4}+v \partial_{x}-a x \partial_{v} \rightarrow S=\{0\}$
- Ornstein-Uhlenbeck in weighted spaces : $Q, B \in \mathcal{M}_{n}(\mathbb{R}), Q$ symmetric $\geqslant 0$
$P:=\frac{1}{2} \operatorname{Tr}\left(Q \nabla_{x}^{2}\right)+\left\langle B x, \nabla_{x}\right\rangle \quad$ with $\quad \operatorname{rk}\left[\sqrt{Q}, B \sqrt{Q}, \ldots, B^{n-1} \sqrt{Q}\right]=n$
$S \neq\{0\}$. But when $\Re[S p(B)] \subset(-\infty, 0)(C N S)$, there exists a gaussian invariant measure $d \mu(x)=\rho(x) d x$ and we may associate to the operator P acting on $L^{2}\left(\mathbb{R}^{n}, d \mu\right)$, the quadratic operator \mathcal{L} acting on $L^{2}\left(\mathbb{R}^{n}, d x\right)$,

$$
\mathcal{L} u=-\sqrt{\rho} P\left((\sqrt{\rho})^{-1} u\right)-\frac{1}{2} \operatorname{Tr}(B) u .
$$

Then $\mathcal{L}=q^{w}\left(x, D_{x}\right)$ is quadratic with $\Re q \geq 0$ and $S=\{0\}$.

- Ex: $\Delta_{v}+v \nabla_{x}-(x+v) \nabla_{v}$ in $L^{2}\left(e^{-\left(x^{2}+v^{2}\right)} d x d v\right)$

Conclusion, perspectives, open problems

- Done : Non autonomous Ornstein-Uhlenbeck operators
$\partial_{t} f(t, x)-\frac{1}{2} \operatorname{Tr}\left[A(t)^{T} A(t) \nabla_{x}^{2} f(t, x)\right]-\left\langle B(t) x, \nabla_{x} f(t, x)\right\rangle=u(t, x) \mathbf{1}_{\omega}(x)$
under generalized Kalman condition

$$
\begin{gathered}
\exists \bar{t} \in[0, T], p \in \mathbb{N} \text { such that } \operatorname{rk}\left[\tilde{A}_{0}(\bar{t}) \quad \ldots \quad \tilde{A}_{p}(t)\right]=n \\
\tilde{A}_{0}(t):=B(t), \quad \tilde{A}_{k+1}(t):=\tilde{A}_{k}^{\prime}(t)-B(t) \tilde{A}_{k}(t), \forall k \geqslant 0
\end{gathered}
$$

- Under progress : Ornstein-Uhlenbeck operators without Kalman, quadratic operators with $S=\{0\}$, semilinear equations
- Long term : fully nonlinear models
- Conclusion : Null controllability = smoothing

```
4\square>4㽞》4 三
```


Miscellaneous facts about quadratic operators

The maximal closed realization of a quadratic operator $q^{w}\left(x, D_{x}\right)$ with domain

$$
D(q)=\left\{u \in L^{2}\left(\mathbb{R}^{n}\right): q^{w}\left(x, D_{x}\right) u \in L^{2}\left(\mathbb{R}^{n}\right)\right\}
$$

coincides with the graph closure of its restriction to the Schwartz space. The adjoint operator $q^{w}\left(x, D_{x}\right)^{*}$ is given by $\bar{q}^{w}\left(x, D_{x}\right)$ with domain $D(\bar{q})$

When $\operatorname{Re} q \geq 0$, the operator $q^{w}\left(x, D_{x}\right)$ is maximally accretive

$$
\forall u \in D(q), \quad \operatorname{Re}\left(q^{w}\left(x, D_{x}\right) u, u\right)_{L^{2}} \geq 0
$$

and generates a contraction semigroup $\left(e^{-t q^{w}}\right)_{t \geq 0}$ on $L^{2}\left(\mathbb{R}^{n}\right)$
The Hamilton map $F \in M_{2 n}(\mathbb{C})$ of the quadratic operator $q^{w}\left(x, D_{x}\right)$ is uniquely defined by the identity

$$
q(X ; Y)=\langle Q X, Y\rangle=\sigma(X, F Y), \quad X, Y \in \mathbb{R}^{2 n}
$$

where σ is the canonical symplectic form, that is,
$F=\sigma Q=\left(\begin{array}{cc}0 & I_{n} \\ -I_{n} & 0\end{array}\right) Q$

Singular space

The singular space of a quadratic operator $q^{w}\left(x, D_{x}\right)$ is defined as the following finite intersection of kernels (algebraic definition)

$$
S=\left(\bigcap_{j=0}^{2 n-1} \operatorname{Ker}\left[\operatorname{Re} F(\operatorname{Im} F)^{j}\right]\right) \cap \mathbb{R}^{2 n} \subset \mathbb{R}^{2 n}
$$

where F denotes the Hamilton map of its Weyl symbol q [Hitrik, Pravda-Starov]
When $\operatorname{Re} q \geq 0$, the singular space is the subset in the phase space where all the iterated Poisson brackets $H_{\operatorname{Im} q}^{k} \operatorname{Re} q$ vanish (dynamical definition)

$$
S=\left\{X \in \mathbb{R}^{2 n}: H_{\operatorname{Im} q}^{k} \operatorname{Re} q(X)=0, k \geq 0\right\}
$$

with

$$
H_{\operatorname{Im} q}=\frac{\partial \operatorname{Im} q}{\partial \xi} \cdot \frac{\partial}{\partial x}-\frac{\partial \operatorname{Im} q}{\partial x} \cdot \frac{\partial}{\partial \xi}
$$

The singular space corresponds to the subset of points $X_{0} \in \mathbb{R}^{2 n}$ where the function

$$
t \mapsto \operatorname{Re} q\left(e^{t H_{\operatorname{Im} \boldsymbol{q}}} X_{0}\right)
$$

vanishes at an infinite order at $t=0$, that is, is identically equal to zero.

Accretive quadratic operators with zero singular space

Let $q^{w}\left(x, D_{x}\right)$ be a quadratic operator whose Weyl symbol has a non-negative real part $\operatorname{Re} q \geq 0$ and a zero singular space $S=\{0\}$. Then,

$$
\forall T>0, \quad\langle\operatorname{Re} q\rangle_{T}(X)=\frac{1}{2 T} \int_{-T}^{T}(\operatorname{Re} q)\left(e^{t H_{\operatorname{Im} q} X}\right) d t \gg 0
$$

The contraction semigroup $\left(e^{-t q^{w}}\right)_{t \geq 0}$ on $L^{2}\left(\mathbb{R}^{n}\right)$ is smoothing in the Gelfand-Shilov space $S_{1 / 2}^{1 / 2}\left(\mathbb{R}^{n}\right)$ for any positive time $t>0$

$$
\forall u \in L^{2}\left(\mathbb{R}^{n}\right), \forall t>0, \quad e^{-t q^{w}} u \in S_{1 / 2}^{1 / 2}\left(\mathbb{R}^{n}\right)
$$

The Gelfand-Shilov spaces $S_{\nu}^{\mu}\left(\mathbb{R}^{n}\right)$ with $\mu, \nu>0, \mu+\nu \geq 1$, are the spaces of functions $f \in C^{\infty}\left(\mathbb{R}^{n}\right)$ s.t.

$$
\exists C>1, \forall \alpha, \beta \in \mathbb{N}^{n}, \quad \sup _{x \in \mathbb{R}^{n}}\left|x^{\beta} \partial_{x}^{\alpha} f(x)\right| \leq C^{1+|\alpha|+|\beta|}(\alpha!)^{\mu}(\beta!)^{\nu}
$$

Symmetric Gelfand-Shilov spaces $S_{\mu}^{\mu}\left(\mathbb{R}^{n}\right)$ with $\mu \geq 1 / 2$:

$$
f \in S_{\mu}^{\mu}\left(\mathbb{R}^{n}\right) \Leftrightarrow f \in L^{2}\left(\mathbb{R}^{n}\right), \exists t_{0}>0,\left\|e^{t_{0} \mathcal{H}^{\frac{1}{2 \mu}}} f\right\|_{L^{2}\left(\mathbb{R}^{n}\right)}<+\infty
$$

where $\mathcal{H}=-\Delta_{x}+|x|^{2}$ is the harmonic oscillator

