Null controllability of hypoelliptic quadratic PDEs

Karine Beauchard

ENS Rennes, IRMAR

Valenciennes, 7 Juillet 2016
Stability of nonconservative systems

K. Beauchard



We aim at studying the null controllability of parabolic equations posed
on the whole space R”, by means of a source term u locally distributed
on an open subset w C R”

{ (0 + P)F(t,x) = u(t, x)1,(x), x € R7,
Fle—o = fo € L2(R"),

where P = gq"(x, D) is an accretive quadratic operator. They are non
self-adjoint differential operators, with explicit expression

Xl — % (anf + Dfxo‘)

Vfy € L2(R"),3u € L?((0, T) x R") such that f(T) =0.

We want to understand to which extend the null controllability results
known for the heat equation still hold for degenerate parabolic equations
of hypoelliptic type.

Motivation : nonlinear models such as Boltzmann, Prandtl,...
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The case of the heat equation

For the heat equation on the whole space
(0r — Ay) f(t,x) = u(t,x)1,(x), xeR",

no NSC on w is known for null-controllability to hold in any positive
time. We know [Miller 2005]

@ a necessary condition : sup,pn d(x,w) < 400,
e a sufficient condition :

36,r >0,Vy e R" 3y’ €ew, B(y,r)Cwand|y—y'|<$§

Goal : Identify classes of hypoelliptic operators for which the same
null controllability result holds.
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Necessary condition for observability of the heat equation

Assume that sup,cp d(x,w) = +00. We consider (xx)k>0 C R" s.t.
ay = dist(xg,w) T oo and g(t,x) = Geye(x — xk) where G; denotes
—00
the heat kernel
1 2

Gt(y):\/me’%, t>0, yeR.

If the heat equation was observable on w in time T > 0, then

.
3Cr > 0,Vgo € L2(R), / 18(T, x)Pdx < CT/ / (¢, x)[2dxdt
R 0 w

Co

e+T
i.e. = G, 2dy < C / / G 2dydt
= [eorascr [ jamie

4T 1 4
< C’T/ —e 2dt — 0
€ \/E k—oo

Rk : # f|x\>a e dx<e?, Va0
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A previous result

Le Rousseau and Moyano [2015] proved that the Kolmogorov equation
Oif +v.Vuf — A f =u(t,x,v)l,(x,v), (t,x,v)e€(0,T)xR"xR"
is null controllable from w = w, x w, when both w, and w, satisfy
30,r >0,Vy e R", 3y’ €ew, B(y',r) Cwxand |y —y'| <3¢
Strategy :
@ Partial Fourier transform in variable x :

Oef +ievF — AF(t,6,v) = 1,,0(t,6,v), (6, v) eR" X R"

@ Global Carleman parabolic estimates on
(t,v)— f(t,&,v) —> localization in variable v

© Lebeau-Robbiano’s method —— localization in variable x

K. Beauchard



Lebeau-Robbiano’s method : presentation on the heat eq

(0r — A) f(t,x) = u(t,x)1,(x) in Q f(t,.) =0 on 90Q
@ Spectral inequality : —A¢j = pjgjin Q ¢j =0 on 0Q
K
H Z ;b 12(@) < Ke \FH Z @jo; 12w V(o)
HiS HjSp

o lterative procedure : 0=Tog < 71 <..<T; = T

e on [T}, T;11/»], one applies a control that steers to zero
M;f(T;11/2), the projection onto the energy levels < p = 2%

lull < K" || £(T;)]| 1F(Tisa2)ll < K" | F(T7)]|
o on [Tjy1/2, Tj11], no control — dissipation
(Tl < I1F(Tjap)lle > < K27 £(T))|

Key point : dissipation 2%  >>>  spectral inequality's cst 2/
RK : The projections 1; need to commute with the semi-group
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Lebeau-Robbiano’s method for the Kolmogorov equation

atf + V.fo — Avf = U(t X, V)]. (X V) (X V) c Rﬂ % Rn
Packets for the form f(t,x, v) 27r),, f f t,€, v)exEde

© For a fixed &, the cost of the null controllability from w, of
(t,v) > F(t,6,v) is < &< #VED)

@ Spectral inequality : 3¢; > 0 such that, VN > 0 and g € L?(R")
with supp(g) C B(0, N) (elliptic Carleman estimate)

gl < c1e™V gl 2w
© Dissipation speed without control (explicit Fourier transform)

17(8,€. )iz < o6l izqme =

Key points dissipation N2 >>> cost /N and spectral inequality's cst N/
The semi-group commutes with the frequency cutoff projections.
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Drawback of this method

@ Use of partial Fourier transform : fails for
Of + v.Vif +x.V f — A f = u(t,x,v)1,(x,v)
© Cartesian structure : commutation between the semi-group and
the frequency cutoff projections.
© Cartesian structure of control supports

Q Greedy in spectral analysis :
eigenvalues + eigenfunctions + spectral inequality

We propose a variation of the Lebeau-Robbiano's method, that avoids
these restrictions, and allows to extend Le Rousseau and Moyano's result
to a large class of equations, with less restrictive control supports
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First result : Ornstein-Uhlenbeck operators

{ Oef (t,x) — ATe[QV2F (t,x)] — (Bx, Vif(t,x)) = u(t,x)1,(x), x €R”
fli—o = fo € L*(R")

Q,B € M,(R), Q >0 symmetric and rank[Q2,BQz,...,B""1Q3] =n
(hypoellipticity=Kalman).

1 & -
P=3 D 605 5+ D bixis

ij=1 ij=1
Theorem [KB, Pravda-Starov 2016] Let T > 0 and w be an open subset
of R" such that

36,r >0,¥y e R", 3y’ €ew, B(y',r)Cwandl|y —y'| <9d.

Then, the Ornstein-Uhlenbeck equation posed on L2(R”") is null
controllable from w in time T > 0.
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Examples of Orstein-Uhlenbeck operators

1
ETr(sz) BX v Z ql,J x, X + Z b'JXJ Xi

Ij 1 ij=1
Application :
© Heat equation : Q@ = /,, whatever B

Q (at + vy + (ax + bv)d, — 83) f(t,x,v) =u(t,x,v)l,(x,v)
01 a b

Kolmogorov corresponds to (a, b) = (0, 0).
Using partial Fourier transform wrt x is impossible when a £ 0.

whatever(a,b)ERz:Q:<0 0 andB:(O 1)

K. Beauchard



Fourier projections and semigroup do not commute

{ Oef (t,x) — ATe[QV2F (t,x)] — (Bx, Vi f(t,x)) — 3Tr(B)f(t,x) =0,
(0, x) = fo(x).

The function h defined by f(t,x) = h(t, eBx)e21r(B)t solves
{ Oeh(t,y) — 1 Tr{e® Qet®" V2h(t,y)] = 0,
h(0,y) = fo(y)-

Thus, r
h(t, €) = fo(§)e™ 5 Jo 1€ e clds,

f(t,€) = |det(e~*B)[h(t, eB ¢)e3 (B}

_ e_%Tr(B)t;-(;(eftBTf)e_%fot |Ql/2e("')BT£|2ds' (1)

Even if a bounded set of modes could be steered to zero at some time,
the passive control phase in the Lebeau-Robbiano method would make

them all revive again.
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Appropriate dissipation : Gevrey—% smoothing

Bef(t,x) — %Tr[QVif(t,x)] — (Bx, Vf(t,x)) — %Tr(B)f(t,x) =0

?(t, f) _ eféTr(B)t%(eftBTg)eféfo' ‘Q1/2e(1—t)BTf‘2dS

Lemma : Under Kalman condition, there exists ¢, tg, kg > 0 such that

t
V0 <t < to,VE R, / 1Q2esBT ¢2ds > ctot1|¢2,
0

Let 7y : L2(R™) — Ej the projection onto the closed subspace
E, = {f € ’(R") : supp(f) C {¢ € R": [¢] < k}}
Then, VT >0,3Cr > 1,V0<t < T, Vk >0, Vgo € L2(R"),

11 — m) (e go) 2 (ny < €| goll 2 (an)

where  §(t) = &= inf(t, to)*** >0, ¢>0,
Rk : [|golli2(mny instead of (1 — mx)go||2(mny in the rhs.
A e T



Direct proof of the observability inequality by induction

P .= %Tr(QV,Z() + (Bx,Vy) + %Tr(B)

~ T ~
VT >0,3Cr > 0,¥g € L2(R"), le"Pg|faam < Cr / et g2t

Key tools

—o(t

© Dissipation :  [|(1 — mk)(€Pgo) |2 (rny < €% |lgo |l 2@y

@ Le Rousseau-Moyano spectral inequality : d¢; > 0 such that,
VN >0, Vg € L?(R") with supp(g) C B(0, N)

lglli2@my < cre"|glliz(w)

1 _ K _ — "k ;
°0<p<m, Tk—4Tp, 040—0, ak_zj:127-1k;>o7-’
Ji =T — a1 — 7, T — 1]

© Projections with 2 different scalings : 2% and ¢ := [2%°] where
1+pRRko+1)< <2 Jk

T — Qe 27'k T — Q1
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Second result : hypoelliptic quadratic equations

@ Quadratic operator : their Weyl symbol is a quadratic form
q:(x,€) € R?2" s C. They are non self-adjoint differential
operators, with explicit expression x*¢? — I (x*Df + Dfx*)

@ Hamilton map and singular space

2
F = 1 ( vaxq ng

- -V2q —V.Vq

5 ) € Mz,(R)

S=( () Ker[Re F(lm FY]) nR>
0<j<2n—1

We study the class of quadratic operators with £(g) > 0 and
S = {0}. They generate contraction semi-groups on L?(R").

Ex : Kramers-Fokker-Planck equation, with quadratic potential

V2

1
—Av—i—f—i—i—v&(—ax&, (x,v) € R?
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Smoothing in the Gelfand-Shilov space 51/2( )

Theorem : [Hitrik, Viola, Pravda-Strarov 2015] Let g : R%", — C be a
quadratic form with Re ¢ > 0 and S = {0}. Then, there exnst Go,to >0
such that for all t € (0,1), u € L2(R"), o, 3 € N"

cl+lal+lsl

o [|x*02(e™* " )| 1w gmy < peE vmesmmessel G R G e LI TRED

° Heé(t)(Df+x2)e—tq‘” < Co where §(t) := inf(t,t0)*0 "t

L(2(rm)) Co

Corollary : ||(1 - wk)(e*tqwu)HLz(Rn) < Goe W ||u|| 2 (m)

where 7y is the orthogonal projection onto the energy levels lower than k
associated to the Harmonic oscillator on R”

meu =Y (U, %a)ta (D2 + x%) o = (2a| + n)a

aeN"
|| <k
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Null controllability result

Theorem : [B, Pravda-Starov 2015] Let g : R2"§ — C be a quadratic
form with Re ¢ > 0, S = {0} and P be the associated differential
operator. Let T > 0 and w be an open subset of R” that satisfies

35,r>0/Vy eR? 3y cw/B(y,r)Cwand |y —y'| <6. (2)

Then, for every f € L>(R"), there exists u € L?((0, T) x w) such that
the solution of

(0r + P)f(t,x) = u(t,x)1,(x), x €R",
f(O,X):fE), x eR",

satisfies f(T,.) = 0.
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@ Spectral inequality for Hermite functions : There exists C; > 0
such that for every k € N* and (by)aenn € CY,

1/2 1/2

/] 3 bawa(x)rdx < GeCVk /‘ 3 bawa(x)rdx

n o lol<k 5 lal<k

The proof relies on a global Carleman elliptic estimate for
D? + D? + x>~ [Le Rousseau-Moyano 2015].

@ Lebeau-Robbiano’s method : direct approach for observability
(induction).

H(1 — (e y)

< Coe_ké(t)HUHB(Rn)

L2(Rm)
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Application

o Kramers-Fokker-Planck : —A, + "72 + vy —axd, — S ={0}

@ Ornstein-Uhlenbeck in weighted spaces : Q,B € M,(R), Q
symmetric > 0

P .= %Tr(QVi) +(Bx,Vy) with rk [\/6, B\/a, . B”fl\/a} =n

S # {0}. But when R[Sp(B)] C (—o0,0) (CNS), there exists a
gaussian invariant measure du(x) = p(x)dx and we may associate
to the operator P acting on L?(R", dy), the quadratic operator £
acting on L?(R", dx),

1
u=—pP((v/p) 'u) - ETr(B)u.
Then £ = ¢¥(x, D) is quadratic with 8¢ > 0 and S = {0}.
0 Ex: A, +vV,— (x+v)V, in [2(e" ") dxdy)
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Conclusion, perspectives, open problems

@ Done : Non autonomous Ornstein-Uhlenbeck operators
8tf(t,x)—%Tr[A(t)TA(t)Vif(t,x)]—(B(t)x7fo(t,x)> = u(t,x)1,(x)
under generalized Kalman condition

3t € [0, T],p € N such that rk[Ag() ... A,(t)]=n
Ao(t) :== B(t), Axsi(t) = A(t) — B(t)Au(t),Yk >0

@ Under progress : Ornstein-Uhlenbeck operators without Kalman,
quadratic operators with S = {0}, semilinear equations

@ Long term : fully nonlinear models

@ Conclusion : Null controllability = smoothing
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Miscellaneous facts about quadratic operators

The maximal closed realization of a quadratic operator ¢%(x, Dy)
with domain

D(q) = {u € L’(R") : ¢"(x, Dy)u € L2(R")}

coincides with the graph closure of its restriction to the Schwartz
space. The adjoint operator g*(x, D,)* is given by g (x, D) with
domain D(q)

When Re g > 0, the operator ¢%(x, Dy) is maximally accretive
VYu e D(q), Re(¢”(x,Dx)u,u)2 >0
and generates a contraction semigroup (e %" );>o on L?(R")

The Hamilton map F € M,,(C) of the quadratic operator ¢*(x, D,)
is uniquely defined by the identity

aqX;Y)=(QX,Y)=0(X,FY), X,Y €R?"
where o is the canonical symplectic form, that is,
_ _ 0 I
FJQ(_I" 0 )Q
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Singular space

The singular space of a quadratic operator ¢*(x, D) is defined as the
following finite intersection of kernels (algebraic definition)

2n—1

= ([ Ker[Re F(im FY]) N R c R?"

j=0
where F denotes the Hamilton map of its Weyl symbol g [Hitrik,
Pravda-Starov]
When Re g > 0, the singular space is the subset in the phase space

where all the iterated Poisson brackets Hl"que q vanish (dynamical
definition)

S={XeR™: Hf,,Re q(X) =0, k>0}

with
Omqg 9 0Olmgqg 0O

o6 ox  ox O¢
The singular space corresponds to the subset of points Xy € R?" where
the function

HImq -

t — Re g(etma Xp)
vanishes at an infinite order at t = 0, that is, is identically equal to zero.
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Accretive quadratic operators with zero singular space

Let ¢*(x, D) be a quadratic operator whose Weyl symbol has a
non-negative real part Re ¢ > 0 and a zero singular space S = {0}.
Then,

1 T
YT>0, (Req)r(X)= 5= / (Re q)(e™maX)dt > 0
-T

The contraction semigroup (e 9" );>o on L?>(R") is smoothing in the

Gelfand-Shilov space S,/5(R") for any positive time ¢ > 0

Vue LX(R"), V>0, e "ue SR

The Gelfand-Shilov spaces S%(R") with pu,v >0, p+ v > 1, are the
spaces of functions f € C>*(R") s.t.

3C > 1,Yo, B € N, sup |xP02f(x)| < CHHIFBlan)H (g1
x€ERn

Symmetric Gelfand-Shilov spaces S//(R") with 1 > 1/2:
1
feSHRY) « fel?(R"), Itg >0, [[e°M™ f]|2(rm) < +00

where H = —A, + |x|? is the harmonic oscillator
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