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Les programmes

Le programme de premiére (1)

@ Modeéle probabiliste

» Formule des probabilités totales
» Tableaux et arbres pondérés
» Probabilité conditionnelle, indépendance

@ Variable aléatoire
» Loi d'une v.a., espérance, variance
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Les programmes

Le programme de premiére (1)

@ Modeéle probabiliste

» Formule des probabilités totales

» Tableaux et arbres pondérés

» Probabilité conditionnelle, indépendance
@ Variable aléatoire

» Loi d'une v.a., espérance, variance

» lLoi-biremiale
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Les programmes

Le programme de premiére (2)

@ Avec Python :
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Les programmes

Le programme de premiére (2)

@ Avec Python :

» Simuler une v.a. X de loi donnée

k 0 | 50 | 100
P(X=k)|0,2]0,4|0,4

shortname (shortinst) L'inégalité de Bienaymé-Tchebychev



Les programmes

Le programme de premiére (2)

@ Avec Python :
» Simuler une v.a. X de loi donnée

k 0 50 | 100
P(X=k)|0,2]0,4]0,4
» Moyenne d'un échantillon (Xi, ..., X,) de méme loi que X

_X1+X2+"'—|—Xn
n

Mp,
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Les programmes

Le programme de premiére (2)

@ Avec Python :
» Simuler une v.a. X de loi donnée

k 0 50 | 100
P(X=k)|0,2]0,4]0,4
» Moyenne d'un échantillon (Xi, ..., X,) de méme loi que X

_X1+X2+"'—|—Xn
n

Mp,

@ Avec Python ou le tableur :
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Les programmes

Le programme de premiére (2)

@ Avec Python :
» Simuler une v.a. X de loi donnée

k 0 50 | 100
P(X=k)|0,2]0,4]0,4
» Moyenne d'un échantillon (Xi, ..., X,) de méme loi que X

_X1+X2+"'—|—Xn
n

Mp,

@ Avec Python ou le tableur :

» Etant donnés N échantillons de taille n, proportion des
échantillons dont la moyenne est comprise entre y — 20/+/n et

w+20//n
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Le programme de terminale (1)

@ Idée générale
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Les programmes

Le programme de terminale (1)

@ Idée générale
» E(X) = p, V(X) = o2 Somme et moyenne d'un échantillon
(X1,...,X,) de méme loi que X

Sn:X1+X2+"'+Xn
Xy +Xp 4+ Xa
n

M, =

Majoration de P (|I\/I,, —pl > %) )
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Les programmes

Le programme de terminale (1)

@ Idée générale
» E(X) = p, V(X) = o2 Somme et moyenne d'un échantillon
(X1,...,X,) de méme loi que X

Sn:X1+X2+"'+Xn
Xy +Xp 4+ Xa

M, =
n
Majoration de P (|I\/I,, —pl > %) .
Ancien programme Nouveau programme
Xi ~ B(p) Xi quelconques
> Sn~ B(n,p) S, quelconque
Approx. asympt. par N(0,1) | Calculs exacts via inég. B.T.
Loi N(0,1) + stat. Loi binomiale + stat. + LGN
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Les programmes

Le programme de terminale (2)

o Dénombrement
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Le programme de terminale (2)

@ Dénombrement
» Avec les (Z)
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@ Dénombrement
» Avec les (Z)

@ Loi binomiale
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Le programme de terminale (2)

@ Dénombrement
» Avec les (Z)
@ Loi binomiale
» Schéma de Bernoulli
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Les programmes

Le programme de terminale (2)

@ Dénombrement
» Avec les (Z)
@ Loi binomiale

» Schéma de Bernoulli

> Formule (}) x p* x (1 — p)™*
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Les programmes

Le programme de terminale (2)

@ Dénombrement
» Avec les (Z)
@ Loi binomiale

» Schéma de Bernoulli
> Formule (}) x p* x (1 — p)"~
» Calculs a la main ou a I'aide d'algorithmes

k
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Les programmes

Le programme de terminale (2)

@ Dénombrement
> Avec les ()
@ Loi binomiale
» Schéma de Bernoulli
> Formule (}) x p* x (1 — p)"~
» Calculs a la main ou a I'aide d'algorithmes
@ ex 1: X ~ B(100,0.5). Calculer P(X < 10)

k
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Les programmes

Le programme de terminale (2)

@ Dénombrement
» Avec les (Z)
@ Loi binomiale

» Schéma de Bernoulli
> Formule (}) x p* x (1 — p)"~
» Calculs a la main ou a I'aide d'algorithmes

@ ex 1: X ~ B(100,0.5). Calculer P(X < 10)

@ ex 2: X ~ B(100,0.5). Résoudre P(X < «) > 0,95

k
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Les programmes

Le programme de terminale (3)

@ Somme de variables aléatoires
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Les programmes

Le programme de terminale (3)

@ Somme de variables aléatoires
> E(aX) = aE(X) et E(X + Y) = E(X) + E(Y)
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Les programmes

Le programme de terminale (3)

@ Somme de variables aléatoires
> E(aX) = aE(X) et E(X + Y) = E(X) + E(Y)
» V(X +Y)=V(X)+ V(Y) dans le cas de v.a. indépendantes —
V(aX) = a?V(X)
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Les programmes

Le programme de terminale (3)

@ Somme de variables aléatoires

» E(aX)=aE(X) et E(X+Y)=E(X)+ E(Y)

» V(X +Y)=V(X)+ V(Y) dans le cas de v.a. indépendantes —
V(aX) = a?V(X)

» Explication sous forme d'exercice.
Une urne contient quatre boules indiscernables au toucher qui
portent chacune deux n° : un n°rouge et un n°bleu. On tire une
boule au hasard dans I'urne et on note X le n°rouge, Y le

n° bleu.
0O
“’

Calculer E(X), E(Y) et E(X +Y).
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Les programmes

Linéarité de |'espérance

Propriété : Soient X et Y deux variables aléatoires définies sur le
méme espace de probabilité et admettant une espérance. Soit a un
réel. On a

Q E(aX) = aE(X).
Q E(X+Y)=EX)+E(Y).
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Les programmes

Linéarité de |'espérance

Propriété : Soient X et Y deux variables aléatoires définies sur le
méme espace de probabilité et admettant une espérance. Soit a un
réel. On a

Q E(aX) = aE(X).
Q E(X+Y)=EX)+E(Y).

Dans le contexte du lycée :
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Les programmes

Linéarité de |'espérance

Propriété : Soient X et Y deux variables aléatoires définies sur le
méme espace de probabilité et admettant une espérance. Soit a un
réel. On a

Q E(aX) = aE(X).
Q E(X+Y)=EX)+E(Y).

Dans le contexte du lycée :

Propriété : Soient X et Y deux variables aléatoires discrétes, a
support fini, définies sur le méme espace de probabilité. Soit a un
réel. On a

Q E(aX) = aE(X).
Q E(X+Y)=EX)+E(Y).
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Les programmes

Preuve pour des V.A discrétes a support fini

1. Soit X une variable aléatoire définie sur un univers Q muni d’'une
probabilité IP.
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Les programmes

Preuve pour des V.A discrétes a support fini

1. Soit X une variable aléatoire définie sur un univers Q muni d'une
probabilité IP.
Notons X(Q) = {x1, x2, -+, x,} |'ensemble des valeurs prises par X.
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Les programmes

Preuve pour des V.A discrétes a support fini

1. Soit X une variable aléatoire définie sur un univers Q muni d'une
probabilité IP.
Notons X(Q) = {x1, x2, -+, x,} |'ensemble des valeurs prises par X.

Rappel : I'espérance de X est alors
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Les programmes

Preuve pour des V.A discrétes a support fini

1. Soit X une variable aléatoire définie sur un univers Q muni d'une
probabilité IP.
Notons X(Q) = {x1, x2, -+, x,} |'ensemble des valeurs prises par X.

Rappel : I'espérance de X est alors

E(X)= ) xP(X=x)

x€X(Q)

shortname (shortinst) L'inégalité de Bienaymé-Tchebychev



Les programmes

Preuve pour des V.A discrétes a support fini

1. Soit X une variable aléatoire définie sur un univers Q muni d'une
probabilité IP.
Notons X(Q) = {x1, x2, -+, x,} |'ensemble des valeurs prises par X.

Rappel : I'espérance de X est alors

E(X)= Y xP(X Z x;P(X

x€X(Q)
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Les programmes

Preuve pour des V.A discrétes a support fini

1. Soit X une variable aléatoire définie sur un univers Q muni d'une
probabilité IP.
Notons X(Q) = {x1, x2, -+, x,} |'ensemble des valeurs prises par X.

Rappel : I'espérance de X est alors

E(X)= Y xP(X Z x;P(X

x€X(Q)

n

E(aX) = Z(ax,-)IP(aX = ax;)

i=1
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Les programmes

Preuve pour des V.A discrétes a support fini

1. Soit X une variable aléatoire définie sur un univers Q muni d'une
probabilité IP.
Notons X(Q) = {x1, x2, -+, x,} |'ensemble des valeurs prises par X.

Rappel : I'espérance de X est alors

E(X)= Y xP(X Z x;P(X

x€X(Q)

n

E(aX) =) (ax;)P(aX = ax;) =a» _xP(X = x)

i=1 i=1
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Les programmes

Preuve pour des V.A discrétes a support fini

1. Soit X une variable aléatoire définie sur un univers Q muni d'une
probabilité IP.
Notons X(Q) = {x1, x2, -+, x,} |'ensemble des valeurs prises par X.

Rappel : I'espérance de X est alors

E(X)= Y xP(X Z x;P(X

x€X(Q)

n

E(aX) =) (ax;)P(aX = ax) = a »_xP(X = x) = aE(X).

i=1 i=1
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Les programmes

Preuve pour des V.A discrétes a support fini

2. Soit X et Y deux variables aléatoires définies sur un méme univers
Q muni d'une probabilité IP.

Notons X(Q) = {x1, X2, -+, x,} |'ensemble des valeurs prises par X.
et Y(Q) = {y1,¥2,- -, ¥m} I'ensemble des valeurs prises par Y.
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Les programmes

Preuve pour des V.A discrétes a support fini

2. Soit X et Y deux variables aléatoires définies sur un méme univers
Q muni d'une probabilité IP.

Notons X(Q) = {x1, X2, -+, x,} |'ensemble des valeurs prises par X.
et Y(Q) = {y1,¥2,- -, ¥m} I'ensemble des valeurs prises par Y.

Posons Z=X+Y.
Notons Z(2) = {z1,z,- -, z/} I'ensemble des valeurs prises par X.
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Les programmes

Preuve pour des V.A discrétes a support fini

Remarque : loi de Z
Pour tout z, € Z(Q2), on a
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Les programmes

Preuve pour des V.A discrétes a support fini

Remarque : loi de Z
Pour tout z, € Z(Q2), on a

{(Z =2z} = {X=x et Y=y}
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Les programmes

Preuve pour des V.A discrétes a support fini

Remarque : loi de Z
Pour tout z, € Z(Q2), on a

{Z:Zk}: U {X:X,etY:y_,}
{(i4) 5 xity=z}
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Les programmes

Preuve pour des V.A discrétes a support fini

Remarque : loi de Z
Pour tout z, € Z(Q2), on a

{Z:Zk}: U {X:X,etY:y_,}
{(i4) 5 xity=z}

Dot P(Z=2z)= Y  PX=xY=y).

(iJ) i xityj=z
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Les programmes

Preuve pour des V.A discrétes a support fini
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Les programmes

Preuve pour des V.A discrétes a support fini

E(Z) = ) zP(Z=z)

2, €Z(Q)

= Y z Y PX=xY=y)

7z €Z(Q)  Xityj=zk
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Les programmes

Preuve pour des V.A discrétes a support fini

E(Z) = ) zP(Z=z)

2, €Z(Q)

= Y z Y PX=xY=y)

7z €Z(Q)  Xityj=zk

= Y DY aPX=x,Y=y)

2 €Z(Q) xit+yj=zk
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Les programmes

Preuve pour des V.A discrétes a support fini

shortname (shortinst)

Y zP(Z=2z)

2, €Z(Q)

Yooz Y PX=xY=y)

7z €Z(Q)  Xityj=zk

Yo D) aPX=x,Y=y)

2 €Z(Q) xit+yj=zk

Z Z (xi+y)P(X=x,Y =y

2, €Z(Q) xityj=2zx
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Les programmes

Preuve pour des V.A discrétes a support fini

shortname (shortinst)

Y zP(Z=2z)

2, €Z(Q)

Yooz Y PX=xY=y)

7z €Z(Q)  Xityj=zk

Yo D) aPX=x,Y=y)

2 €Z(Q) xit+yj=zk

Z Z (xi+y)P(X=x,Y =y

2, €Z(Q) xityj=2zx

Z Z(X,- +y)P(X =x,Y =y)

i=1 j=1
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Les programmes

Preuve pour des V.A discrétes a support fini

n m

ZZX,—i—yJIP =x,Y =y

i=1 j=1
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Les programmes

Preuve pour des V.A discrétes a support fini

E(Z) = ) > (i+y)P(X=x,Y=y)
i=1 j=1
= ZZX,-IP(X =x, Y =y)+ ZZWHX =x, Y =yj)
i=1 j=1 i=1 j=1
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Les programmes

Preuve pour des V.A discrétes a support fini

E(Z) = > ) (i+y)PX=x,Y=y)

i=1 j=1

= ) D> xPX=x,Y=y)+> > yPX=xY=y)
i=1 j=1 i=1 j=1

= D %) PX=x,Y=y)+> 5> PX=x,Y=y)
i=1 j=1 j=1 i=1
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Les programmes
Preuve pour des V.A discrétes a support fini

E(Z) = > ) (i+y)PX=x,Y=y)

i=1 j=1
= > Y xPX=xY=y)+> > yPX=xY=y)
i=1 j=1 i=1 j=1

= Y x> PX=x.Y=y)+> > PX=xY=y)
i=1  j=1 Jj=1 i=1

- ZX,IP(X =x)+ Y _yP(Y =y)

j=1
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Les programmes
Preuve pour des V.A discrétes a support fini

E(Z) = > ) (i+y)PX=x,Y=y)

i=1 j=1

= ) D> xPX=x,Y=y)+> > yPX=xY=y)
i=1 j=1 i=1 j=1

= D %) PX=x,Y=y)+> 5> PX=x,Y=y)
i=1 j=1 j=1 i=1

- ZX,IP(X =x)+ Y _yP(Y =y)

Jj=1

= E(X)+ E(Y).
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Les programmes

Le programme de terminale (4)

@ Exercice.
Un QCM comporte 5 questions. Pour chacune d'entre elles, 4
réponses sont proposées, dont une seule est exacte. On note S le
nombre de bonnes réponses & ce QCM pour un éléve qui répond
au hasard a toutes les questions.
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Les programmes

Le programme de terminale (4)

@ Exercice.
Un QCM comporte 5 questions. Pour chacune d'entre elles, 4
réponses sont proposées, dont une seule est exacte. On note S le
nombre de bonnes réponses & ce QCM pour un éléve qui répond
au hasard a toutes les questions.

© Loide S.
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Les programmes

Le programme de terminale (4)

@ Exercice.
Un QCM comporte 5 questions. Pour chacune d'entre elles, 4
réponses sont proposées, dont une seule est exacte. On note S le
nombre de bonnes réponses & ce QCM pour un éléve qui répond
au hasard a toutes les questions.

© Loide S.

1 sil'éléve a bon a la question |
© On pose X; = g

0 sinon

Calcul de E(S) et V(S).
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Les programmes

Le programme de terminale (4)

@ Exercice.
Un QCM comporte 5 questions. Pour chacune d'entre elles, 4
réponses sont proposées, dont une seule est exacte. On note S le
nombre de bonnes réponses & ce QCM pour un éléve qui répond
au hasard a toutes les questions.

© Loide S.

1 sil'éléve a bon a la question |
© On pose X; = g

0 sinon
Calcul de E(S) et V(S).
0 S=X1+Xo+ X3+ X4+ Xs.

shortname (shortinst) L'inégalité de Bienaymé-Tchebychev



Les programmes

Le programme de terminale (4)

@ Application a la loi binomiale
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Les programmes

Le programme de terminale (4)

@ Application a la loi binomiale
~ X ~ B(n,p)
X =X{+ -+ X, ot les X; sont ind. et suivent une loi de
Bernoulli
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Les programmes

Le programme de terminale (4)

@ Application a la loi binomiale
» X ~ B(n,p)

X =X{+ -+ X, ot les X; sont ind. et suivent une loi de
Bernoulli

> E(X) = np, V(X) = np(1 - p)
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Les programmes

Le programme de terminale (4)

@ Application a la loi binomiale
» X ~ B(n,p)
X =X{+ -+ X, ot les X; sont ind. et suivent une loi de
Bernoulli
> E(X) = np, V(X) = np(1 - p)
@ Cas général

shortname (shortinst) L'inégalité de Bienaymé-Tchebychev



Les programmes

Le programme de terminale (4)

@ Application a la loi binomiale
» X ~ B(n,p)
X =X{+ -+ X, ot les X; sont ind. et suivent une loi de
Bernoulli
> E(X) = np, V(X) = np(1 - p)
@ Cas général

» (Xi,...,Xn) échantillon de méme loi que X
Espérance, variance et écart-type de S, = X1 +--- + X, et de
M, = 2

n
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Les programmes

Le programme de terminale (5)

@ Concentration, loi des grands nombres
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Les programmes

Le programme de terminale (5)

@ Concentration, loi des grands nombres
» Inégalité de Bienaymé-Tchebychev
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Les programmes

Le programme de terminale (5)

@ Concentration, loi des grands nombres

» Inégalité de Bienaymé-Tchebychev
» Inégalité de concentration
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Les programmes

Le programme de terminale (5)

@ Concentration, loi des grands nombres
» Inégalité de Bienaymé-Tchebychev
» Inégalité de concentration
» Loi des grands nombres
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Une approche historique

Le théoréme de Bernoulli

Jakob Bernoulli (1654-1705)
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Une approche historique

Le théoréme de Bernoulli

Jakob Bernoulli (1654-1705)

« ‘Voici le probléme que je veux maintenant publier ici, ['ayant étudié avec soin
pendant 20 ans, probléme dont la nouveauté aussi bien que la grande utilité ainsi
que ses profondes difficultés dépassent en poids et valeur tous les chapitres
précédents de mon oeuvre ».

Ars Conjectandi. 1713
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Une approche historique

Le probléeme

Bernoulli considére une urne contenant b boules blanches et r boules
rouges.
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Une approche historique

Le probléeme

Bernoulli considére une urne contenant b boules blanches et r boules
rouges.

_ _b ;
Notons p = ;2 la proportion de boules blanches.
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Une approche historique

Le probléeme

Bernoulli considére une urne contenant b boules blanches et r boules
rouges.
_ b :
Notons p = b la prc?portl_on de boules blénches.
Il effectue plusieurs fois n tirages avec remise dans cette urne.
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Une approche historique

Le probléeme

Bernoulli considére une urne contenant b boules blanches et r boules
rouges.

Notons p = % la proportion de boules blanches.

Il effectue plusieurs fois n tirages avec remise dans cette urne.

Il constate que le nombre de boules blanches obtenu s, est chaque
fois différent
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Une approche historique

Le probléeme

Bernoulli considére une urne contenant b boules blanches et r boules
rouges.

Notons p = % la proportion de boules blanches.

Il effectue plusieurs fois n tirages avec remise dans cette urne.

Il constate que le nombre de boules blanches obtenu s, est chaque
fois différent

mais que la proportion * est proche de p lorsque n est grand.
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Une approche historique

L.a modélisation

Notons S, la variable aléatoire donnant le nombre de boules blanches
obtenu aprés n tirages.
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Une approche historique

L.a modélisation

Notons S, la variable aléatoire donnant le nombre de boules blanches
obtenu aprés n tirages.

On sait que S, ~ B(n, p).
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Une approche historique

L.a modélisation

Notons S, la variable aléatoire donnant le nombre de boules blanches
obtenu aprés n tirages.

On sait que S, ~ B(n, p).

Pour tout k € {0,---,n}, on a
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Une approche historique

L.a modélisation

Notons S, la variable aléatoire donnant le nombre de boules blanches
obtenu aprés n tirages.

On sait que S, ~ B(n, p).

Pour tout k € {0,---,n}, on a

Bernoulli avait constaté que plus k est proche de np plus cette
quantité est grande.
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Une approche historique

I[lustration

Représentation graphique de la densité de la loi B(400 ; 0,5)
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Une approche historique

e résultat de Bernoulli

Bernoulli a remarqué aussi que pour 6 > 0 fixé, IP( 57 — p| > 9) est

d'autant plus petite que n est grand.
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Une approche historique

e résultat de Bernoulli

Bernoulli a remarqué aussi que pour 6 > 0 fixé, IP( 57 — p| > 9) est

d'autant plus petite que n est grand.

Autrement dit, avec les notations actuelles :
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Une approche historique

e résultat de Bernoulli

Bernoulli a remarqué aussi que pour 6 > 0 fixé, IP( 57 — p| > 9) est

d'autant plus petite que n est grand.

Autrement dit, avec les notations actuelles :

Vo > 0,

) Sn

lim |P<‘— —p) > 5) =0.
n

n—-+oo

L'inégalité de Bienaymé-Tchebychev
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L'inégalité de Bienaymé-Tchebychev

© L'inégalité de Bienaymeé-Tchebychev
@ Le résultat
@ Des applications
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L'inégalité de Bienaymé-Tchebychev Le résultat

Inégalité de Markov

Cette inégalité attribuée a Markov (1856-1922) a été prouvée en
1869.
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L'inégalité de Bienaymé-Tchebychev Le résultat

Inégalité de Markov

Cette inégalité attribuée a Markov (1856-1922) a été prouvée en
1869.

Propriété :
Soit X une variable aléatoire positive admettant une espérance .
Pour tout § > 0, on a

P(X >0) < %
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L'inégalité de Bienaymé-Tchebychev Le résultat

Inégalité de Markov

Cette inégalité attribuée a Markov (1856-1922) a été prouvée en
1869.

Propriété :
Soit X une variable aléatoire positive admettant une espérance .
Pour tout § > 0, on a

P(X >0) < %
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L'inégalité de Bienaymé-Tchebychev Le résultat

Inégalité de Markov
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L'inégalité de Bienaymé-Tchebychev Le résultat

Preuve en image
Soit G la fonction définie sur R par G(x) = P(X > x).
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L'inégalité de Bienaymé-Tchebychev Le résultat

Preuve en image

Représentation graphique de la fonction G

s m—
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L'inégalité de Bienaymé-Tchebychev Le résultat

Preuve en image

Représentation graphique de la fonction G

s m—
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L'inégalité de Bienaymé-Tchebychev Le résultat

Preuve en image
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L'inégalité de Bienaymé-Tchebychev Le résultat

Preuve en image

Représentation graphique de E(X)

——
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L'inégalité de Bienaymé-Tchebychev Le résultat

Preuve en image
Comparaison entre E(X) et 6IP(X > 0)

e E— )

E(X) ————
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L'inégalité de Bienaymé-Tchebychev Le résultat

Inégalité de Bienaymé-Tchebychev

@ Irénée-Jules Bienaymé (1796-1878) a obtenu le résultat en 1853.
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L'inégalité de Bienaymé-Tchebychev Le résultat

Inégalité de Bienaymé-Tchebychev

@ Irénée-Jules Bienaymé (1796-1878) a obtenu le résultat en 1853.

@ Pafnouti Tchebychev (1821-1894) I'a obtenu en 1867.
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L'inégalité de Bienaymé-Tchebychev Le résultat

Inégalité de Bienaymé-Tchebychev

Propriété : Soit X une variable aléatoire admettant une espérance
11 et une variance V. Pour tout 6 > 0, on a

POX —ul = 0) < 5
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L'inégalité de Bienaymé-Tchebychev Le résultat

Inégalité de Bienaymé-Tchebychev

Propriété : Soit X une variable aléatoire admettant une espérance
11 et une variance V. Pour tout 6 > 0, on a

%4
PAX —ul 20) < 5.

Démonstration : On applique I'inégalité de Markov a la variable
aléatoire (X — ).
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L'inégalité de Bienaymé-Tchebychev Le résultat

Remarques

Remarque 1 : Cette inégalité n'a d'intérét que pour § > o = /V.
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L'inégalité de Bienaymé-Tchebychev Le résultat

Remarques

Remarque 1 : Cette inégalité n'a d'intérét que pour § > o = /V.

Remarque 2 : Cette inégalité est dite inégalité de concentration.
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L'inégalité de Bienaymé-Tchebychev Le résultat

Remarques

Remarque 1 : Cette inégalité n'a d'intérét que pour § > o = /V.

Remarque 2 : Cette inégalité est dite inégalité de concentration.
Elle donne un intervalle de fluctuation pour X,

Juw— 0, +0[

de niveau 1 — 5
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L'inégalité de Bienaymé-Tchebychev Le résultat

Premiére application

Soit X une variable aléatoire admettant une variance. On note p son
espérance et o2 sa variance.
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L'inégalité de Bienaymé-Tchebychev Le résultat

Premiére application

Soit X une variable aléatoire admettant une variance. On note p son
espérance et o2 sa variance.

On souhaite estimer IP(X €]u — 20, u + 207() et
P(X €]p — 30, 1+ 30]).
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L'inégalité de Bienaymé-Tchebychev Le résultat

Premiére application
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L'inégalité de Bienaymé-Tchebychev Le résultat

Premiére application

0.04 A

0.03 A

0.02 A

0.01 A

0 .||I||III|| |||II||I||.
T + T o + T T

150 160 170 180 190 200 210 220 230 240 250
1 ]
I 1

w— 30 w+ 30

shortname (shortinst) L'inégalité de Bienaymé-Tchebychev



L'inégalité de Bienaymé-Tchebychev Le résultat

Premiére application

Soit X une variable aléatoire admettant une variance. On note p son
espérance et 02 sa variance.

Par l'inégalité de BT, on obtient :
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L'inégalité de Bienaymé-Tchebychev Le résultat

Premiére application

Soit X une variable aléatoire admettant une variance. On note p son
espérance et 02 sa variance.

Par l'inégalité de BT, on obtient :

P(X €]p — 20, i+ 20])
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L'inégalité de Bienaymé-Tchebychev Le résultat

Premiére application

Soit X une variable aléatoire admettant une variance. On note p son
espérance et 02 sa variance.

Par l'inégalité de BT, on obtient :

P(X €]p — 20, i+ 20[) = P(|X — p| < 20)
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L'inégalité de Bienaymé-Tchebychev Le résultat

Premiére application

Soit X une variable aléatoire admettant une variance. On note p son
espérance et 02 sa variance.

Par l'inégalité de BT, on obtient :

2

P(X €]y — 20, pu+20]) = P(IX — p| <20) > 1— 4" .
g
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L'inégalité de Bienaymé-Tchebychev Le résultat

Premiére application

Soit X une variable aléatoire admettant une variance. On note p son
espérance et 02 sa variance.

Par l'inégalité de BT, on obtient :

2

402

3
P(X €] — 20, ju+20]) = P(IX — p| < 20) > 1 — — .
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L'inégalité de Bienaymé-Tchebychev Le résultat

Premiére application

Soit X une variable aléatoire admettant une variance. On note p son
espérance et 02 sa variance.

Par l'inégalité de BT, on obtient :

2

P(X €]y — 20, pu+20]) = P(IX — p| <20) > 1— 4" .
g

3
4
et

P(X €]p — 30, i+ 30])
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L'inégalité de Bienaymé-Tchebychev Le résultat

Premiére application

Soit X une variable aléatoire admettant une variance. On note p son
espérance et 02 sa variance.

Par l'inégalité de BT, on obtient :

2

P(X €]y — 20, pu+20]) = P(IX — p| <20) > 1— %
g

3
4
et

P(X €]lu — 30,1+ 30[) = P(|X — u| < 30)
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L'inégalité de Bienaymé-Tchebychev Le résultat

Premiére application

Soit X une variable aléatoire admettant une variance. On note p son
espérance et 02 sa variance.

Par l'inégalité de BT, on obtient :

2

P(X €]y — 20, pu+20]) = P(IX — p| <20) > 1— %
g

3
4
et

2
P(X €] — 30, 1+ 30[) = P(IX — | <30) > 1 %
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L'inégalité de Bienaymé-Tchebychev Le résultat

Premiére application

Soit X une variable aléatoire admettant une variance. On note p son
espérance et 02 sa variance.

Par l'inégalité de BT, on obtient :

o2 3
P(X €]y — 20, u+20]) =P(|1X — | <20) >1— 22" 1
et
P(X €]u — 30, 1+ 30]) = P(| X — |<3<7)>1—U—2—§
/=30, = I >l-55=5
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L'inégalité de Bienaymé-Tchebychev Le résultat

Limite de |'inégalité de Bienaymé-Tchebychev
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L'inégalité de Bienaymé-Tchebychev Le résultat

Limite de |'inégalité de Bienaymé-Tchebychev

Il s’agit d'une majoration grossiére.

shortname (shortinst) L'inégalité de Bienaymé-Tchebychev



L'inégalité de Bienaymé-Tchebychev Le résultat

Limite de |'inégalité de Bienaymé-Tchebychev

Il s’agit d'une majoration grossiére.

Exemple : soit X ~ (400 ; 0,5).

shortname (shortinst) L'inégalité de Bienaymé-Tchebychev



L'inégalité de Bienaymé-Tchebychev Le résultat

Limite de |'inégalité de Bienaymé-Tchebychev

Il s’agit d'une majoration grossiére.
Exemple : soit X ~ (400 ; 0,5).

Par I'inégalité de BT, on P(X €]u — 20, n + 20[) > 0,75
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L'inégalité de Bienaymé-Tchebychev Le résultat

Limite de |'inégalité de Bienaymé-Tchebychev

Il s’agit d'une majoration grossiére.
Exemple : soit X ~ (400 ; 0,5).
Par I'inégalité de BT, on P(X €]u — 20, n + 20[) > 0,75

alors que le calcul nous donne
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L'inégalité de Bienaymé-Tchebychev Le résultat

Limite de |'inégalité de Bienaymé-Tchebychev

Il s’agit d'une majoration grossiére.

Exemple : soit X ~ (400 ; 0,5).

Par I'inégalité de BT, on P(X €]u — 20, n + 20[) > 0,75
alors que le calcul nous donne

P(X €]p — 20, 1+ 20[) =~ 0, 95.
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L'inégalité de Bienaymé-Tchebychev Des applications

Application : Inégalité de concentration pour la

moyenne empirique

On considére une suite (X,) de variables aléatoires définies sur un
méme espace de probabilité, deux a deux indépendantes, de méme
loi, admettant une espérance u et une variance V.
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L'inégalité de Bienaymé-Tchebychev Des applications

Application : Inégalité de concentration pour la

moyenne empirique

On considére une suite (X,) de variables aléatoires définies sur un
méme espace de probabilité, deux a deux indépendantes, de méme
loi, admettant une espérance u et une variance V.

Pour tout n € N, notons S, = X; +---+ X, et
M, =Xy + -+ X,).
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L'inégalité de Bienaymé-Tchebychev Des applications

Application : Inégalité de concentration pour la

moyenne empirique

On considére une suite (X,) de variables aléatoires définies sur un
méme espace de probabilité, deux a deux indépendantes, de méme
loi, admettant une espérance u et une variance V.

Pour tout n € N, notons S, = X; +---+ X, et
M, =Xy + -+ X,).

On a E(S,)
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L'inégalité de Bienaymé-Tchebychev Des applications

Application : Inégalité de concentration pour la

moyenne empirique

On considére une suite (X,) de variables aléatoires définies sur un
méme espace de probabilité, deux a deux indépendantes, de méme
loi, admettant une espérance u et une variance V.

Pour tout n € N, notons S, = X; +---+ X, et
M, =Xy + -+ X,).

On a E(S,) = nu
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L'inégalité de Bienaymé-Tchebychev Des applications

Application : Inégalité de concentration pour la

moyenne empirique

On considére une suite (X,) de variables aléatoires définies sur un
méme espace de probabilité, deux a deux indépendantes, de méme
loi, admettant une espérance u et une variance V.

Pour tout n € N, notons S, = X; +---+ X, et
M, =Xy + -+ X,).

On a E(S,) = nu puis E(M,)

shortname (shortinst) L'inégalité de Bienaymé-Tchebychev



L'inégalité de Bienaymé-Tchebychev Des applications

Application : Inégalité de concentration pour la

moyenne empirique

On considére une suite (X,) de variables aléatoires définies sur un
méme espace de probabilité, deux a deux indépendantes, de méme
loi, admettant une espérance u et une variance V.

Pour tout n € N, notons S, = X; +---+ X, et
M, =Xy + -+ X,).

On a E(S,) = nu puis E(M,,) = 2E(S,)
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L'inégalité de Bienaymé-Tchebychev Des applications

Application : Inégalité de concentration pour la

moyenne empirique

On considére une suite (X,) de variables aléatoires définies sur un
méme espace de probabilité, deux a deux indépendantes, de méme
loi, admettant une espérance u et une variance V.

Pour tout n € N, notons S, = X; +---+ X, et
M, =Xy + -+ X,).

On a E(S,) = nu puis E(M,,) = E(S,) = p.
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L'inégalité de Bienaymé-Tchebychev Des applications

Application : Inégalité de concentration pour la

moyenne empirique

On considére une suite (X,) de variables aléatoires définies sur un
méme espace de probabilité, deux a deux indépendantes, de méme
loi, admettant une espérance u et une variance V.

Pour tout n € N, notons S, = X; +---+ X, et
M, =Xy + -+ X,).

On a E(S,) = nu puis E(M,,) = E(S,) = p.

Et V(S,)
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L'inégalité de Bienaymé-Tchebychev Des applications

Application : Inégalité de concentration pour la

moyenne empirique

On considére une suite (X,) de variables aléatoires définies sur un
méme espace de probabilité, deux a deux indépendantes, de méme
loi, admettant une espérance u et une variance V.

Pour tout n € N, notons S, = X; +---+ X, et
M, =Xy + -+ X,).

On a E(S,) = nu puis E(M,,) = E(S,) = p.

Et V(S,) = nV
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L'inégalité de Bienaymé-Tchebychev Des applications

Application : Inégalité de concentration pour la

moyenne empirique

On considére une suite (X,) de variables aléatoires définies sur un
méme espace de probabilité, deux a deux indépendantes, de méme
loi, admettant une espérance u et une variance V.

Pour tout n € N, notons S, = X; +---+ X, et
M, =Xy + -+ X,).

On a E(S,) = nu puis E(M,,) = E(S,) = p.

Et V(S,) =nV puis V(M,)
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L'inégalité de Bienaymé-Tchebychev Des applications

Application : Inégalité de concentration pour la

moyenne empirique

On considére une suite (X,) de variables aléatoires définies sur un
méme espace de probabilité, deux a deux indépendantes, de méme
loi, admettant une espérance u et une variance V.

Pour tout n € N, notons S, = X; +---+ X, et
M, =Xy + -+ X,).

On a E(S,) = nu puis E(M,,) = E(S,) = p.

Et V(S,) =nV puis V(M,) = L V(S,)

n
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L'inégalité de Bienaymé-Tchebychev Des applications

Application : Inégalité de concentration pour la

moyenne empirique

On considére une suite (X,) de variables aléatoires définies sur un
méme espace de probabilité, deux a deux indépendantes, de méme
loi, admettant une espérance u et une variance V.

Pour tout n € N, notons S, = X; +---+ X, et
M, =Xy + -+ X,).

On a E(S,) = nu puis E(M,,) = E(S,) = p.
v

Et V(S,) =nV puis V(M,) = LV(S,) =

n
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Application : Inégalité de concentration pour la

moyenne empirique

On considére une suite (X,) de variables aléatoires définies sur un
méme espace de probabilité, deux a deux indépendantes, de méme
loi, admettant une espérance i et une variance V.

Pour tout n € N, notons M,, = 2(X; +--- + X,).

n

Ona E(M,) = pet V(M,) = L.
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Application : Inégalité de concentration pour la

moyenne empirique

On considére une suite (X,) de variables aléatoires définies sur un
méme espace de probabilité, deux a deux indépendantes, de méme
loi, admettant une espérance i et une variance V.

Pour tout n € N, notons M, = 1(X; +--- + X,).

Ona E(M,) = pet V(M,) = L.

Par I'inégalité de BT, on obtient,
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Application : Inégalité de concentration pour la

moyenne empirique

On considére une suite (X,) de variables aléatoires définies sur un
méme espace de probabilité, deux a deux indépendantes, de méme
loi, admettant une espérance i et une variance V.

Pour tout n € N, notons M, = 1(X; +--- + X,).

Ona E(M,) = pet V(M,) = L.

Par I'inégalité de BT, on obtient, pour tout § > 0,

Vv
— > < —.
P(IM, — 1 > 0) < —
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Cas particulier : Variables aléatoires de loi de

Bernoulli

On considére une suite (X,) de variables aléatoires deux & deux
indépendantes et de loi de Bernoulli B(p) avec p €]0, 1].
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Cas particulier : Variables aléatoires de loi de

Bernoulli

On considére une suite (X,) de variables aléatoires deux & deux
indépendantes et de loi de Bernoulli B(p) avec p €]0, 1].

Ona E(M,) = p et V(M,) = 212,

n
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Cas particulier : Variables aléatoires de loi de

Bernoulli

On considére une suite (X,) de variables aléatoires deux & deux
indépendantes et de loi de Bernoulli B(p) avec p €]0, 1].

Ona E(M,) = p et V(M,) = 212,

n

Par I'inégalité de BT, on obtient, pour tout 6 > 0,

pl—p) _ 1
— > < < .
|P(|Mn p| —6) — n62 — 4”62
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L'inégalité de Bienaymé-Tchebychev Des applications

Exercice en terminale (1)

On lance 3600 fois un dé équilibré a six faces. On souhaite minorer la

probabilité que le nombre d'apparitions du chiffre 1 soit compris entre
480 et 720.

Soit S la variable aléatoire comptant le nombre d'apparitions du
chiffre 1 au cours de ces lancers.
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Exercice en terminale (1)

On lance 3600 fois un dé équilibré a six faces. On souhaite minorer la

probabilité que le nombre d'apparitions du chiffre 1 soit compris entre
480 et 720.

Soit S la variable aléatoire comptant le nombre d'apparitions du
chiffre 1 au cours de ces lancers.

@ Loide S.
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Exercice en terminale (1)

On lance 3600 fois un dé équilibré a six faces. On souhaite minorer la

probabilité que le nombre d'apparitions du chiffre 1 soit compris entre
480 et 720.

Soit S la variable aléatoire comptant le nombre d'apparitions du
chiffre 1 au cours de ces lancers.

O LoideS.
© Calcul de E(S) et V(S).
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Exercice en terminale (1)

On lance 3600 fois un dé équilibré a six faces. On souhaite minorer la

probabilité que le nombre d'apparitions du chiffre 1 soit compris entre
480 et 720.

Soit S la variable aléatoire comptant le nombre d'apparitions du
chiffre 1 au cours de ces lancers.

O LoideS.
© Calcul de E(S) et V(S).
© 480 < S <720 < |S—600] < 120.
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Exercice en terminale (1)

On lance 3600 fois un dé équilibré a six faces. On souhaite minorer la
probabilité que le nombre d'apparitions du chiffre 1 soit compris entre
480 et 720.

Soit S la variable aléatoire comptant le nombre d'apparitions du
chiffre 1 au cours de ces lancers.

O LoideS.

© Calcul de E(S) et V(S).

© 480 <S5 <720 <= |S—600| < 120.

Q Inégalité de B.T. — P (480 < S < 720) > 0, 96.
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Exercice en terminale (2)

On effectue une suite de lancers d'un dé a quatre faces. Quel nombre
de lancers suffit-il pour pouvoir affirmer avec un risque d'erreur
inférieur 3 5 % que la fréquence d'apparition du 4 est strictement
comprise entre 0,24 et 0,26 ?

On pose

X 1 sile dé tombe sur 4 au lancer numéro i,
i= .
0 sinon.

On note M, la fréquence d'apparition du 4 au cours des n premiers
lancers.
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Exercice en terminale (2)

On effectue une suite de lancers d'un dé a quatre faces. Quel nombre
de lancers suffit-il pour pouvoir affirmer avec un risque d'erreur
inférieur 3 5 % que la fréquence d'apparition du 4 est strictement
comprise entre 0,24 et 0,26 ?
On pose
X — 1 sile dé tombe sur 4 au lancer numéro i,

I 0 sinon.
On note M, la fréquence d'apparition du 4 au cours des n premiers
lancers.

© Espérance et variance de chacune des X;.
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Exercice en terminale (2)

On effectue une suite de lancers d'un dé a quatre faces. Quel nombre
de lancers suffit-il pour pouvoir affirmer avec un risque d'erreur
inférieur 3 5 % que la fréquence d'apparition du 4 est strictement
comprise entre 0,24 et 0,26 ?

On pose

X 1 sile dé tombe sur 4 au lancer numéro i,
I‘:

0 sinon.
On note M, la fréquence d'apparition du 4 au cours des n premiers
lancers.

© Espérance et variance de chacune des X;.
© Expression de M, en fonction des X;.
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Exercice en terminale (2)

On effectue une suite de lancers d'un dé a quatre faces. Quel nombre
de lancers suffit-il pour pouvoir affirmer avec un risque d'erreur
inférieur 3 5 % que la fréquence d'apparition du 4 est strictement
comprise entre 0,24 et 0,26 ?

On pose

X 1 sile dé tombe sur 4 au lancer numéro i,
I‘:

0 sinon.

On note M, la fréquence d'apparition du 4 au cours des n premiers
lancers.

© Espérance et variance de chacune des X;.

© Expression de M, en fonction des X;.

© On cherche n tel que P(|M, —0,25| < 0,01) > 0, 95.
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Exercice en terminale (2)

On effectue une suite de lancers d'un dé a quatre faces. Quel nombre
de lancers suffit-il pour pouvoir affirmer avec un risque d'erreur
inférieur 3 5 % que la fréquence d'apparition du 4 est strictement
comprise entre 0,24 et 0,26 ?

On pose

X 1 sile dé tombe sur 4 au lancer numéro i,
I‘:

0 sinon.

On note M, la fréquence d'apparition du 4 au cours des n premiers
lancers.

© Espérance et variance de chacune des X;.

© Expression de M, en fonction des X;.

© On cherche n tel que P(|M, —0,25| < 0,01) > 0, 95.

© Inégalité de concentration — Valeur de n.
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L'inégalité de Bienaymé-Tchebychev Des applications

Intervalle de confiance : le probleme

On lance 1000 fois une piéce de monnaie dont on ne sait pas si elle
est équilibrée.
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Intervalle de confiance : le probleme

On lance 1000 fois une piéce de monnaie dont on ne sait pas si elle
est équilibrée.

On note p la probabilité de tomber sur pile.
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Intervalle de confiance : le probleme

On lance 1000 fois une piéce de monnaie dont on ne sait pas si elle
est équilibrée.

On note p la probabilité de tomber sur pile.

On obtient 540 fois pile.
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Intervalle de confiance : le probleme

On lance 1000 fois une piéce de monnaie dont on ne sait pas si elle
est équilibrée.

On note p la probabilité de tomber sur pile.

On obtient 540 fois pile.

Donner un intervalle de confiance pour p au niveau 0,95.
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L'inégalité de Bienaymé-Tchebychev Des applications

Intervalle de confiance : la modélisation

Pour tout entier / strictement positif, notons la variable aléatoire X;
prenant la valeur 1 si on obtient pile au i-iéme lancer et prenant la
valeur O sinon.
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Intervalle de confiance : la modélisation

Pour tout entier / strictement positif, notons la variable aléatoire X;
prenant la valeur 1 si on obtient pile au i-iéme lancer et prenant la

valeur O sinon.
Alors pour tout i, X; ~ B(p).
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Intervalle de confiance : la modélisation

Pour tout entier / strictement positif, notons la variable aléatoire X;
prenant la valeur 1 si on obtient pile au i-iéme lancer et prenant la

valeur O sinon.
Alors pour tout i, X; ~ B(p).

Notons M, = %ZX,- la proportion de pile obtenue aprés n lancers.
i=1
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Intervalle de confiance : la modélisation

Pour tout entier / strictement positif, notons la variable aléatoire X;
prenant la valeur 1 si on obtient pile au i-iéme lancer et prenant la
valeur O sinon.

Alors pour tout i, X; ~ B(p).

Notons M, = %ZX,- la proportion de pile obtenue aprés n lancers.
i=1

Le probléme consiste a trouver § tel que

P(| Moo — p| < ) >0, 95.
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Intervalle de confiance : la résolution

D'aprés l'inégalité de Bienaymé-Tchebychev, on a
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Intervalle de confiance : la résolution

D'aprés l'inégalité de Bienaymé-Tchebychev, on a

pL—p) o

_ >1_
P(|Miooo — p| <) > 1 100052 =
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Intervalle de confiance : la résolution

D'aprés l'inégalité de Bienaymé-Tchebychev, on a

P(L—p) 1

_ >1-— - :
P(IMiooo = pl < 0) 2 1= Za505" 2 1~ 450052

Il sufhit donc de choisir § tel que

1
1——-_ >0,95
400052 ~ 0%
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Intervalle de confiance : la résolution

D'aprés l'inégalité de Bienaymé-Tchebychev, on a

pl—p) o, 1
100002 ~ ° 400062

|P(|M1000 — p| < 6) Z 1-—

Il sufhit donc de choisir § tel que

1
1——-_ >0,95
400052 ~ 0%

C'est-a-dire

1
§>_— -
= /4000 x 0,05
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Intervalle de confiance : la résolution

D'aprés l'inégalité de Bienaymé-Tchebychev, on a

1-— 1
IP(|M1000—p|<6)21—u>1

100062 =~ 400062
Il sufhit donc de choisir § tel que
1 ! > 0,95
400002 — 777
C'est-a-dire
1 1

5> =
~ 4000 % 0,05 10v2
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Intervalle de confiance : la résolution

D'aprés l'inégalité de Bienaymé-Tchebychev, on a

1-— 1
IP(|M1000—p|<6)21—u>1

100062 =~ 400062
Il sufhit donc de choisir § tel que
1 ! > 0,95
400002 — 777
C'est-a-dire
1 1
o> = ~ 0,07.

~ 4000 % 0,05 10v2
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Intervalle de confiance : la conclusion

L'intervalle [0,54 — 0,08; 0,54 + 0, 08] est un intervalle de confiance
pour p au niveau 0,95.
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Méthode de Monte-Carlo

M, = S” = prop. de points dans le quart de disque
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Méthode de Monte-Carlo

M, = % = prop. de points dans le quart de disque

o T4 x M,
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Méthode de Monte-Carlo

M, = % = prop. de points dans le quart de disque

o T4 x M,
OSnNB(n ”)

17
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Méthode de Monte-Carlo

= prop. de points dans le quart de disque

1
21~ 4nH2
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Méthode de Monte-Carlo

M, = 22 = prop. de points dans le quart de disque

o T4 x M,
o Sy~ B (n3)
> P(IMn— 3] <0) 21— p
» Il faut 100 x plus de temps pour avoir la 2¢ décimale que pour

avoir la 1re
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Méthode de Monte-Carlo

M, = 22 = prop. de points dans le quart de disque

o T4 x M,
0 S~ B(n.3)
> P(IMy— 5| <0) 21— g
» Il faut 100 x plus de temps pour avoir la 2¢ décimale que pour
avoir la 1re

@ Probléme annexe : temps pour remplir I'écran ?
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Méthode de Monte-Carlo

M, = 22 = prop. de points dans le quart de disque

o T4 x M,
e S5, ~B (n, %)
P (M, 7<) >1- gl
» Il faut 100 x plus de temps pour avoir la 2¢ décimale que pour
avoir la 1r¢
@ Probléme annexe : temps pour remplir I'écran ?

» Loi géométrique et série harmonique
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La loi faible des grands nombres

@ La loi faible des grands nombres
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La loi faible des grands nombres

Convergence en probabilité

Définition : Soit (X,) une suite de variables aléatoires et soit X une
variable aléatoire toutes définies sur un méme espace de probabilité.
On dit que X, converge en probabilité vers X si

Ve>0, lim P(|X,—X|>¢)=0.

n—-+o0o
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Convergence en probabilité

Définition : Soit (X,) une suite de variables aléatoires et soit X une
variable aléatoire toutes définies sur un méme espace de probabilité.
On dit que X, converge en probabilité vers X si

Ve>0, lim P(|X,—X|>¢)=0.

n—-+o0o

On note X, L X.

n—-+oo
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Loi faible des grands nombres

Théoréeme : Soit (X,) une suite de variables aléatoires définies sur
un méme espace de probabilité, deux a deux indépendantes, de méme
loi admettant une espérance . et une variance. Alors on a
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Loi faible des grands nombres

Théoréeme : Soit (X,) une suite de variables aléatoires définies sur
un méme espace de probabilité, deux a deux indépendantes, de méme
loi admettant une espérance . et une variance. Alors on a

Remarque : L'inégalité de Bienaymé Tchebychev précise la vitesse
de convergence.
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La loi faible des grands nombres

Application dans le cas du schéma de Bernoulli

Soit (X,) une suite de variables aléatoires définies sur un méme
espace de probabilité, deux & deux indépendantes, dont la loi est la
loi de Bernoulli de paramétre p €]0, 1[. Alors on a

1 n
-3 X LN
n o1 n——+00
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Illustration
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Illustration
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Résumé

@ Dénombrement.
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@ Dénombrement.
@ Espérance et variance d'une somme/d’une comb. lin.
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Résumé

@ Dénombrement.
@ Espérance et variance d'une somme/d’une comb. lin.
@ Somme et moyenne d'un échantillon.

Sn:X1+X2+"'+Xn
X+ X+ + X,
n

M, =
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Résumé

@ Dénombrement.
@ Espérance et variance d'une somme/d’une comb. lin.
@ Somme et moyenne d'un échantillon.

Sn:X1+X2+"'+Xn
X+ X+ + X,
n

M, =

@ Loi binomiale
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Résumé

@ Dénombrement.
@ Espérance et variance d'une somme/d’une comb. lin.
@ Somme et moyenne d'un échantillon.

Sn:X1+X2+"'+Xn
X+ X+ + X,
n

M, =

@ Loi binomiale
o Loinormale
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Résumé

@ Dénombrement.
@ Espérance et variance d'une somme/d’une comb. lin.
@ Somme et moyenne d'un échantillon.

Sn:X1+X2+"'+Xn
X+ X+ + X,
n

M, =

@ Loi binomiale
o Loi normale
@ Inégalité de B.T. et applications
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Résumé

@ Dénombrement.
@ Espérance et variance d'une somme/d’une comb. lin.
@ Somme et moyenne d'un échantillon.

Sn:X1+X2+"'+Xn

Mn:X1+X2':"'+Xn

@ Loi binomiale
o Leinormale
@ Inégalité de B.T. et applications
» Inégalité de concentration, loi binomiale, stat., LGN
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