Emmanuelle
CREPEAU-JAISSON
Diplômes universitaires
- 2019 :
HDR de Mathématiques, Université de Versailles-St Quentin en Yvelines, Paris-Saclay
- 2002 :
Doctorat de Mathématiques, Paris 11-Orsay
- 1999 :
Agrégation de Mathématiques
- 1999 :
Magistere de Mathématique et Informatique, Ecole Normale Supérieure de Cachan
- 1998 :
Diplôme d’études Approfondies, EDP et Calcul Scientifique, Ecole Normale
Supérieure de Cachan et université Paris-Sud-Orsay
- 1996 :
Elève Fonctionnaire Stagiaire, ENS Cachan
Expériences professionnelles
- Depuis Sept. 2024 :
Professeur d'Université en Mathématiques Appliquées, Université Polytechnique Hauts-de-France
- sept. 2019-sept. 2024 :
Maîtresse de Conférences en Mathématiques Appliquées, LJK, Université Grenoble-Alpes
- Sept. 2004-Sept. 2019 :
Maîtresse de Conférences en Mathématiques Appliquées, LMV, Université de Versailles-St Quentin en Yvelines
- N. N. Lucas, E. Crépeau, Stabilization of the nonlinear KdV equation with a saturated boundary delayed term, under submission, January 2026.
- J. Wu, E. Crépeau, C. Prieur, L. Zhang, Observing hyperbolic systems with source and dynamic boundary disturbances under submission, july 2024
- N. Carreno, E. Cerpa, E. Crépeau, C. Moreno,Null controllability of a highly coupled fourth-order parabolic system with one internal control, under submission, feb. 2025, hal-04934479
- E. Crépeau, L. Rosier, J. Valein, Stability of discontinuous diffusion coefficients for the heat equation on a star-shaped tree, Inverse Problems, 2025., hal-04931176
- L. Baudouin, M. de Buhan, E. Crépeau, J. Valein, Carleman-Based Reconstruction Algorithm on a wave Network, Mathematics of Control, Signals, and Systems, p. 1-40, (2025).
- H. Parada, E. Crépeau, C. Prieur, Stability of KdV equation on a network with bounded and unbounded lengths, ESAIM : Control, Optimisation and Calculus of Variations, vol. 30, p. 84, (2024). hal-04405778
- H. Parada, E. Crépeau, C. Prieur, Global well-posedness of KdV equation on a star-shaped network and stabilization by saturated controllers, SIAM J. Control Optim., 60(4), 2268-2296, (2022).
- H. Parada, E. Crépeau, C. Prieur, Delayed stabilization of the Korteweg-de Vries equation on a Star-shaped network, MCSS, 2022. hal-03177446.
- E. Cerpa, E. Crépeau, J. Valein, Boundary controllability of the Korteweg-de Vries equation on a tree-shaped network, Evolution Equations & Control Theory, 9(3), 673, (2020).
- N. Carreno, E. Cerpa, E. Crépeau, Internal null controllability of the generalized Hirota-Satsuma, ESAIM : COCV, 26 (75), (2020).
- K. Ammari, E. Crépeau, Well-posedness and stabilization of the Benjamin- Bona-Mahony equation on star-shaped networks, Systems & Control Letters, Vol 127, 39-43, (2019).
- E. Cerpa, E. Crépeau, C. Moreno, On the boundary controllability of the Korteweg-de Vries equation on a star-shaped network, IMA Journal of Mathematical Control and Information, 37(1), 226-240, (2020).
- L. Baudouin, E. Crépeau, J. Valein, Two approaches for the stabilization of nonlinear KdV equation with boundary time-delay feedback, IEEE Transactions on Automatic Control, 64(4), 1403-1414, (2018).
- E. Cerpa, E. Crépeau, On the controllability of the Improved-Bousinesq equation, SIAM Journal on Control and Optimization, 56(4), 3035-3049, (2018).
- K. Ammari, E. Crépeau, Feedback stabilization and boundary controllability of the Korteweg-de Vries equation on a star-shaped network, SIAM J. Control Optim., 56(3), 1620-1639, (2018).
- E. Crépeau, Exact boundary controllability of the Korteweg-de Vries equation with a piecewise constant main coefficient, System & Control Letters, Vol 97, 157-162, (2016).
- L. Baudouin, E. Cerpa, E. Crépeau, A. Mercado On the determination of the principal coefficient from boundary measurements in a KdV equation, J. Inverse Ill-Posed Probl., Vol. 22, No. 6, 819-846, (2014).
- L. Baudouin, E. Cerpa, E. Crépeau, A. Mercado, Lipschitz stability in an inverse problem for the Kuramoto-Sivashinsky equation, Applicable Analysis, Vol. 92, no. 10, 2084-2102, (2013).
- T.M. Laleg Kirati, E. Crépeau, M. Sorine, Semi-classical signal analysis, Math. Control Signals Syst., Vol 25, 37-61 (2013).
- L. Baudouin, E. Crépeau, J. Valein, Global Carleman estimate on a network for the wave equation and application to an inverse problem, MCRF Journal, Vol 1, No. 3, 307-330, (2011).
- E. Crépeau, Motion planning of a nonlinear FitzHugh Nagumo system, JESA, Vol. 45, No.7-8-9-10, . 631-643, (2011).
- E. Cerpa, E. Crépeau, Rapid stabilization for a linear Korteweg-de Vries equation, Discrete Contin. Dyn. Syst. Ser. B, Vol. 11, No. 3, 655-668, (2009).
- E. Cerpa, E. Crépeau, Boundary controlability for the non linear Korteweg-de Vries equation on any critical domain, Ann. Inst. H. Poincaré Anal. Non LinÅLeaire, Vol. 26, No. 2, pp. 457-475, (2009).
- E. Crépeau, C. Prieur, Approximate controllability of a reaction-diffusion system, Systems & Control Letters, 57, 1048-1057 (2008).
- M. T. Laleg, E. Crépeau, M. Sorine, Seperation of arterial pressure into a nonlinear superposition of solitary waves and a windkessel flow, Biomedical Signal Processing and Control Journal, 3, 163-170 (2007).
- E. Crépeau, M. Sorine, A reduced model of pulsatile flow in an arterial compartment, Chaos, Solitons and Fractals, 34, 594-605, (2007).
- E. Crépeau, C. Prieur, A clamped free beam controlled by a piezoelectric actuator, ESAIM : COCV, 12, 545-563, (2006).
- J-M. Coron, E. Crépeau, Exact boundary controllability of a nonlinear KdV equation with critical lenghts, J. Eur. Math. Soc. (JEMS) , 6, no. 3, 367–398, (2004).
- E. Crépeau, Exact controllability of the Boussinesq equation on a bounded domain, Diff. Int. Equations, 16, 303-326, (2003).
- E. Crépeau, Exact controllability of the Korteweg-de Vries equation around a non trivial stationnary solution, Int. J. Control, 74, 1096-1106, (2001).