Matériaux cellulaires issus de fabrication additive

Comportement dyn multiaxial

Comportement dynamique multiaxial de matériaux cellulaires issus de fabrication additive

L'essor de la fabrication additive depuis la fin du XXème siècle permet d'envisager la conception de nouveaux matériaux cellulaires architecturés combinant légèreté et grande capacité d'absorption d'énergie. Leur utilisation dans les secteurs du transport terrestre ou aérien revêt alors un intérêt certain pour contribuer conjointement à l'allégement structural et à la sécurité en cas de crash et/ou d'impacts.

Les objectifs des travaux de recherche sont d'étudier et de modéliser le comportement mécanique, sous chargements uniaxiaux en dynamique rapide, de cette nouvelle catégorie de matériaux cellulaires, les structures TPMS « Triply Period Minimal Surface », dont l'état de l'art actuel est plutôt centré sur les chargements quasi-statiques ou cycliques.

Les travaux présentés dans cette thèse sont organisés en trois volets.

La première partie vise à caractériser le comportement mécanique du matériau constitutif, l'acier 316L choisi pour sa grande ductilité, élaboré par le procédé SLM « Selective Laser Melting ».

La deuxième partie de cette thèse s'intéresse à la réponse mécanique des structures TPMS en régimes quasi-statique et dynamique. Plusieurs paramètres tels que la densité relative ou le type de géométrie sont approfondis. Les réponses mécaniques des structures présentent les caractéristiques d'un absorbeur d'énergie idéal avec l'absence de pic d'entrée, une longue phase plateau légèrement ascendante et une densification tardive. De plus, les mécanismes de déformation sont stables. En régime dynamique, la hausse observée des capacités d'absorption d'énergie est liée à la sensibilité du matériau constitutif.

Dans la troisième partie, un modèle numérique est développé ; il est capable de prédire assez fidèlement la réponse mécanique expérimentale en se basant notamment sur les lois de comportement matériau identifiées au préalable. Localement, la déformation se fait comme une combinaison de plusieurs mécanismes tels que le flambement, la flexion et le cisaillement. Des diagrammes d'absorption d'énergie et des lois de Gibson et Ashby sont déterminés dans l'optique de relier les capacités d'absorption d'énergie aux dimensions géométriques et donc de choisir la configuration la plus adaptée aux spécifications imposées.

Département(s) Partenaire(s) Montant global

Mécanique

287 k€
Support principal Rayonnement Date(s)
CARNOT-ARTS
National
2018 - 2022

Correspondant

Herve Morvan